Fakultet for teknologi, kunst og design Teknologiske fag

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Fakultet for teknologi, kunst og design Teknologiske fag"

Transkript

1 Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: Tid: 5 time / l. 9-4 tll side il. foside: tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo. Hådholdt lulto som ie ommuisee tådløst og som ie ege symols. Med: Kdidte må selv otollee t ogvesettet e fullstedig. Ved evetuelle ulhete i ogveteste sl du edegjøe fo de foutsetige du legge til gu fo løsige. esvelse sl mees med didtumme, ie v. u lå elle sot ulee å iføigset. Fglig veilede: Ev Hdle Vihovde Uteidet v fglæe: Ev Hdle Vihovde Kotollet v e v disse: e læe Seso Istituttlede/ Pogmoodito Istituttledes/ Pogmooditos udesift: Emeode: DPE300 ITPE300

2 lle de 0 ogvee telle lit. I ogve med udeute vil evede og me omfttede udeute ue telle me e lette og ele udeute. Det e ie sli t lette ogve omme føst og vselige til slutt. u defo ie fo mye tid å e ogve du ie få til. Pøv istede e y ogve. lle sv sl egues! Dette gjøes ved t du fo esemel t med mellomegige elle gi de fome fo gumetsjo. Sesielt gjelde dette sv de det u foeligge to ltetive. Ku et sv ute oe eguelse e omlt vediløst. Ogve Gitt utsgee : «Det sø» : «Det e uldegde» Sett o følgede fie utsg ved hjel v, og logise oetoe: i «Det sø ie og det e uldegde.» ii «Hvis det sø, så e det uldegde.» iii «Det sø e hvis det e uldegde.» iv «Det sø ie hvis det ie e uldegde.» E oe to elle flee v utsgee evivlete? egu svet. Et utsg lles e selvmotsigelse eg. cotdictio hvis utsget lltid e ust. L og væe vilålige utsg. u shetsveditell til å vgjøe om følgede smmestte utsg e e selvmotsigelse: c P x og Qx Gitt utsgee: e to utsgsfusjoe de x eesetee e studet. P x : «x h estått eidsvee i Diset mtemti» Q x : «x sl t esme i Diset mtemti» Siv følgede utsg ved hjel v x, P x og Q x oetoe:, vtoe og logise i «lle som h estått eidsvee i Diset mtemti, sl t esme i Diset mtemti.»

3 ii iii «Ie lle h estått eidsvee i Diset mtemti.» «Det e e som sl t esme i Diset mtemti, me som ie h estått eidsvee i Diset Mtemti.» Ogve L megdee og væe gitt ved: = {,, 3, 4} og = {3, 4, 5, 6}. Fi megdee: L og væe vilålige delmegde v e uiveslmegde U. Teg et Ve-digm og sve megde: c Fi e megdefomel med, og fo det svete omådet i Ve-digmmet ude: Ogve 3 e megde v de ie-egtive hele tllee, dvs. = {0,,, 3, 4,..... } og e åde defiisjosmegde og vediomådet fo fusjoee f og g. L f og g væe defiet ved: f: de fx = x mod 7 g: de gx = x div 7 3

4 Fi fx og gx fo x = 6, x = 8, og x = 4. Fi vedimegdee til f og g. c vgjø om fusjoee f og g e e-til-e og/elle å. egu svee! Ogve 4 Gitt tllmtisee estem dimesjoee til, og. vgjø hvilet v mtiseodutee,, og som e defiet, og estem i så fll hvile dimesjo de h. c Reg ut de mtiseodutee som e defiet. Ogve 5 Gitt heltllet = å iæ fom. Hv li tllet å: i Hesdesiml fom ii Otl fom iii Desiml fom Stude følgede ee: i ii vgjø hv slgs ee det e, og estem eesumme fo hve v dem. 4

