FAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "FAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland"

Transkript

1 UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: F Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Han Gelland Klae: Dao:.5.6 Ekaenid, fa-il: Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall oppgae: 6 nall edlegg: Tillae hjelpeidle e: Kalkulao Foelaling: Hogad / Haugan / Gldendal

2 FY Odinæ ekaen 6 Ta dine egne foueninge hi du finne uklahee/angle i oppgaeee! Poeng på he deloppgae: Oppg Poeng a b c a b a b c d e 4 a b c Su 45 Poengene ie ek-fodelingen fo de enkele del-pøålene. Ved kaakeeing eklegge elfølgelig i illegg en oaludeing, bl.a. en udeing a i hilken gad kandidaen ha kunnkape innenfo de ulike oådene gi i oppgaeee. Lkke il!

3 . En paikkel beege eg i x-plane. Paikkelen ae i oigo ed iden. Haigheen o funkjon a iden e gi ed: B x in C ho. B. C. a Bee paikkelen akeleajon x- og -koponen ee. ekunde. b Bee paikkelen poijon x- og -koponen o funkjon a iden. Bee deee idpunke fo paikkelen føe paeing ee a a -aken, d eikal e oe apoijonen il paikkelen. c En annen paikkel ae i o i oigo ed iden. Denne paikkelen beege eg kun i -ening ingen beegele i x-ening og ha konan akeleajon. Hilken akeleajon å denne paikkelen ha fo a de o paiklene kal kollidee ide den føe paikkelen føe gang paee eikal e oe in apoijon lik o bekee i oppgae b? Fig. Figuen ie aen a paikkelbanen x- og -koodinae og haigheeko fo den fønene paikkelen ee.85 ekunde. Fo poijon ae ue il og fo haighe /.

4 . Te hjul ed adie henholdi, og e koble aen ed eie bånd lik o i i fig.. E bånd gå und hjul n og hjul n. På hjul n e fee en ing ed adiu og ed ae enu o hjul n. E bånd gå und denne nene ingen på hjul n og hjul n. Hjul n oee ed inkelhaigheen. De e hjulene oee uen a de gli o båndene. a Bee inkelhaigheen il hjul n og inkelhaigheen il hjul n uk bolk ed de gie adiene og inkelhaigheen il hjul n I denne deloppgaen kal du ikke ee inn edie fo adiene, en egne kun bolk. b I denne del-oppgaen få du oppl a de e hjuladiene e gi ed:.,.5 og.6. Videe e adien a ingen gi ed.8. Bee oajoninkelen fo hjul n ee 4. ekunde nå i få oppgi a hjul n ae i o og oee ed konan inkelakeleajon α. -. Fig.

5 . En ai linde ed jen aefodeling ha ae M. kg og adiu.5 Slindeen ulle på e hoional undelag. Til lindeen e fee en aelø ing ed adiu. og ed ae ene o lindeen. Både und lindeen og und ingen e de fee en aelø no. Vi da i de o noene ed like oe og konane, hoionale kefe S S S. N. De e ilekkelig fikjon ello lindeen og undelage, lik a lindeen ulle uen å gli o undelage. Senee a lindeen kalle i O. Slindeen konakpunk ed undelage kalle i P. De punke o på den øee noen i aen a beegelen ligge eikal e oe punke P, kalle i. Vi kalle de ilaende punke på den nedee noen fo B e fig.. a Tegn inn og fokla alle e kefe o ike på ee beående a lindeen og ingen. b Bee akeleajonen il aeenee a lindeen. c Bee fikjonkafen o ike på lindeen fa undelage. d Bee ekningene o lindeenee, punke og punke B ha beege eg i løpe a 4. ekunde. e Bee akeleajonen il lindeenee og inkelakeleajonen il lindeen hi de ikke e noen fikjon ello lindeen og undelage. Fig.

