Newtons lover i to og tre dimensjoner

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Newtons lover i to og tre dimensjoner 09.02.2015"

Transkript

1 Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4

2 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars kl. : 3 imer. Gruppeunderisning i dag: Vi må slå sammen re grupper il o. Gruppe 5: som anlig kl. 4 6, Ø394 Gruppe 6: fordeler seg på gruppe 5 eller 7 Gruppe 7: som anlig kl. 4 6, Ø443 FYS-MEK 3..4

3 Beegelse i re dimensjoner Beegelsen er karakeriser ed posisjon, hasighe og akselerasjon. Vi må bruker ekorer: posisjon: r iˆ y z kˆ hasighe: akselerasjon: dr d dy dz iˆ kˆ iˆ y d d d d z kˆ d d d y dz a iˆ kˆ a iˆ ay a d d d d z kˆ hasighe: far: kraf akselerasjon NL inegrasjon hasighe, posisjon FYS-MEK

4 Relaibeegelse og referansesysemer En person kjører med konsan hasighe i en åpen bil og kaser en ball re opp. Hordan il en annen person som sår på gaen beskrie beegelsen? Vi ser bor fra lufmosand. Se fra bilen sysem S : ballen beeger seg re opp og faller re ned igjen. Se fra gaen sysem S: beegelsen beskries som en skrå kas S y y S r ' R r posisjon i gae-sysem S: r posisjon i bil-sysem S : r ' posisjon a bilen i gae-sysem: R r R r' FYS-MEK

5 S y y S r ' r R r' R r dr d dr dr ' R r' u ' d d d d d d d' a u ' a' d d d Bilen beeger seg med konsan hasighe u akselerasjonene er de samme i begge sysemer. Sysemer som beeger seg med konsan hasighe er inerialsysemer. Newons loer er gyldig fysikken er de samme i begge sysemer. Hordan beskrie i beegelsen a ballen? fra bilen sysem S : enese kraf er graiasjon iniialbeingelse: fra gaen sysem S: enese kraf er graiasjon iniialbeingelse: u ' uiˆ FYS-MEK

6 Eksempel: Du ror en bå oer en el. Elen srømmer med hasighe. Hilken inkel bør du holde for å komme re oer elen? Sysem fese på elebredden: S Sysem fese il anne: S hasighe il anne i sysem S: hasighe il båen i sysem S : hasighe il båen i sysem S: u b b iˆ sin iˆ cos b u b b iˆ b iˆ sin b cos His du skal kommer re oer elen, så må du ikke ha hasighe i rening i sysem S b sin sin b sin b Du kan bare klare de his du ror raskere enn elen srømmer. FYS-MEK

7 Fri-legeme diagram i 3 dimensjoner Tegn e fri-legeme diagram for den øerse ballen. sysem: øre ballen omgielse: nedre ballen, kare konakpunker konakkrefer: normalkraf fra egg på ball normalkraf fra nedre ball på øre ball langrekkende kraf: graiasjon sysem er i ro: Fe Nw Nb G ma N b N w G FYS-MEK

8 FYS-MEK hp://pingo.upb.de/ access number: 878 En kjede fese il bilen holder bilen i ro på den friksjonsfrie rampen inkel. Rampen uøer en normalkraf på bilen. Hor sor er normalkrafen N i forhold il eken W a bilen? an cos sin W N W N W N W N W N T sin cos W T W N W T N

9 hp://pingo.upb.de/ access number: 878 E slagskip skyer samidig o skudd mo fiendeskip. Iniialfaren er de samme for begge skudd, men inklene mo horison er forskjellige. Granaene følger de parabolske banene is. Hilke skip blir ruffe førs? skip A skip B skipene blir ruffe samidig FYS-MEK

10 Skrå kas E prosjekil skyes u fra bakkeniå med far og inkelen mo horisonale. sysem: prosjekil omgielse: luf koordinasysem: horisonal, y erikal iniialbeingelser: r cos iˆ sin konakkrefer: lufmosand langrekkende kraf graiasjon nyig å egne hasighesekoren i fri-legeme diagram. ikke bland ekorer for hasighe og kraf! Hasighesekoren må ikke berøre syseme. FYS-MEK 3..4