5 Ogve 6 Fi støste felles diviso eg. getest commo diviso fo tllee 840 og 44 ved å ue imtllsftoiseig. Fi støste felles diviso fo 840 og 44 ved å ue Eulids lgoitme. c Miste felles multilum eg. lest commo multile v to heltll og e det miste ositive heltllet som åde og gå o i. Fi miste felles multilum fo og 5. d Hvo mge tll mellom og 000 e delelig med elle 5, elle åde og 5? Ogve 7 Hvo mge gyldige iode å 4 siffe, de føste siffe e fosjellig f 0, fies det? E tist h gitt ut to lum med til smme 0 sge. H sl lge et osetogm med 0 sge hetet f disse to lumee. Hvo mge fosjellige osetogm e det mulig å sette o å eefølge å sgee sille e olle? c I e lsse med 4 studete sl det velges e gue å 4 studete som sl gee semestevslutig fo lsse. Hvo mge fosjellige gue e det mulig å velge? d På hvo mge måte ostvee i odet LMM stoes om? Ogve 8 L P væe åstde om t = dvs. i= i = Vis t P, P og P 3 gjelde. Vis ved idusjo t P gjelde fo. 5

6 Ogve 9 Gitt diffeesligige = 3 + 4,, 0 =, = Fi og 3. Fi e fomel fo. Vis t fomele di stemme ved å sette i = og = 3. D sl du få de smme esulttee som i ut. Ogve 0 Gitt følgede uettede gf: Hvo mge ute h gfe? Siv o gde til hvet ut og fi summe v gdee. u esulttet i ut til å fie tll te i gfe. c Fies det e luet Eule-vei i gfe? Fies det e åe Eule-vei i gfe? d Siv o de tuelle Eule-veie dvs. utee å veie hvis du svte j å et v søsmålee i ut c. 6

7 7 Vedlegg. Logise oetoe: ie, og, elle, eslusiv elle, imlisjo Noe evivlese f utsgslogi: x P x x xp x P x x xp Noe megdeidetitete: Kdilitet tllet elemete i e uio: Fusjoe: I fusjoe f : ety defiisjosmegde og vediomåde. E fusjo f : e e-til-e hvis, og, medføe t f f. E fusjo f : e å hvis sli t f. Mtise De tsoete til e mtise eteges med T og e de mtise vi få å dee og oloee i yttes om. Føste d i li føste oloe i T, de d i li de oloe i T, osv. Det ety sesielt t hvis e e m mtise, så li T e m mtise. Heltllsdivisjo divisjoslgoitme, div og mod:

8 L væe et heltll og d et ositivt heltll. D fies etydige heltll og med sli t d. Oesjoee div og mod defiees ved t div d og mod d. 0 d Støste felles diviso Støste felles diviso getest commo diviso gcd fo to hele tll som ie egge e 0, e det støste heltllet som gå o i egge tllee. Miste felles multilum Miste felles multilum lest commo multile lcm fo to ositive heltll e det miste ositive heltllet som egge gå o i. Fomel gcd, og lcm,: Hvis gcd, e støste felles diviso fo og og, miste felles multilum fo og, så e gcd, lcm, Moduloegig: lcm e L m væe et ositivt heltll. To heltll og lles oguete modulo m hvis m gå o i og det eteges med mod m. mod m hvis og e hvis mod m = mod m mod m og c d mod m, så e c d mod m Tvesum og c d mod m. L væe et ositivt heltll. Tvesumme til e oguet med modulo 9. Summe v ee: Geometis ee:, 0 itmetis ee: L væe føste ledd, siste ledd og d diffeese mellom to og to ledd. tll ledd e gitt ved og summe e li d iomiloeffisiete:!!!!, 0,,, 8

9 9, iomilteoemet: tll fosjellige utvlg å stye f e smlig å stye: Odet ute tileleggig: Uodet ute tileleggig: Odet med tileleggig: Uodet med tileleggig: Det geeelle «igeohole»-isiet: Hvis N ojete sl lssees i ose, må mist é os ieholde mist N ojete. Diffeesligige: De geeelle lieæe homogee diffeesligige v ode med ostte oeffisiete e å fome c c de c og c e ostte. Ligiges teistise olyom e gitt ved: c c.