6 Linjedel: 4. Enegi: Figuen ie en bane ed en loop ed diaee, og en bakke ed hødefokjell,. En klo ed ae, kg ae innil en fjæ o e pee aen fa likeek. Vi ana fikjonfi undelag og ingen lufoand i hele oppgaen. Buk 9,8 / o edi fo ngdeakeleajonen. a Vi a den ine haigheen kloen å ha i oppen a loopen hi den kal klae å koe igjenno loopen uen å falle e gi ed g, de e adien il loopen og g e ngdeakeleajonen. b Ha e den ine edien fjækonanen kan æe fo a kloen kal klae loopen uen å falle? c La fjækonanen æe kn/. Ha e haigheen il kloen i enden a banen i den ae ed a fjæen e pee aen? 5. beid: En paikkel uee fo kafen F, N i +, N j +, N k. Paikkelen fle eg fa oigo il poijonen x,,, z, i en e linje. Ho o abeid gjø kafen på paikkelen? 6. Kanefikk: Ha e kouaoen il poijon, q, og oenu beegeleengde, p? Figuen ie poenialfunkjonen il en haonik ocillao. Tegn en kie og fokla hodan de kaniee eneginiåene Hailonen fodele eg.

7 Løning:. Haighe o funkjon a iden: C B x in... C B a keleajon:... co.... co a B B a x b Poijon fo paikkel n : C B B C B B d C d B d d d d x x x co co in Tidpunk fo paikkel n ne paeing a x : π. π π π co co B B B B B x c π π. π.7 π 4 π π a a

8 . a Vinkelhaigheen il hjul n : Vinkelhaighe il hjul n : b Vinkelen o hjul n ha oe ee 4. ekunde: d d d d d θ θ

9 . a lle e kefe på ee linde plu ing: S S Snokaf på peifeien a lindeen oppgi i oppgaen. S S Snokaf på peifeien a lindeen oppgi i oppgaen. G Mg Tngden a lindeen kafen på lindeen fa joden. N Noalkaf eikalkoponenen a kafen på lindeen fa undelage Slindeen ha ingen eikal beegele. keleajonen eikal e defo lik null. Suen a kefene eikal e defo lik null og N e oa lik G. J Fikjon hoionalkoponenen a kafen på lindeen fa undelage. b keleajonen a lodde: S + S τ S P + J Ma + + S τ P I Pα I P I + Md M + M a α CM M Newon.lo hoional på ee linde + ing Kafoen def på lindeen oenake i konakpunk Kafoenlo oenake i konakpunk Tegheoen h ake gjenno konakpunk Saenheng ello akeleajon il aeenee og inkelakeleajon a τ P α I P S + + S M S + + S + M S M N. kg. c Fikjon bene Newon.lo hoional på ee beående a linde og ing: S + S J Ma + J Ma S S Ma S S Ma S M + S M S + S S S.. N.4 N.5

10 d Sekningen o lindeenee og punkene og B beege eg i løpe a 4. ekunde: a a a α a a. ab + α + + a e keleajon og inkelakeleajon nå i ikke ha fikjon ello linde og undelag: S + S I Ma M τ S + S τ I α Newon.lo hoional på Kafoen def på ee linde + ing lindeen oenake ilindeene Kafoenlo oenake i lindeene Tegheoen a lindeen h ake gjenno aeenee a τ α I S + S M S + S S. N. M M. kg S + S M S + S M + S M N. kg.

11 Oppgae ph Ekaenoppgae enegi: Figuen ie en bane ed en loop ed diaee, og en bakke ed hødefokjell,. En klo ed ae, kg ae innil en fjæ o e pee aen fa likeek. Vi ana fikjonfi undelag og ingen lufoand i hele oppgaen. Buk 9.8 / o edi fo ngdeakeleajonen. d Vi a den ine haigheen kloen å ha i oppen a loopen hi den kal klae å koe igjenno loopen uen å falle e gi ed g, de e adien il loopen og g e ngdeakeleajonen. Løning: Tegn filegeediaga og i a noalkafen i oppen a loopen å æe elle øe fo ikke å falle. Buke Newon. Lo og enipeal akeleajon. Dee gi: g / e Ha e den ine edien fjækonanen kan æe fo a kloen kal klae loopen uen å falle? Løning: ½ k x + ½ +gh Konan. I aen ha i bae poeniell enegi i fjæen. Velge nullpunk fo gaiajonpoeniell enegi ed bunnen a loopen. I oppen a loopen ha kloen kineik enegi og gaiajonpoeniel enegi. Beaing a ekanik enegi gi da: ½ k x ½ +gh De g, de,5 og h,. Løe fo k. kg+gh/x 5 kn/ 4,7 kn/ f La fjækonanen æe kn/. Ha e haigheen il kloen i enden a banen i den ae ed a fjæen e pee aen? Løning: ½ k x + ½ +gh Konan I aen ha kloen bae poeniell enegi i fjæen. I enden a banen ha kloen kineik enegi og negai gaiajonpoeniell enegi. ½ k x ½ +gh, de h -, Dee gi /,9 /