11 Forenkel modell: i ser bor fra lufmosanden: Vi inkludere lufmosanden senere. graiasjon er konsan på jordoerflaen: F D G mg y ĵ î Newons andre lo: F G mg ˆ ne j ma Fne a g m i komponener: a a y g kas uen lufmosand: ingen akselerasjon i rening FYS-MEK 3..4

12 akselerasjon: a g iniialbeingelse: cos iˆ sin hasighe: a d g ˆ j d g g cos i sin g i komponenform: y cos sin g konsan hasighe sørre for små inkel men skip A ligger mye nærmere... FYS-MEK 3..4

13 FYS-MEK hasighe: r r i komponenform: sin cos g y j g ˆ iniialbeingelse: j g j i j g r r ˆ ˆ sin ˆ cos ˆ j g d j g d r r ˆ ˆ posisjon:

14 hp://pingo.upb.de/ access number: 878 E slagskip skyer samidig o skudd mo fiendeskip. Iniialfaren er de samme for begge skudd, men inklene mo horison er forskjellige. Granaene følger de parabolske banene is. Hilke skip blir ruffe førs? skip A skip B skipene blir ruffe samidig FYS-MEK

15 posisjon som funksjon a iden: y cos sin g skipe skyer ed id = prosjekile reffer ed id : y sin g sin g sin g iden er korere for små inkel skip B blir ruffe førs. FYS-MEK

16 Vi har bruk oppskrifen: finn iniialbeingelser idenifiser krefer, løs beegelsesligninger... rygg meode, sikker å finne sare Argumenasjon som renger li erfaring: beegelsen i og y rening er koble fra herandre parabolsk bane er symmerisk: de ar like lang id å komme opp som ned jo høyere den maksimale høyden jo lengre id ar de å falle ned FYS-MEK

17 Hilken inkel bør du elge for å skye lengs mulig? kulen reffer bakken ed iden : sin g y cos sin g komponen a posisjon ed id : cos sin cos g i derierer for å finne maksimum: d d cos sin g cos sin an 45 Prosjekile kommer lengs med =45. FYS-MEK

18 Vis a prosjekile beeger seg på en parabelbane. bane som funksjon a iden. r cos iˆ sin g for å se a banen er en parabel: urykk y som funksjon a cos y sin g cos y sin cos g cos y an g cos a b FYS-MEK

19 FYS-MEK Numerisk løsning for små idsseg : a a i Malab: for hasighe: r r r r Euler meode Euler-Cromer meode r r i Malab:

20 Numerisk løsning FYS-MEK 3..4

21 [ ] Som forene kommer prosjekile lengs når i elger 45. Prosjekile kommer like lang ed og 9 : sin cos g men iden er forskjellig FYS-MEK 3..4

22 hp://pingo.upb.de/ access number: 878 Hilken inkel bør du elge for å komme lengs mulig his du kaser en ball fra ake a en bygning? Vi ser forsa bor fra lufmosand. > 45 = 45 < 45 FYS-MEK 3..4

23 Kommer prosjekile også lengs med 45 his i skyer fra en høyde h >? De er anskelig å regne u analyisk: finn id når: y h sin g sin g sin g h g cos og så må i finne maksimum... De er le å gjøre numerisk: FYS-MEK

24 His du skyer fra en høyde h oer bakken: r r h iniialbeingelser: y m m/s [ ] Vi kan finne den maksimale lengden ed ariasjon a : ma ma m FYS-MEK

25 Skrå kas med lufmosand Vi har allerede diskuer o modeller for iskøs kraf: lineær lufmosand: for små hasighe: F k his luf beer seg med hasighe F k w w w F F w F w FYS-MEK

26 kadraisk lufmosand: for sørre hasighe: F D his luf beer seg med hasighe w F D w w eksempler hor i kan bruke kadraisk lufmosand: sku a en kanonkule ballkas bil, og, fly... eksempler hor i kan bruke lineær iskøs kraf: fallskjermhopp grus i anne... FYS-MEK