10 Hvis det teistise olyomet h to fosjellige eelle løsige og, li geeell løsig li de og e vilålige ostte. Hvis sttetigelsee 0 og e gitt, fie e og ved å løse et ligigssystem. Hvis det teistise olyomet h u é løsig 0, li geeell løsig li 0 0 de og e vilålige ostte. Hvis sttetigelsee 0 og e gitt, fie e og ved å løse et ligigssystem. Relsjoe: E elsjo R å e megde e e delmegde v odutmegde L R væe e elsjo å e megde.. R e eflesiv hvis, R fo lle. R e symmetis hvis, R, så e, R. R e tisymmetis hvis og, R, så e, R. R e tsitiv hvis, R og, c R, så e, c R. E tisjo E smlig delmegde,, 3,..., v e megde utgjø e tisjo v hvis 3... og i j Ø fo lle i j. Evivleselsjoe E elsjo R å e megde e e evivleselsjo hvis de e eflesiv, symmetis og tsitiv. Evivleslsse Hvis R e e evivleselsjo å e megde og, så e evivleslsse [] til defiet ved [ ] {, R}. Elle med od: [] e li megde v de som e eltet til. Evivleslssee til e elsjo utgjø e tisjo v. 0

11 Delvis- elle tiell odig E elsjo R å e megde e e delvis odig hvis de e eflesiv, tisymmetis og tsitiv. Hvis dette e ofylt, sie vi t e e delvis odet megde med hesy å R. Et elemet e et msimlt elemet hvis det ie fies oe sli t, R. Det ety t det e ie oe elemet som omme «ette» i odige. Tilsvede e et elemet et miimlt elemet hvis det ie fies oe sli t Gfteoi:, R. Gde til et ut. L væe et ut eg: vetex i e uettet gf. Gde gd til e tllet te yttet til utet. Gd-t-setige: L G væe e uettet gf med edelig mge te. D vil summe v gdee til utee i G væe doelt så sto som tllet te. Eules setig: E smmehegede uettet gf med mist to ute h e luet Eule-vei e Eulesyel hvis og e hvis lle utee i gfe h tllsgd. E smmehegede uettet gf h e åe ie-luet Eule-vei hvis og e hvis øytig to ute i gfe h oddetllsgd.

Avdeling for ingeniørutdanning. Eksamen i Diskret matematikk

Avdeling for ingeniørutdanning. Eksamen i Diskret matematikk www.hio.o vdelig fo igeiøutdig Esme i Diset mtemti Dto: 7. deseme Tid: 9 4 tll side ilusive foside: 8 tll ogve: Tilltte hjelemidle: Ku hådholdt lulto som ie ommuisee tådløst. Med: Kdidte må selv otollee

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: 8005 Tid: 5 time / l 9-4 tll side il foside: 0 tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo Hådholdt lulto som ie

Detaljer

Vedlegg til eksamensoppgaven i Diskret matematikk

Vedlegg til eksamensoppgaven i Diskret matematikk Vedlegg til esmesogve i Diset mtemti Det som stå he vil væe iholdet i esmesogves vedlegg høste 4 Deiisjoe og omle Logise oetoe: ie, og, elle, eslusiv elle, imlisjo Noe evivlese utsgslogi: P P P P Noe megdeidetitete:

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet o teologi, ust og desig Teologise g Esme i: Diset mtemti Målom: omål Dto: 8.. Tid: 5 time / l. 9-4 tll side il. oside: 9 tll ogve: Tilltte hjelemidle: Hådholdt lulto som ie ommuisee tådløst Med:

Detaljer

Avdeling for ingeniørutdanning. Eksamen i Diskret matematikk

Avdeling for ingeniørutdanning. Eksamen i Diskret matematikk wwwhioo Avdelig fo igeiøutdig Esme i Diset mtemti Dto: feu Tid: 9 4 Atll side ilusive foside: 8 Atll oppgve: Tilltte hjelpemidle: Ku hådholdt lulto som ie ommuisee tådløst Med: Kdidte må selv otollee t

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet o teologi, ust og desig Teologise g Esme i: Diset mtemti Målom: omål Dto: 5..3 Tid: 5 time / l. 9-4 tll side il. oside: 9 tll ogve: Tilltte hjelemidle: Hådholdt lulto som ie ommuisee tådløst Med:

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: Bomål Dto: 6 3 Tid: 5 time / l 9-4 Atll side (il foside): 9 Atll oppgve: Tilltte hjelpemidle: Hådholdt lulto som ie ommuisee tådløst

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: Bomål Dto: 0504 Tid: 5 time / l 9-4 Atll side (il foside): 0 Atll oppgve: 0 Tilltte hjelpemidle: Fohådsgodjet odo Hådholdt lulto

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet o teologi, ust og desig eologise g Esme i: Diset mtemti Målom: omål Dto: 7 id: 5 time / l 9-4 tll side il oside: 9 tll ogve: illtte hjelemidle: Hådholdt lulto som ie ommuisee tådløst Med: Kdidte

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Side 1 av 1 Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: okmål Dato: 30.11.016 Tid: 5 timer / kl. 9-14 tall sider ikl. forside: 1 tall ogaver: 10 Tillatte

Detaljer

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).

Detaljer

Obligatorisk oppgave ECON 2200, Våren 2016

Obligatorisk oppgave ECON 2200, Våren 2016 Obligtoris ogve ECON 00, Våre 06 Ogve (0 oeg) Deriver følgede fusjoer med hes å lle rgumeter ) b) f ( ) 4 3 ( ) g 3 4 3 g'( ) 3 c) h( ) f ( )( ) h'( ) f '( )( ) f ( ) d) f ( ) g(, ) f '( ) g ' (, ) g'

Detaljer

KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK

KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK Gekee kjete de atulige tallee og de kjete til fohold - dvs det vi i dag vil ofatte som bøke. E guleggede ofatig va at to lijestykke måtte ha et felles

Detaljer

Matematikk for IT. Prøve 2 løsningsforslag. Torsdag 27. oktober 2016 S S F S F F S F S F S S F S F S F F F F S S F F

Matematikk for IT. Prøve 2 løsningsforslag. Torsdag 27. oktober 2016 S S F S F F S F S F S S F S F S F F F F S S F F Mtemtikk for IT Prøve løsigsforslg Torsdg 7 oktober 06 7 oktober 06 Oppgve ) Fi ved hjelp v shetstbeller om de to følgede smmestte utsg er logisk ekvivlete: i) p q ii) q p q) Utsg i): q p q S S F F S F

Detaljer

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen MAT000V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet

Detaljer

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen MAT0100V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Logaritmen til et tall er det vi må opphøye 10 i for å få tallet. Logaritmen til et tall a kan vi indirekte definere slik:

Logaritmen til et tall er det vi må opphøye 10 i for å få tallet. Logaritmen til et tall a kan vi indirekte definere slik: Logritme til et tll er det vi må opphøye 10 i for å få tllet. 10 2 = 100 Logritme til 100 er 2. log 100 = 2 10 3 = 1000 Logritme til 1000 er 3. log 1000 = 3 Logritme til et tll k vi idirekte defiere slik:

Detaljer

SIF 4060 Elektromagnetisk teori/electromagnetic theory 1. Eksamen SIF 4060 Elektromagnetisk teori løsningsforslag: n a. m.

SIF 4060 Elektromagnetisk teori/electromagnetic theory 1. Eksamen SIF 4060 Elektromagnetisk teori løsningsforslag: n a. m. SIF 6 Eleogeis eoieleogei heo Ese SIF 6 Eleogeis eoi 8 - løsigsfoslg: Oge Diee iseig gi: so fo e gie e e ofl fo: Dee fås: og e fås e ogie foele ED! Fo e gie løsigee ie egge iesee og siig æe ull Kosee e

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

Kap. 8-4 Press- og krympeforbindelse

Kap. 8-4 Press- og krympeforbindelse K. -4 Pess- og kymefobdelse.4. Dmesjoeg v kymefobdelse Dmesjoeg v kymefobdelse fslegge e essmo slk kokykke () mellom delee e lsekkelg å oveføe belsge e gldg og kke så so segee v elle ksel bl fo høy Kymefobdelse

Detaljer

Rekursjon. I. Et enkelt eksempel

Rekursjon. I. Et enkelt eksempel Reusj I. ET ENKELT EKSEMPEL II. TRE AV REKURSIVE KALL, eusjsdybde temeg dg III.INDUKTIVE DATA TYPER g Reusj ve Dt Type IV. SPLITT OG HERSK PROBLEMLØSNING VED REKURSJON Kp. 8.. V. REKURSJONS EEKTIVITET

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 Høgsole i Gjøi d. for te., ø. og ledelse temti 5 Løsigsforslg til øig OPPGE det ( 8 Determite esisterer ie! K drtise mtriser e determit. i i detc ( i( i ( i( i ( i i i i 5i 5i i i er! Regereglee er de

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars Jo Vislie; mars 04 Ogave ECO 00 VÅRE 04: Ogaver til leumsøvelse de.mars E bedrift har rodutfusjoe = - b, der b er e ositiv ostat. Sisser grafe til dee og agi egesaee til rodutfusjoe (ved gjeomsittsrodutivitet,

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Særtrykk Mtemtikk T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Mtemtikk T Ihold Alger A Tllregig 7 B Tllmegder C Potesregig 0 D Store og små tll

Detaljer

Lekestativ MaxiSwing

Lekestativ MaxiSwing Moteigsveiledig og vedliehold v31 Leestativ MaxiSig At : 1740 Leestativet e poduset ette følgede stadad og dietiv: EN 71; 2009/48/EU Poduset: IMPREST AS Näituse 25 50409 Tatu Estoia Moteigsveiledig og

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi Jo Vislie; mars 07 ECO 00 07 Prosedyre for løsig av ogaver Jeg sal ved hjel av oe ogaver/esemler fra rodusetes tilasig, gi forslag til rosedyre/hjel/veivalg til å løse ogaver i ECO 00. Det er tre tyer

Detaljer

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi 1 Jo Vislie; aril 015 ECO 00 015 Prosedyre for løsig av ogaver Jeg sal ved hjel av oe ogaver/esemler fra rodusetes tilasig, gi forslag til rosedyre/hjel/veivalg til å løse ogaver i ECO 00. Det er tre tyer

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Gims E K S M E N S P P G V E G M-9 Memi LÆE Pe Heni Hos Klsse Do.. Esmensi -il 9.. Esmensoppven eså v ølene nll sie inl. osie vele nll oppve nll vele Tille hjelpemile e Kllo Hos omle

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0 Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:

Detaljer

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse Kapittel 5. Biære søetrær Algoritmer og datastruturer Avsitt 5..5 Algoritmeaalyse Avsitt 5..5.5 - Gjeomsittlig avstad mellom to «aboer» i iorde i et biært søetre med forsjellige verdier ver permutasjo

Detaljer

LU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge

LU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge Puy Fomået med K/LU Bede fomjofomd LU k jøe t Puy om mjofet b bede kjet LU k fomjo t utedemehet, K o Noe LU k mujøe bede beutu fo mjoe mehetee LU k utvke webde fo Puy om k b e eu fo mehetee LU k t buk

Detaljer

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4 Avdelig for igeiørudig Fg: ITUETELL AALYE Grupper: 3KA Esesoppgve esår v Tille hjelpeidler: EKAEOPPGAE All sider il. forside: 4 Fgr: O 458 K Do: 4.0.0 All oppgver: 5 Fglig veileder: Per Ol øig Esesid,

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres

Detaljer

Et enkelt eksempel. terminering. i-120 : H Rekursjon: 1. invarianter (notat til Krogdahl&Haveraaen) ... t.o.m. som hale-rekursjon

Et enkelt eksempel. terminering. i-120 : H Rekursjon: 1. invarianter (notat til Krogdahl&Haveraaen) ... t.o.m. som hale-rekursjon Itesj tl eusj /** @pm > @etu... t sumw(t ) { t es =; whle ( > ) { es = es ; = ; etu es; /** @pm > @etu... t sumr(t ) { f ( == ) etu ; etu sumr(-); Geeellt, dg e % tg: t Ite(t ) { es= t; whle ( ftsett()

Detaljer

Fugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004

Fugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004 Fugletetaeeet Øistein Gjøvik Høgskolen i Sø-Tønelag, 004 Innlening Nå skal vi lage et omlegeme u kanskje ikke ha sett fø. Det e ikke noe mystisk ve selve figuen, men en høe ikke til lant e mest ukte i

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare!

Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Side 1 av 6 Noe viktige pukter: (i) (ii) (iii) (iv) Les hele eksamessettet øye før du begyer! Faglærer går ormalt é rude gjeom lokalet. Ha evt. spørsmål klare! Skriv svaree die i svarrutee og levér i oppgavearket.

Detaljer

Et enkelt eksempel. Rekursjon

Et enkelt eksempel. Rekursjon Et ekelt eksempel h e metde sm /** lese e lije f temile * @etu ileste Stig * @excepti IOExcepti i tilfelle i/ pblem public Stig edl() g vil lge e sm /** lese e lije f temile * itil de lese et heltll *

Detaljer

BESVARELSE EKSAMEN SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 12. desember Q r

BESVARELSE EKSAMEN SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 12. desember Q r SARS KSAMN SF FYSKK F jemi g mteitengi Onsg. eseme Oppgve : etstti Den tte ningen i u e: Guss v å estemme et eetise etet: inne A < inne = vs = A O ρ ρ ρ / /πε Sjee ntinuiteten i = g =

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

"Kapittel 5 i et nøtteskall"

Kapittel 5 i et nøtteskall Ulve "Kapittel 5 i et øtteskall" (Vesjo 9.01.0 ) Jeg gå he i gjeom alle tekikke/fomle som e elevate i dette kapitlet ved å buke et eksempel side 198 som utgagspukt fo alle tekikkee. Ovesikt ove fomle og

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

Notat: Dekker pensum i beskrivende statistikk

Notat: Dekker pensum i beskrivende statistikk Notat: Dekke pesum eskvede statstkk.3 Beskvede statstkk (sde 9 læeoka - 4. utgave) Beskvede (deskptv) statstkk omfatte samlg, eaedg og pesetasjo av data (tallmateale, osevasjoe, måleesultate). Nå følge

Detaljer

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015 Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN. begrunn = grunngi beregn = rekn ut

Høgskolen i Agder Avdeling for realfag EKSAMEN. begrunn = grunngi beregn = rekn ut Høgskole i Agder Avdelig for relfg EKSAMEN Emekode: MA 410 Emev: Reell lyse Oppgver med forslg til løsiger Dto: 4. mi 000 Vrighet: 09.00-14.00 Atll sider iklusivt forside: Tilltte hjelpemidler: Alle Nyorsktekste

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: /3 0. Fosteke akitektue Nå e tasisto skal bukes til e fosteke, oscillato, filte, seso, etc. så vil det væe behov fo passive elemete som motstade, kodesatoe og spole udt tasistoe. Disse vil søge fo biasig

Detaljer

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x Ogave a) f() = f 0 () = + 3 ) f() = g() f 0 () = g() g0 () g() c) f(; y) = (y + ) f 0 = (y + )y f 0 y = (y + ) d) f(; y) = ( y + ) ( y ) f 0 = ( y + ) r y ( y ) + ( y + ) ( y ) r y = ( y + )( r y y ) ((

Detaljer

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013 .. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først.

PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først. Smmedrg kpittel SAMMENDRAG Dette er et smmedrg v det du hr rbeidet med om lgebr i Nummer 8, Nummer 9 og Nummer 10. Hvis du treger mer treig utover oppgvee i Nummer 10, fier du ekstr oppgver på elevettstedet.

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Slik bruker du pakken

Slik bruker du pakken Slik buke du pakken Kompetanseutviklingspakken Lesestategie og leseengasjement Dette e infomasjon til deg/dee som skal lede femdiften i kollegiet. He finne du en ovesikt ove pakkens innhold til hjelp i

Detaljer

egenverd FASE 3: barnehage

egenverd FASE 3: barnehage : egenved banehage Hva kjennetegne bana i fase 3? De voksnes olle Banemøte Gadeobe Måltid Samlingsstund Uteleiken Konfliktløsning Posjekt Vudeing Haug banehage 2011-2012 egenved egenved «Banehagen skal

Detaljer

Nye opplysninger i en deloppgave gjelder bare denne deloppgaven.

Nye opplysninger i en deloppgave gjelder bare denne deloppgaven. Oppgave a) Hva e åvedie av k o 7 å å ea e 5 %? b) Aa a du see k i bake. Hvo ye ka du heve ee å å ea e 5 % de føse 4 åee og deee sige il 7 % ålig? c) E bukbil kose k. Bile ka selges fo k 7 ee 6 å. Hva e

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage 2011 maianne@fuedesign.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning

Detaljer

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon Deprtmet of Mthemticl Scieces, NTNU, Norwy Octoer 14, 2014 Forelesig 01.10.2014, 5.1, 5.2 Summer Arel uder grfe til e fuksjo som greseverdi til e summe Sigm otsjo L m og være heltll og m og l f være e

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage maianne@futuia.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning av nye

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig

Detaljer

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap Kp23 28.1.211 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed må gjøes fo å føe smmen ldnnge Påføt

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 7. jauar 6 Løsigsforslag til eksame Emekode: ITF75 Dato: 5. desember 5 Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt.

Detaljer

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial Kp23 26.1.215 Kp. 23 Eektsk potens Sk defnee p gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje spennng) Ekvpotensfte Potensgdent og eektsk fet. Eks. 1, fots.

Detaljer

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning: nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. . mai 5 Løsigsforslag Emekode: ITF75 Dato: 5. desember 4 Eme: Matematikk for IT Eksamestid: kl 9. til kl 3. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Sensorveiledning ECON 1410: Internasjonal Økonomi; vår a) NORD har absolutt fortrinn i produksjonen av begge varer siden A < a og

Sensorveiledning ECON 1410: Internasjonal Økonomi; vår a) NORD har absolutt fortrinn i produksjonen av begge varer siden A < a og 1 Sesorveiledig ECO 1410: Itersjol Økoomi; vår 2004 ) ORD hr solutt fortri i produksjoe v egge vrer side < og < ; det rukes færre timer per ehet produsert v hver vre i ORD e i SØR. Komprtive fortri er

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

Rekursjon. Et enkelt eksempel

Rekursjon. Et enkelt eksempel Reusj I. TRE AV REKURSIVE KA, eusjsdybde temieig dig II. INDUKTIVE DATA TYPER g Reusj ve slie III. SPITT OG HERSK PROBEMØSNING VED REKURSJON (Kap. 8..) IV. REKURSJONS EEKTIVITET dyamis pgammeig avsjæig

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Løsningsforslag til eksamen høst 2016

Løsningsforslag til eksamen høst 2016 Løsningsforslag til eksamen høst 2016 Hver oppgave tildeles maksimalt 10 poeng. Høyeste poengsum er 100 Karaterer: 90 A 75 B < 90 60 C < 75 50 D < 60 0 E < 50 F < 40 Oppgave 1 a) 3 poeng Ingen av de tre

Detaljer

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y) TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.

Detaljer

KOMPLEKSE TALL KARL K. BRUSTAD

KOMPLEKSE TALL KARL K. BRUSTAD KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet

Detaljer

Nytt Rådhus i Sandnes

Nytt Rådhus i Sandnes Sades vokste fam ved Gadsfode o ha i de siste åee oietet se me o me mot det blå offetlie ommet midt i bye. He e det populæe kultuhuset, et levede båtliv, e uik utsikt o det e fistede å å e tu las vaet

Detaljer

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering SERVICEERKLÆRING 1. Innlednngg 2. Demokt, smbed og medvknng 3. Geneell nomsjon b 4. Intensjonlseng e 5. Studestt 6. Studegjennomøngen 7. Bblotek 8. IT l 9. Studentveled 1. Innlednng g 2. Demokt, smbed

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging.

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging. MAT0100V Sasylighetsregig og kombiatorikk Ordet utvalg med og ute tilbakeleggig (repetisjo) Uordet utvalg ute tilbakeleggig (repetisjo) Tilfeldige variabler og sasylighetsfordeliger Hypergeometrisk fordelig

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Chapter 2 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 2 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Chpter - Dscrete Mthemtcs d Its pplctos Løsgsforslg på utvlgte oppgver vstt Oppgve Gtt 7 ) E mtrse med rder og koloer er e mtrse Geerelt hr v t e m mtrse er e mtrse med m rder og koloer Uttrykket m klles

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll

Detaljer

Kap. 23 Elektrisk potensial

Kap. 23 Elektrisk potensial Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Nors Fysilærerforening Nors Fysis Selss fggrue for undervisning FYSIKK-OLYMPIADEN 3 Andre runde: 6/ Sriv øverst: Nvn, fødselsdto, e-ostdresse og solens nvn Vrighet: 3 loetimer Hjelemidler: Tbell med formelsmling,

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS5 Fikk LÆE: Pe Henik Hoad Klae: Dao:.9.9 Ekaenid, fa-il: 9. 4. Ekaenoppaven beå av følende nall ide: 4 inkl. foide nall oppave: nall vedle: Tillae

Detaljer