12 beid: En paikkel uee fo kafen F,N i +,N j +,N k. Paikkelen fle eg fa oigo il poijonen x,,, z, i en e linje. Ho o abeid gjø kafen på paikkelen? Løning: WF., de, i +, j +, k. W Kanefikk: Ha e kouaoen il poijon, q, og oenu beegeleengde, p? Figuen ie poenialfunkjonen il en haonik ocillao. Tegn en kie og fokla hodan de kaniee eneginiåene Hailonen fodele eg. Løning: [q,p] i I en haonik ocillao e eneginiåene gi ed H Eneginiåene e defo jen fodel. n+/ de n,,,

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall

Detaljer

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS8 Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall oppgae:

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERITETET I AGDER Giad E K A M E N O P P G A V E : FAG: FY Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 5 inkl. foide Anall oppgae: 4

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNVERTETET AGDER Giad E K A M E N O P P G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : Pe Henik Hogad Kjei : Tuid Knuen Klae: Dao:..3 Ekaenid, a-il: 9. 4. Ekaenoppgaen beå a ølgende Anall ide: 5 inkl. oide

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVEEE GE Gid E E N O G V E : FG: FY Fikk LÆE: Fikk : e enik ogd le: o: 9.5.7 Ekenid, f-il: 9.. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: nll edlegg: ille hjelpeidle e: lkulo Foelling:

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS5 Fikk LÆE: Pe Henik Hoad Klae: Dao:.9.9 Ekaenid, fa-il: 9. 4. Ekaenoppaven beå av følende nall ide: 4 inkl. foide nall oppave: nall vedle: Tillae

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I GDER Gad E K S M E N S O P P G V E : FG: FYS Fkk LÆRER: Fkk : Pe Henk Hogad Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: Tllae

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY7 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 5 nkl. fode nall oppgae: nall edlegg: llae hjelpedle e: Kalkulao

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Magehe Wold Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: llae hjelpedle

Detaljer

FAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I GDER Gad E K S M E N S O G V E : FG: FYS Fkk/kje LÆRER: Fkk : e Henk Hogad Kje : Gehe Lehann Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: nkl. fode nall oppgae:

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNVETETET AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei ÆE: Fikk : e Henik Hogd Kjei : Gehe ehnn Kle: Do: 7.5. Ekenid, -il: 9.. Ekenoppgen beå ølgende Anll ide: 6 inkl. oide og edlegg Anll oppge: 5

Detaljer

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNISITTT I AGD Gid K S A M N S O P P G A : FAG: FYS Fyikk/Kjei LÆ: Fyikk : Pe Henik Hogd Gehe Lehnn Kle: Do:.. kenid, f-il: 9.. kenoppgen eå følgende Anll ide: 6 inkl. foide / edlegg Anll oppge: 5 Anll

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Gd E K S M E N S O P P G V E : G: YS kk LÆRER: kk : Pe Henk Hogd Kle: Do: 5.. Ekend, f-l: 9.. Ekenoppgen beå følgende nll de: 5 nkl. fode nll oppge: nll edlegg: lle hjelpedle e: Klkulo

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:

Detaljer

n_angle_min.htm

n_angle_min.htm Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til

Detaljer

Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.

Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal. Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen

Detaljer

Høst 95 Ordinær eksamen

Høst 95 Ordinær eksamen Høt 95 Odinæ eken. En ptikkel ed e =.5 kg e i o i oigo ed tiden t =.. Ptikkelen utette (f tiden t =. ) fo en kft F ho koponentene F og F e gitt ed: F = t F = t Kontntene og e gitt ed: = 5. N/ =. N/ ngdekften

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Grid E K A E N O P P G A V E : FAG: FY05 Fyikk ÆRER: Per enrik ogd Kler: Do: 6.05. Ekenid, fr-il: 09.00 4.00 Ekenoppgen beår følgende Anll ider: 5 inkl. foride Anll oppger: 3 Anll

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av Løningforlag Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede for

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering

Detaljer

Våren Ordinær eksamen

Våren Ordinær eksamen Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:

Detaljer

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :

Detaljer

Fysikkolympiaden Norsk finale 2016

Fysikkolympiaden Norsk finale 2016 Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel

Detaljer

FAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I GDER Gritad E K S M E N S O G V E : FG: FYS Fyikk/Kjei ÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, ra-til: 9. 4. Ekaenoppgaven betår av ølgende ntall

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsad E S A M E N S O P P G A V E : AG: MA-9 Maemaikk LÆE: Pe Henik Hogsad lasse: Dao: 6.5. Eksamensid a-il: 9.. Eksamensoppgaven beså av ølgende Anall side: 5 inkl. oside vedlegg

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERITETET I AGDER Grimd E K A M E N O G A V E : FAG: FY Fyikk ÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 7..6 Ekmenid, fr-il: 9. 4. Ekmenoppgen beår følgende Anll ider: 6 (inkl. foride Anll oppger: 4 Anll

Detaljer

Retteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Retteveileder Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av 3 Reeveileder Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNVETETET AGDE Gritad E A E N O G A V E : FAG: FY05 Fyikk ÆE: er Henrik Hogtad lae(r: Dato: 8.05.0 Ekaentid, ra-til: 09.00.00 Ekaenoppgaven betår av ølgende Antall ider: 5 (inkl. oride Antall oppgaver:

Detaljer

Høst 98 Ordinær eksamen

Høst 98 Ordinær eksamen ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo

Detaljer

Eksamen 3FY mai Løsningsforslag

Eksamen 3FY mai Løsningsforslag Eksaen 3FY ai. Løsningsfoslag Oppgae a Fekensen og enegien til fotone ed bølgelengden λ,43 e in f aks c 3 λ in,,3,43 Hz E aks hf aks hc λ in 6 4 4 34,63 s 3,,5,43,9 b De sale linjene i øntgenspekteet e

Detaljer

Oppgave 1 Svar KORT på disse oppgavene:

Oppgave 1 Svar KORT på disse oppgavene: Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen

Detaljer

Høst 97 Utsatt eksamen

Høst 97 Utsatt eksamen Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve:

Detaljer

Fysikk-OL Norsk finale 2005

Fysikk-OL Norsk finale 2005 Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..14 FYS-MEK 111 5..14 1 FYS-MEK 111 5..14 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin( ) ( ) cos( ) ( g y x posisjon: Skå kas

Detaljer

Eksamen 3FY våren 2002. Løsningsforslag

Eksamen 3FY våren 2002. Løsningsforslag CAPPELE LØSIGSORSLAG EKSAME 3Y VÅRE 00 Eken 3Y åen 00. Løningfolg Oge 1 ) Kften å tikkelen e gitt e qb 3, 10 19 5 15 C 5,1 10 / 0,050 T 8, 10 Kften tå inkelett å feltet og å ften, e figuen neenfo. b) Vi

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 11..16 Oblig e lag u. Innleeing: Tisdag, 3.. FYS-MEK 111 11..16 1 FYS-MEK 111 11..16 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin(

Detaljer

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1.

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1. Hø 95 Te-ekaen. E legee ed ae =.4 kg pårke a en kraf F g ed: F = - F = k = 5.N = 4. N/ k =.N/ llegg rker ngdekrafen nega -renng. a Bee reulankrafekoren. b Ved den = er legee ro orgo. Fnn pojon og haghe

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae

Detaljer

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA FY1001 og TFY4145 Mekanisk fysikk Institutt fo fysikk, august 2014 Realstat og Teknostat ROTASJONSFYSIKK PROSJEKTOPPGAVE fo BFY, MLREAL og MTFYMA Mål Dee skal i denne posjektoppgaen utfoske egenskape til