27 Skrå kas med lufmosand Fri-legeme diagram: NL: F F ne ne a F D ma F m ne G D mg D m g spesialfall: r r h ˆ j endimensjonal, ball faller ned med graiasjon, bremse a lufmosanden y G F D Lufmosandskrafen øker med hasighe il den blir like sor som graiasjonskrafen: F ne D mg akselerasjonen blir null og D ballen oppnår erminalhasighe: ay T g m meode for å finne lufmosandskoeffisien: måling a erminalhasighe D mg T FYS-MEK

28 skrå kas uen lufmosand: a g komponener: a d d a y d y d g dekoble beegelse: a uahengig a y eller y a y uahengig a eller D skrå kas med lufmosand: a g hor m y komponener: a d d D m y a y d y d D m y y g koble beegelse: a a, a a, y y y y i kan ikke løse beegelsesligningen for her komponen separa, i må løse beegelsesligninger for og y rening samidig de gjører i bes numerisk FYS-MEK

29 Numerisk løsning for skrå kas med lufmosand F ne F ne F D ma G D mg funksjon norma beregner lengden il ekoren A norma = sqrdoa,a FYS-MEK

30 Numerisk løsning for skrå kas med lufmosand FYS-MEK

31 Resula D =.49 kg/m D = kg/m iniialbeingelser: h m m/s 35 prosjekile beeger seg ikke lenger på en parabel bane ikke anskelig å implemenere lufmosanden numerisk, men analyisk løsning blir mege kompliser. ha beyr lufmosand for den bese inkelen? FYS-MEK

32 [ ] ma ma m obs: Vi har funne bese inkelen for gi iniialbeingelser og parameer: h,, D! FYS-MEK

33 Hilken inkel burde jeg bruke for å kase lengs fra Prekesolen? Samme iniialhasighe og lufmosand, men h = 6 m. [ 3] ma ma m His høyden er sor må du bruke en mindre inkel for å komme lengs. På sluen faller ballen ned erikal oer en iss høyde er ma konsan. Den enese måe å kase lenger er å øke. FYS-MEK

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 6..4 oblig 5: mideis hjemmeeksamen forusening for å a slueksamen krees indiiduell innleering blir lag u mandag 3. mars innleeringsfris mandag. mars Samale mellom sudener og lærer

Detaljer

Betinget bevegelse neste uke: ingen forelesning (17. og 19.2) ingen data verksted (19. og 21.2) gruppetimer som vanlig

Betinget bevegelse neste uke: ingen forelesning (17. og 19.2) ingen data verksted (19. og 21.2) gruppetimer som vanlig Beinge beegelse 0.0.04 nese ke: ingen forelesning (7. og 9.) ingen daa erksed (9. og.) grppeimer som anlig Mandag, 7.. innleering oblig 3 Mandag, 4.. ingen innleering sjanse for repeisjon FYS-MEK 0 0.0.04

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 5..5 YS-MEK 5..5 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Betinget bevegelse

Betinget bevegelse Beinge beegelse 13.0.017 FYS-MEK 1110 13.0.017 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Repetisjon 20.05.2015

Repetisjon 20.05.2015 Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

Repetisjon Eksamensverksted i dag, kl , Entropia

Repetisjon Eksamensverksted i dag, kl , Entropia Repeisjon 30.05.016 Eksamensverksed i dag, kl. 1 16, Enropia Emneevaluering: dialogmøe nese uke (eer eksamen) a konak med meg hvis du vil være med vikig for oss å få ilbakemelding FYS-MEK 1110 30.05.016

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi.3.5 YS-ME.3.5 Areid-energi eorem areid:, ne d kineisk energi,, ne d ne dr d d C ne dr kureinegral langs en kure C sar i r, slu i r uˆ N uˆ N uˆ uˆ N uˆ N uˆ d d ds d d C ds mange

Detaljer

Bevegelsesmengde og kollisjoner

Bevegelsesmengde og kollisjoner eegelsesengde og kollisjoner.3.4 FYS-MEK.3.4 Konseraie krefer poensiell energi: U( r U( x, y, z konserai kraf F U y arbeid uahengig a eien x F y D C x ikke-konserai kraf FYS-MEK.3.4 Energibearing energi

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell

Detaljer

Kinematikk i to og tre dimensjoner 29.01.2014

Kinematikk i to og tre dimensjoner 29.01.2014 Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner.3.4 YS-MEK.3.4 Energidiagraer energibearing: E K K d d d d likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell energi usabil likeekspunk

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 3.3.4 olig 5: midveis hjemmeeksamen forusening for å a slueksamen kreves individuell innlevering lir lag u mandag 3. mars innleveringsfris mandag. mars YS-ME 3.3.4 Areid-energi

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 16.1.218 FYS-MEK 111 16.1.218 1 Gruppeundersnng begynner rsdag, 23.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/18/plan218.hm Oppgaer og forelesnngene legges u på semesersden.

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 6.3.27 YS- MEK 6.3.27 Energidiagraer energibearing: E K U K U U du/d..5 du d du d likeekspunk U/U -.5 -. -.5 -.2 iniu i poensiell energi sabil likeekspunk

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 7..7 YS-MEK 7..7 Areid-energi eorem areid:, v ne d kineisk energi K, K K, ne v d ne dr d d C ne dr kurveinegral langs en kurve C sar i r, slu i r uˆ N uˆ N v vuˆ v uˆ N uˆ N vuˆ

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Areid og poensiell energi 6..3 YS-ME 6..3 areid:, d ne, ne dr areid-energi eorem, ineis energi: areid er ilfør meanis energi ureinegral langs en ure C sar i r slu i r os: generell ahenger areid a eien!

Detaljer

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1.

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1. Beegelse Side - Beegelse Vi skal nå a for oss beegelse Vi skal definere de grunnleggende begrepene posisjon, hasighe (og far), og akselerasjon Dee er begrep som du benyer il daglig, men i må presisere

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens

Detaljer

Krefter og betinget bevegelser 14.02.2013

Krefter og betinget bevegelser 14.02.2013 Krefer og benge beegeler 4..3 FYS-MEK 4..3 Benge beegele beegele: r bane: r beegele lang banen: haghe: r r u r u angenalekor: far lang een: akeleraon: a u u u u angenalakeleraon: enrpealakeleraon: a a

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 11..16 Oblig e lag u. Innleeing: Tisdag, 3.. FYS-MEK 111 11..16 1 FYS-MEK 111 11..16 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin(

Detaljer

Løsningsforslag eksamen TFY des 2013

Løsningsforslag eksamen TFY des 2013 Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske

Detaljer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer eegelsesengde og kollsjoner lerparkkelsyseer 6.3.5 YS-MEK 6.3.5 Meseksaen: 6.3. kl. 3 6 oppgaer a sae ype so ukesoppgaer (kke sor prosjekoppgae so oblgene en oppgae kreer e le sykk Malab eller Pyhon kode

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..14 FYS-MEK 111 5..14 1 FYS-MEK 111 5..14 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin( ) ( ) cos( ) ( g y x posisjon: Skå kas

Detaljer

Rotasjonsbevegelser 13.04.2015

Rotasjonsbevegelser 13.04.2015 Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..3 oblige innleees mndg kl. bel fo læeboken FYS-MEK 5..3 Beegelse i e dimensjone Beegelsen e kkeise ed posisjon, hsighe og kselesjon. Vi må buke ekoe: posisjon: i j z k

Detaljer

Flerpartikkelsystemer Rotasjonsbevegelser

Flerpartikkelsystemer Rotasjonsbevegelser lerparkkelsysemer Roasjonsbevegelser.4.6 Resulaer fra mveseksamen på semesersen: hp://www.uo.no/suer/emner/mana/fys/ys-mek/v6/beskjeer/fysmekmev6resula.pf YS-MEK.4.6 lerparkkelsysemer j y k neokraf på