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 5..5 YS-MEK 5..5 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 11..15 Oblig : De mangle alledie fo paameene i oppgae k) (fo å skie e pogam). En n esjon ble lag u i gå. Fellesinnleeinge i Deil: De e mulig å definee en guppe. Ski også

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESIEE I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk LÆE: Pe Henik Hogsa Klasse: Dao:..5 Eksamensi a-il: 9.. Eksamensoppgaven beså av ølgene Anall sie: 5 inkl. osie velegg Anall oppgave:

Detaljer

Høst 96 Ordinær eksamen

Høst 96 Ordinær eksamen Høt 96 Ordinær ekaen. a) Vi tenker o at en partikkel eveger eg lang en rett linje (lang x-aken). Partikkelen poijon o unkjon av tiden t er gitt ved: ( t) t Bt hvor. B 8. Beregn partikkelen hatighet etter.

Detaljer

(b) Ekmanstrøm: Balanse mellom friksjonskraft og Corioliskraft. der ν er den kinematiske (eddy) viskositeten.

(b) Ekmanstrøm: Balanse mellom friksjonskraft og Corioliskraft. der ν er den kinematiske (eddy) viskositeten. Oppgae 1. Fgu 6.11 læeboka se den nodgående enegfluksen atosfæen ( petawatt esus beddegad på den nodlge halkulen (opp tl 75 gade, ålg dlet. Fguen se også egne plott fo tansente edde, totalt bdag fa edde

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 6..4 oblig 5: mideis hjemmeeksamen forusening for å a slueksamen krees indiiduell innleering blir lag u mandag 3. mars innleeringsfris mandag. mars Samale mellom sudener og lærer

Detaljer

Kap. 4+5 Rotasjon av stive legemer

Kap. 4+5 Rotasjon av stive legemer Kap. 4+5 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

Kap 10 Dynamikk av rotasjons-bevegelse

Kap 10 Dynamikk av rotasjons-bevegelse Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene

Detaljer

[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner

[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner Kp Beegele o elle e denone. Ben SRel/SVdeo l å ulee følgende pkkel-beegele udee hghe og keleon -d: Sulengen fnne du på fgden elg Vdeo elle h denne URL-deen: hp://gd.u.no/pehh/phh/mric/srel/no/srelp/aa_/srel_phc_k_vel

Detaljer

Løsning, eksamen 3FY juni 1999

Løsning, eksamen 3FY juni 1999 Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

Kap 02 Bevegelse langs en rett linje

Kap 02 Bevegelse langs en rett linje Kp Beegele lng en re linje. Hen fre følgende pplikjon i SiRel for å udere gjennonihighe. pplikjonen finner du på følgende web-dree: hp://grid.ui.no/perhh/phh/mric/sirel/no/sirelp/_i/sirel_phyic_k_velociypo

Detaljer

R2 2010/11 - Kapittel 3: 26. oktober 24. november 2011

R2 2010/11 - Kapittel 3: 26. oktober 24. november 2011 R / - Kapittel :. oktobe. novembe Plan fo koleået /: Kapittel : / /. Kapittel : / /. Kapittel : / /. Kapittel : / /. Pøve på elle koletime ette hvet kapittel. Én heildagpøve i hve temin. En del pøve vil

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..3 oblige innleees mndg kl. bel fo læeboken FYS-MEK 5..3 Beegelse i e dimensjone Beegelsen e kkeise ed posisjon, hsighe og kselesjon. Vi må buke ekoe: posisjon: i j z k

Detaljer

SIF 4060 Elektromagnetisk teori/electromagnetic theory 1. Eksamen SIF 4060 Elektromagnetisk teori løsningsforslag: n a. m.

SIF 4060 Elektromagnetisk teori/electromagnetic theory 1. Eksamen SIF 4060 Elektromagnetisk teori løsningsforslag: n a. m. SIF 6 Eleogeis eoieleogei heo Ese SIF 6 Eleogeis eoi 8 - løsigsfoslg: Oge Diee iseig gi: so fo e gie e e ofl fo: Dee fås: og e fås e ogie foele ED! Fo e gie løsigee ie egge iesee og siig æe ull Kosee e

Detaljer

Løsningsforslag Fysikk 2 Høst 2015

Løsningsforslag Fysikk 2 Høst 2015 Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i

Detaljer

Eksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)

Eksamensoppgave i FY0001 Brukerkurs i fysikk (V2017) ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:

Detaljer

Kap 14 Periodisk bevegelse

Kap 14 Periodisk bevegelse K 4 Periodi evegele 4. Glideren å fig - i læreoen lere 0.0 fr in lieveilling og lie ed rhighe null. er 0.800 eunder er glideren oijon 0.0 å den ndre iden v lieveillingen og glideren hr er lieveillingen

Detaljer

Løsningsforslag FY105-eksamen 15. januar 2004

Løsningsforslag FY105-eksamen 15. januar 2004 Løsgsfoslag FY5-esae 5. jaua 4 Oppgae a) Newos.lo på losse g x x x+ x ed få x+ x Isa x() dffeesallgge: A s( + ϕ) + As( + ϕ) so se a x () As( ϕ) + e e løsg. Fa x ( ) Asϕ ϕ få : x() () A b) Toaleege l sysee

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

Flerpartikkelsystemer Massesenter

Flerpartikkelsystemer Massesenter lepakkelsysee assesene.4.3 YS-EK.4.3 YS-EK.4.3 Kollsjone beang a beegelsesenge:,,,, p p p p elassk kollsjon beang a eneg,,,,,,,,,, ( ( fullseng uelassk kollsjon:,,,,,, esusjonskoeffsen: uelassk kollsjon:,,,,

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGKOEN GDE Gri E K E N O P P G E : G: Y0 yikk ÆE: Per Henrik Ho Kler: Do: 9.0.08 Ekeni, r-il: 09.00.00 Ekenoppen beår ølene nll ier: inkl orie nll opper: nll ele: 0 ille hjelpeiler er: Klkulor Ho: orler

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )

Detaljer

Kap 12 Fluid mekanikk

Kap 12 Fluid mekanikk Ka Fluid mekanikk Hdostatikk. Atmosfæetkket e å k. a Ho ø annsøle sae til dette tkket? b Ho ø kikksølsøle sae til dette tkket? Tetteten til ann o kikksøl e enoldis. k/m o.6 k/m.. Bestem tkket å metes dbde

Detaljer

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel. Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte

Detaljer

EKSAMENSOPPGAVE. Fag: Fysikk/Elektro Fagnr: FO340A Faglig veileder: Rolf Ingebrigtsen

EKSAMENSOPPGAVE. Fag: Fysikk/Elektro Fagnr: FO340A Faglig veileder: Rolf Ingebrigtsen HØGSKOLN OSLO delng fo ngenøudnnng KSMNSOPPG g: yskk/leko gn: O3 glg elede: Rolf ngebgsen Klsse(): 1, 1, 1 Do:. ugus 8 ksensoppgen beså lle hjelpe- dle: nll sde: nkl. s. edlegg NGN skflge, kun godkjen

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIEITETET I GDE Gimsta E K M E N O P P G E : FG: M-9 Matematikk LÆE: Pe Henik Hogsta Klasse: Dato: 8.5. Eksamensti fa-til: 9.. Eksamensoppgaen bestå a følgene ntall sie: 5 inkl. fosie elegg ntall oppgae:

Detaljer

Løsningsforslag Eksamen SIF4005 Fysikk 11.desember 2002

Løsningsforslag Eksamen SIF4005 Fysikk 11.desember 2002 Løsningsfsag saen SF Fsi.esee Oppgave. esai a Gauss v: A inne f : Kua e eene g a e inne = f

Detaljer

Betinget bevegelse og friksjon

Betinget bevegelse og friksjon Betinget beegele og rikjon 1.0.014 nete uke: ingen orelening (17. og 19.) ingen ata erkte (19. og 1.) gruppetimer om anlig Manag, 17.. innleering oblig 3 Manag, 4.. ingen innleering jane or repetijon FYS-MEK

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene

Detaljer

Newtons tredje lov. Kinematikk i to og tre dimensjoner

Newtons tredje lov. Kinematikk i to og tre dimensjoner Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende

Detaljer