Detaljer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer eegelsesengde og kollsjoner lerparkkelsyseer 7.3.4 YS-EK 7.3.4 YS-EK 7.3.4 Kollsjoner bearng a beegelsesengde:,,,, p p p p elassk kollsjon bearng a energ,,,,,,,,,, fullsendg uelassk kollsjon:,,,,,, resusjonskoeffsen:

Detaljer

Betinget bevegelse og friksjon

Betinget bevegelse og friksjon Betinget beegele og rikjon 1.0.014 nete uke: ingen orelening (17. og 19.) ingen ata erkte (19. og 1.) gruppetimer om anlig Manag, 17.. innleering oblig 3 Manag, 4.. ingen innleering jane or repetijon FYS-MEK

Detaljer

Styringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max.

Styringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max. Kraner med karaker max. 0 ABUS kransysemer målree krankjøring Syringseknikk Kransysemer seer ing i beegelse Konakorsyre moorer den raskese eien fra A il B Erfarne kranførere er forrolig med oppførselen

Detaljer

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18

TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1

Detaljer

FYSIKK-OLYMPIADEN 2012 2013

FYSIKK-OLYMPIADEN 2012 2013 Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe

Detaljer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer eegelsesengde og kollsjoner lerparkkelsyseer 07.04.06 esealuerng: hps://neskjea.uo.no/answer/7744.hl YS-EK 0 07.04.06 YS-EK 0 07.04.06 Kollsjoner,, 0, p p p p elassk kollsjon bearng a energ,,,, ) ( ) (

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagserksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 22. september kl 2:5 5:. Øing 3: Impuls, beegelsesmengde, energi. Bearingsloer. Oppgae a) Du er ute og sykler på en stor parkeringsplass.

Detaljer

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning H Ø G S K O L E N I B E R G E N Avdeling for lærerudanning Eksamensoppgave Ny/usa eksamen høs 004 Eksamensdao: 07--004 Fag: NAT0-FY Naur og miljøfag 60sp. ALN modul fysikk 5 sp. Klasse/gruppe: UTS/NY/ALN

Detaljer

Fiktive krefter

Fiktive krefter Fiktie krefter 8.04.014 FYS-MEK 1110 8.04.014 1 Fiktie krefter proble: Newtons loer gjelder bare i inertialsysteer hordan analyserer i en beegelse i et akselerert syste? z z x y transforasjon transforasjon

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 11..15 Oblig : De mangle alledie fo paameene i oppgae k) (fo å skie e pogam). En n esjon ble lag u i gå. Fellesinnleeinge i Deil: De e mulig å definee en guppe. Ski også

Detaljer

Fysikkolympiaden 1. runde 26. oktober 6. november 2009

Fysikkolympiaden 1. runde 26. oktober 6. november 2009 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Uniersitetet i Oslo Fysikkolympiaden. runde 6. oktober 6. noember 009 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Våren Ordinær eksamen

Våren Ordinær eksamen Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Knem o og re dmensoner 4.2.215 Hr du hene boen men e bel? YS-MEK 111 4.2.215 1 Esempel: En msse m = 1 g er fese l en fær med færonsn = 1 N/m og n beege seg på e bord uen frson og lufmosnd. Mssen beeger

Detaljer

Potensiell energi Bevegelsesmengde

Potensiell energi Bevegelsesmengde Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne

Detaljer

Bevegelsesmengde og kollisjoner

Bevegelsesmengde og kollisjoner eegelsesengde og kollisjoner 4.4.6 Midteisealuering: https://nettskjea.uio.no/answer/7744.htl Oblig 4: nye initialbetingelser i oppgaedel i og j FYS-MEK 4.4.6 Konseratie krefter potensiell energi: U r

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

Fysikkonkurranse 1. runde november 2001

Fysikkonkurranse 1. runde november 2001 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for underisning Fysikkonkurranse. runde 5. - 6. noember 00 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 00 minutter

Detaljer

LGU11005 A Naturfag 1 emne 1

LGU11005 A Naturfag 1 emne 1 Indiiduell skriftlig eksamen i LGU11005 A Naturfag 1 emne 1 ORDINÆR EKSAMEN: 4.12.2013 BOKMÅL Sensur faller innen: 6.1.2014 Resultatet blir tilgjengelig på studentweb første irkedag etter sensurfrist,

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall

Detaljer

Repetisjon

Repetisjon Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/

Detaljer

Betinget bevegelse og friksjon

Betinget bevegelse og friksjon Betinget beegele og rikjon 16.0.017 ingen gruble-gruppe inntil iere FYS-MEK 1110 16.0.017 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor:

Detaljer

Newtons tredje lov. Kinematikk i to og tre dimensjoner

Newtons tredje lov. Kinematikk i to og tre dimensjoner Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.

Detaljer

Fysikkolympiaden 1. runde 24. oktober 4. november 2016

Fysikkolympiaden 1. runde 24. oktober 4. november 2016 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Uniersitetet i Oslo Fysikkolympiaden 1. runde 4. oktober 4. noember 016 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

Bevegelsesmengde Kollisjoner

Bevegelsesmengde Kollisjoner eegelsesengde Kollisjoner 4.3.3 neste uke: ingen forelesning ingen gruppeunderisning ingen datalab på grunn a idteiseksaen FYS-MEK 4.3.3 Energibearing energi i systeet er beart: E tot = K +U + E T arbeid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: YS1000 Eksamensdag: 26. mars 2015 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 7 sider Vedlegg: ormelark (2

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

Løsningsforslag øving 6, ST1301

Løsningsforslag øving 6, ST1301 Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 12 1 %UXN DY UHDNVMRQVWUXVWHUH Reaksjonsrusere benyes ved banekorreksjoner, for dumping av spinn og il akiv regulering

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

Løsning til utvalgte oppgaver fra kapittel 14 (12).

Løsning til utvalgte oppgaver fra kapittel 14 (12). Løsning til talgte oppgaer fra kapittel () For å gi et inntrkk a integrasjonsrekkefølgens betdning er oppgaene fra asnitt løst på begge måtene Vi får forskjellige ttrkk ahengig a integrasjonsrekkefølgen

Detaljer

Avdeling for ingeniørutdanning

Avdeling for ingeniørutdanning Adeling for ingeniørutdanning Emne: Elektro & Reguleringsteknikk Gruppe(r): 2M Emnekode: LO521 M Dato: 16.12.2003 Faglig eiledere: Bjørn Engebretsen Eksamenstid: 09.00-12.00 Eksamensoppgaen består a: Tillatte

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERITETET I AGDER Grimd E K A M E N O G A V E : FAG: FY Fyikk ÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 7..6 Ekmenid, fr-il: 9. 4. Ekmenoppgen beår følgende Anll ider: 6 (inkl. foride Anll oppger: 4 Anll

Detaljer

Vektoranalyse TFE4120 Elektromagnetisme

Vektoranalyse TFE4120 Elektromagnetisme Vektoranalyse TFE4120 Elektromagnetisme Johannes kaar, NTNU 4. januar 2010 1 Integraler og notasjon Linjeintegral Et linjeintegral a et ektorfelt A oer en kure C skrier i C A d l. Når kuren er lukket tegner

Detaljer

1. Erfaringer sjøledninger sett i fra en rørprodusent - hva er viktig og hvilke feil gjøres?

1. Erfaringer sjøledninger sett i fra en rørprodusent - hva er viktig og hvilke feil gjøres? NORSK VANN, FAGTREFF 9. 10. FEBRUAR 2016 Jan Kenneth Bartolo Prosjekt PE 1. Erfaringer sjøledninger sett i fra en rørprodusent - ha er iktig og hilke feil gjøres? 05.02.2016 NORSK VANN, FAGTREFF 9. 10.

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

Fiktive krefter. Gravitasjon og planetenes bevegelser

Fiktive krefter. Gravitasjon og planetenes bevegelser iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer