Fakultet for teknologi, kunst og design Teknologiske fag

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Fakultet for teknologi, kunst og design Teknologiske fag"

Transkript

1 Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: Tid: 5 time / l. 9-4 tll side il. foside: tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo. Hådholdt lulto som ie ommuisee tådløst og som ie ege symols. Med: Kdidte må selv otollee t ogvesettet e fullstedig. Ved evetuelle ulhete i ogveteste sl du edegjøe fo de foutsetige du legge til gu fo løsige. esvelse sl mees med didtumme, ie v. u lå elle sot ulee å iføigset. Fglig veilede: Ev Hdle Vihovde Uteidet v fglæe: Ev Hdle Vihovde Kotollet v e v disse: e læe Seso Istituttlede/ Pogmoodito Istituttledes/ Pogmooditos udesift: Emeode: DPE300 ITPE300

2 lle de 0 ogvee telle lit. I ogve med udeute vil evede og me omfttede udeute ue telle me e lette og ele udeute. Det e ie sli t lette ogve omme føst og vselige til slutt. u defo ie fo mye tid å e ogve du ie få til. Pøv istede e y ogve. lle sv sl egues! Dette gjøes ved t du fo esemel t med mellomegige elle gi de fome fo gumetsjo. Sesielt gjelde dette sv de det u foeligge to ltetive. Ku et sv ute oe eguelse e omlt vediløst. Ogve Gitt utsgee : «Det sø» : «Det e uldegde» Sett o følgede fie utsg ved hjel v, og logise oetoe: i «Det sø ie og det e uldegde.» ii «Hvis det sø, så e det uldegde.» iii «Det sø e hvis det e uldegde.» iv «Det sø ie hvis det ie e uldegde.» E oe to elle flee v utsgee evivlete? egu svet. Et utsg lles e selvmotsigelse eg. cotdictio hvis utsget lltid e ust. L og væe vilålige utsg. u shetsveditell til å vgjøe om følgede smmestte utsg e e selvmotsigelse: c P x og Qx Gitt utsgee: e to utsgsfusjoe de x eesetee e studet. P x : «x h estått eidsvee i Diset mtemti» Q x : «x sl t esme i Diset mtemti» Siv følgede utsg ved hjel v x, P x og Q x oetoe:, vtoe og logise i «lle som h estått eidsvee i Diset mtemti, sl t esme i Diset mtemti.»

3 ii iii «Ie lle h estått eidsvee i Diset mtemti.» «Det e e som sl t esme i Diset mtemti, me som ie h estått eidsvee i Diset Mtemti.» Ogve L megdee og væe gitt ved: = {,, 3, 4} og = {3, 4, 5, 6}. Fi megdee: L og væe vilålige delmegde v e uiveslmegde U. Teg et Ve-digm og sve megde: c Fi e megdefomel med, og fo det svete omådet i Ve-digmmet ude: Ogve 3 e megde v de ie-egtive hele tllee, dvs. = {0,,, 3, 4,..... } og e åde defiisjosmegde og vediomådet fo fusjoee f og g. L f og g væe defiet ved: f: de fx = x mod 7 g: de gx = x div 7 3

4 Fi fx og gx fo x = 6, x = 8, og x = 4. Fi vedimegdee til f og g. c vgjø om fusjoee f og g e e-til-e og/elle å. egu svee! Ogve 4 Gitt tllmtisee estem dimesjoee til, og. vgjø hvilet v mtiseodutee,, og som e defiet, og estem i så fll hvile dimesjo de h. c Reg ut de mtiseodutee som e defiet. Ogve 5 Gitt heltllet = å iæ fom. Hv li tllet å: i Hesdesiml fom ii Otl fom iii Desiml fom Stude følgede ee: i ii vgjø hv slgs ee det e, og estem eesumme fo hve v dem. 4

5 Ogve 6 Fi støste felles diviso eg. getest commo diviso fo tllee 840 og 44 ved å ue imtllsftoiseig. Fi støste felles diviso fo 840 og 44 ved å ue Eulids lgoitme. c Miste felles multilum eg. lest commo multile v to heltll og e det miste ositive heltllet som åde og gå o i. Fi miste felles multilum fo og 5. d Hvo mge tll mellom og 000 e delelig med elle 5, elle åde og 5? Ogve 7 Hvo mge gyldige iode å 4 siffe, de føste siffe e fosjellig f 0, fies det? E tist h gitt ut to lum med til smme 0 sge. H sl lge et osetogm med 0 sge hetet f disse to lumee. Hvo mge fosjellige osetogm e det mulig å sette o å eefølge å sgee sille e olle? c I e lsse med 4 studete sl det velges e gue å 4 studete som sl gee semestevslutig fo lsse. Hvo mge fosjellige gue e det mulig å velge? d På hvo mge måte ostvee i odet LMM stoes om? Ogve 8 L P væe åstde om t = dvs. i= i = Vis t P, P og P 3 gjelde. Vis ved idusjo t P gjelde fo. 5

6 Ogve 9 Gitt diffeesligige = 3 + 4,, 0 =, = Fi og 3. Fi e fomel fo. Vis t fomele di stemme ved å sette i = og = 3. D sl du få de smme esulttee som i ut. Ogve 0 Gitt følgede uettede gf: Hvo mge ute h gfe? Siv o gde til hvet ut og fi summe v gdee. u esulttet i ut til å fie tll te i gfe. c Fies det e luet Eule-vei i gfe? Fies det e åe Eule-vei i gfe? d Siv o de tuelle Eule-veie dvs. utee å veie hvis du svte j å et v søsmålee i ut c. 6

7 7 Vedlegg. Logise oetoe: ie, og, elle, eslusiv elle, imlisjo Noe evivlese f utsgslogi: x P x x xp x P x x xp Noe megdeidetitete: Kdilitet tllet elemete i e uio: Fusjoe: I fusjoe f : ety defiisjosmegde og vediomåde. E fusjo f : e e-til-e hvis, og, medføe t f f. E fusjo f : e å hvis sli t f. Mtise De tsoete til e mtise eteges med T og e de mtise vi få å dee og oloee i yttes om. Føste d i li føste oloe i T, de d i li de oloe i T, osv. Det ety sesielt t hvis e e m mtise, så li T e m mtise. Heltllsdivisjo divisjoslgoitme, div og mod:

8 L væe et heltll og d et ositivt heltll. D fies etydige heltll og med sli t d. Oesjoee div og mod defiees ved t div d og mod d. 0 d Støste felles diviso Støste felles diviso getest commo diviso gcd fo to hele tll som ie egge e 0, e det støste heltllet som gå o i egge tllee. Miste felles multilum Miste felles multilum lest commo multile lcm fo to ositive heltll e det miste ositive heltllet som egge gå o i. Fomel gcd, og lcm,: Hvis gcd, e støste felles diviso fo og og, miste felles multilum fo og, så e gcd, lcm, Moduloegig: lcm e L m væe et ositivt heltll. To heltll og lles oguete modulo m hvis m gå o i og det eteges med mod m. mod m hvis og e hvis mod m = mod m mod m og c d mod m, så e c d mod m Tvesum og c d mod m. L væe et ositivt heltll. Tvesumme til e oguet med modulo 9. Summe v ee: Geometis ee:, 0 itmetis ee: L væe føste ledd, siste ledd og d diffeese mellom to og to ledd. tll ledd e gitt ved og summe e li d iomiloeffisiete:!!!!, 0,,, 8

9 9, iomilteoemet: tll fosjellige utvlg å stye f e smlig å stye: Odet ute tileleggig: Uodet ute tileleggig: Odet med tileleggig: Uodet med tileleggig: Det geeelle «igeohole»-isiet: Hvis N ojete sl lssees i ose, må mist é os ieholde mist N ojete. Diffeesligige: De geeelle lieæe homogee diffeesligige v ode med ostte oeffisiete e å fome c c de c og c e ostte. Ligiges teistise olyom e gitt ved: c c.

10 Hvis det teistise olyomet h to fosjellige eelle løsige og, li geeell løsig li de og e vilålige ostte. Hvis sttetigelsee 0 og e gitt, fie e og ved å løse et ligigssystem. Hvis det teistise olyomet h u é løsig 0, li geeell løsig li 0 0 de og e vilålige ostte. Hvis sttetigelsee 0 og e gitt, fie e og ved å løse et ligigssystem. Relsjoe: E elsjo R å e megde e e delmegde v odutmegde L R væe e elsjo å e megde.. R e eflesiv hvis, R fo lle. R e symmetis hvis, R, så e, R. R e tisymmetis hvis og, R, så e, R. R e tsitiv hvis, R og, c R, så e, c R. E tisjo E smlig delmegde,, 3,..., v e megde utgjø e tisjo v hvis 3... og i j Ø fo lle i j. Evivleselsjoe E elsjo R å e megde e e evivleselsjo hvis de e eflesiv, symmetis og tsitiv. Evivleslsse Hvis R e e evivleselsjo å e megde og, så e evivleslsse [] til defiet ved [ ] {, R}. Elle med od: [] e li megde v de som e eltet til. Evivleslssee til e elsjo utgjø e tisjo v. 0

11 Delvis- elle tiell odig E elsjo R å e megde e e delvis odig hvis de e eflesiv, tisymmetis og tsitiv. Hvis dette e ofylt, sie vi t e e delvis odet megde med hesy å R. Et elemet e et msimlt elemet hvis det ie fies oe sli t, R. Det ety t det e ie oe elemet som omme «ette» i odige. Tilsvede e et elemet et miimlt elemet hvis det ie fies oe sli t Gfteoi:, R. Gde til et ut. L væe et ut eg: vetex i e uettet gf. Gde gd til e tllet te yttet til utet. Gd-t-setige: L G væe e uettet gf med edelig mge te. D vil summe v gdee til utee i G væe doelt så sto som tllet te. Eules setig: E smmehegede uettet gf med mist to ute h e luet Eule-vei e Eulesyel hvis og e hvis lle utee i gfe h tllsgd. E smmehegede uettet gf h e åe ie-luet Eule-vei hvis og e hvis øytig to ute i gfe h oddetllsgd.

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: 8005 Tid: 5 time / l 9-4 tll side il foside: 0 tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo Hådholdt lulto som ie

Detaljer

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).

Detaljer

KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK

KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK Gekee kjete de atulige tallee og de kjete til fohold - dvs det vi i dag vil ofatte som bøke. E guleggede ofatig va at to lijestykke måtte ha et felles

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Særtrykk Mtemtikk T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Mtemtikk T Ihold Alger A Tllregig 7 B Tllmegder C Potesregig 0 D Store og små tll

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

LU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge

LU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge Puy Fomået med K/LU Bede fomjofomd LU k jøe t Puy om mjofet b bede kjet LU k fomjo t utedemehet, K o Noe LU k mujøe bede beutu fo mjoe mehetee LU k utvke webde fo Puy om k b e eu fo mehetee LU k t buk

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

Fugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004

Fugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004 Fugletetaeeet Øistein Gjøvik Høgskolen i Sø-Tønelag, 004 Innlening Nå skal vi lage et omlegeme u kanskje ikke ha sett fø. Det e ikke noe mystisk ve selve figuen, men en høe ikke til lant e mest ukte i

Detaljer

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4 Avdelig for igeiørudig Fg: ITUETELL AALYE Grupper: 3KA Esesoppgve esår v Tille hjelpeidler: EKAEOPPGAE All sider il. forside: 4 Fgr: O 458 K Do: 4.0.0 All oppgver: 5 Fglig veileder: Per Ol øig Esesid,

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Notat: Dekker pensum i beskrivende statistikk

Notat: Dekker pensum i beskrivende statistikk Notat: Dekke pesum eskvede statstkk.3 Beskvede statstkk (sde 9 læeoka - 4. utgave) Beskvede (deskptv) statstkk omfatte samlg, eaedg og pesetasjo av data (tallmateale, osevasjoe, måleesultate). Nå følge

Detaljer

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon Deprtmet of Mthemticl Scieces, NTNU, Norwy Octoer 14, 2014 Forelesig 01.10.2014, 5.1, 5.2 Summer Arel uder grfe til e fuksjo som greseverdi til e summe Sigm otsjo L m og være heltll og m og l f være e

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage 2011 maianne@fuedesign.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage maianne@futuia.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning av nye

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig

Detaljer

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning: nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Nytt Rådhus i Sandnes

Nytt Rådhus i Sandnes Sades vokste fam ved Gadsfode o ha i de siste åee oietet se me o me mot det blå offetlie ommet midt i bye. He e det populæe kultuhuset, et levede båtliv, e uik utsikt o det e fistede å å e tu las vaet

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S

Detaljer

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering SERVICEERKLÆRING 1. Innlednngg 2. Demokt, smbed og medvknng 3. Geneell nomsjon b 4. Intensjonlseng e 5. Studestt 6. Studegjennomøngen 7. Bblotek 8. IT l 9. Studentveled 1. Innlednng g 2. Demokt, smbed

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk bee læng Hanlngsplan fo bæumsskolen mo 2020 Relasjons- og leelseskompeanse/vueng fo læng/gal akkk fe uvklngsomåe skolemelngen pesenee fe uvklngsomåe Længsoppage Den ykge læe bee læng Skolemelng fo bæumsskolen

Detaljer

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer

I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c.

I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c. NOTAT TIL FORELESNING OM FUNKSJONER, DEL Forelesige om uksjoer består av to deler, ørste del bygger på dette otatet Notatet bygger på læreboke og er oe mer utyllede e orelesige I bolk 5a så vi hvorda vi

Detaljer

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Realavkastning. Investeringsanalyse og inflasjon. Realavkastning av finansinvesteringer

Realavkastning. Investeringsanalyse og inflasjon. Realavkastning av finansinvesteringer Ivesteigsaalyse og iflasjo Nomiell avkastig og ealavkastig Reell låeete (ealete) Realivesteige og iflasjo Kotatstøm i omielle og faste pise Iflasjo og skatt Omløpsmidle og iflasjo Joh-Eik Adeasse 1 Høgskole

Detaljer

Vær utålmodig, menneske

Vær utålmodig, menneske Vær uålmdig, mennese nger Hageru, Birgie Grimsad. Arr: lars Kle il. Sa-el-sen va-rer e - vig. A f G =80 2 4 s s s s 2 4 m m m m s s s s z s 2 4 m m m m 2 4 m m m m 11 n Mør-e ble ls, g ls-e ild g men-nes-e

Detaljer

Reiseregning. Bankkto. Avdeling/ tj.sted. Skattekommune Utreise. Trondheim 16.08.05 Reisested og -formål Tjenestereise

Reiseregning. Bankkto. Avdeling/ tj.sted. Skattekommune Utreise. Trondheim 16.08.05 Reisested og -formål Tjenestereise Etterv og forv Privtresse Stillig Ett/ istitusjo Astt r. Regige gjeler Reiseutlegg/ gotgjøriger Overført fr bksie Ami. gotgj. Busjettispoerigsmyighet Gokjet to Kostgotgjørig ute overttig Kostgotgjørig

Detaljer

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002 Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.

Detaljer

(b) Ekmanstrøm: Balanse mellom friksjonskraft og Corioliskraft. der ν er den kinematiske (eddy) viskositeten.

(b) Ekmanstrøm: Balanse mellom friksjonskraft og Corioliskraft. der ν er den kinematiske (eddy) viskositeten. Oppgae 1. Fgu 6.11 læeboka se den nodgående enegfluksen atosfæen ( petawatt esus beddegad på den nodlge halkulen (opp tl 75 gade, ålg dlet. Fguen se også egne plott fo tansente edde, totalt bdag fa edde

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

ELEKTRONIKK AUTOMATISERING & PROSESS utstilling. Ålesund. 28. mai 2013. Rica Parken Hotel Storgata 16, 6002 Ålesund

ELEKTRONIKK AUTOMATISERING & PROSESS utstilling. Ålesund. 28. mai 2013. Rica Parken Hotel Storgata 16, 6002 Ålesund ELEKTRONIKK AUTOMATISERING & PROSESS utstilling Ålesund 28. mai 2013 Rica Paken Hotel Stogata 16, 6002 Ålesund Tisdag 28. mai 2013 kl 09.00 16.00 23 ledende elektonikkindustibedifte stille ut Test & Måleutsty

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Modellering av høyspentkabler

Modellering av høyspentkabler Modelleig av høyspetkable - i COMSOL Multiphysics H7E Jey Ommedal Flemmig Josefse Posjektappot Modelleig av høyspetkable Høgskole i Østfold HØGSOLEN ØSTFOLD geiøutdaige Postboks 9, Valaskjold Besøk: Tueveie

Detaljer

St.Olav Eiendom ønsker en snarlig AMU-behandling av prosjektet. Det medfører at vi må behandle saken som en fullmaktsak.

St.Olav Eiendom ønsker en snarlig AMU-behandling av prosjektet. Det medfører at vi må behandle saken som en fullmaktsak. av beidsmiljøutvalget Dato 7.08.05 Refeanse 05/89 Notat Til: beidsmiljøutvalget Kopi til: Fa: Heidi Egseth Signatu: Etableing/bygging av lokale til PET adiofomaka St.Olav Eiendom ønske en snalig MU-behandling

Detaljer

Vurderingsrettleiing Vurderingsveiledning Desember 2007

Vurderingsrettleiing Vurderingsveiledning Desember 2007 Vurderingsrettleiing Vurderingsveiledning Desember 007 Mtemtikk sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Vurderingsveiledning til sentrlt gitt eksmen i Kunnsksløftet

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Prop. 65 L (2012-2013) Endringer i åndsverkloven (tiltak mot krenkelser av opphavsrett m.m. på Internett)

Prop. 65 L (2012-2013) Endringer i åndsverkloven (tiltak mot krenkelser av opphavsrett m.m. på Internett) Nosk mal: Saside (ilak mo kenkelse av opphavse m.m. på Inene) Sian Fagenæs og Espen Anebeg Bøse Opphavsesfoeningen elg. 1 Poposisjon om ilak mo opphavseskenkelse på Inene Inngå som del av helhelig evisjon

Detaljer

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som Syrer og r Det fies flere defiisjoer på hva r og r er. Vi skal bruke defiisjoe til Brøsted: E Brøsted er e proto door. E Brøsted er e proto akseptor. 1s 1 Et proto er et hydrogeatom som har mistet sitt

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001 Avdelig for igeiørutdaig EKSAMENSOPPGAVE Fag: Kjemi og Miljø Fagr FO 05 K Faglig veileder: Kirste Aarset, Bete Hellum og Ja Stubergh Gruppe(r): 1-elektro, 1-maski, -alme Dato: 17 desember 001 Eksamestid,

Detaljer

HJEMMEOPPGAVER (utgave av 12-7-2005):

HJEMMEOPPGAVER (utgave av 12-7-2005): HJEMMEOPPGAVER (utgave av 12-7-2005: Ogave 1 til 31. januar: La f 1, f 2,... være Fibonacci tallene, det vil si f 1 f 2 1 og f n f n 1 + f n 2 for n 3. Vis: (1 f 1 + f 2 + + f n f n+2 1. (2 f n+1 f n 1

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk

Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581

Detaljer

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved 84 8 Eksamenstening 8 Eksamens tening Uten hjelpemidle E1 (Kapittel 1) Polynomfunksjonen P e gitt ved P ( ) = 7 + 14 8, DP = R. a Det kan vises at alle heltallige løsninge av P() = 0 gå opp i konstantleddet

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002 Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og

Detaljer

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

DEN NORSKE KIRKE Skien kirkelige fellesråd

DEN NORSKE KIRKE Skien kirkelige fellesråd DEN NORSKE KRKE Skien kikelige fellesåd Gjepen menighesåd, sam saben i Gjepen Håvundvn.7 3715 SKEN Posboks 350,3701 SKEN Tlf: 3558180,Faks: 35581181 E-pos:kikevegen@skien.kommune.no Hjemmeside: www.skien.kiken.no

Detaljer

Heinco Flex mufferørdeler

Heinco Flex mufferørdeler Heico Fex muffeøee Fo PVC og uktie ø 13-01/01-2013 13 Sie 1 av 5 Buksomåe og spesiee egeskape Buksomåe: Va Avvikig: Maks 11,5o i ett pa vetikat ee hoisotat (eksempevis ska stoppekaste stå vetikat ve hoisota

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Fomelsamling i medisinsk statistikk Vesjon av 5. juni 2009 Dette e en fomelsamling til O. O. Aalen (ed.): Statistiske metode i medisin og helsefag, Gyldendal, 2006. Mek at boken ha en nettside de det e

Detaljer

Blåfjella-Skjækerfjella Villmark fra dal til fjell

Blåfjella-Skjækerfjella Villmark fra dal til fjell BENNETT. Trykk: GRØSET Blåfjell-Skjækerfjell Villmrk fr dl til fjell Norges sjolprker tur som får være seg selv I Norges sjolprker er det tures lover som gjelder. Det er ture selv som bestemmer, og gjør

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene

Detaljer

Vurderingsveiledning 2010

Vurderingsveiledning 2010 Vurderingsveiledning 00 Mtemtikk, sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Bokmål Vurderingsveiledning til sentrlt gitt skriftlig eksmen 00 Denne veiledningen

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 8.5.5 EKSAMEN øigforlg Emekode: ITD5 ITD5 Dto: 8. mi 5 Hjelpemidler: Eme: Mtemtikk dre delekme Ekmetid: 9.. Fglærer: - To A-rk med vlgfritt ihold på begge ider. - Formelhefte. Chriti F Heide Klkultor er

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

3rd Nordic Conference of Computational Linguistics NODALIDA 1981 137

3rd Nordic Conference of Computational Linguistics NODALIDA 1981 137 137 Anne G olden N orsk u n d erv i sn in ijen fo r u te n la n d s k e s t u d e n te r U n i v e r s i t e t e t i O slo PRESENTASJON AV PROSJEKTET LÆREBOKSPRM N å r d e f r e n u nedspråkliye e l e

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Bergen kino. Høstfestival. Proffene

Bergen kino. Høstfestival. Proffene N. 9 Oktobe 2014 19. ågag Bege kio Høstfestival Poffee I o h ld Kjæe lese! kio e g Be KulTu Vi glede oss til Høstfestivale i ovembe, og håpe at du bli med! Det bli musikk, kust, teate, kofease og mye me!

Detaljer

Veileder for adepter. Bruk mentor - unngå omveier

Veileder for adepter. Bruk mentor - unngå omveier Veilede fo adepte Buk mento - unngå omveie At eg e til, Det veit eg. Eg kjenne pusten min Og eit og anna hjeteslag. Men eg vil noko mei, enn bee å vea, eg vil vea nokon, som bety noko, i det stoe fellesskapet.

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

sosiale behov FASE 2: Haug barnehage 2011-2012

sosiale behov FASE 2: Haug barnehage 2011-2012 : Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Veileder for prosjektet har vært førsteamanuensis Stein-Erik Fleten. Jeg vil gjerne takke ham for all hjelp og faglig støtte.

Veileder for prosjektet har vært førsteamanuensis Stein-Erik Fleten. Jeg vil gjerne takke ham for all hjelp og faglig støtte. SIS1101 Fodypigsemet i ivesteig, fiasieig og økoomistyig FORORD Dee appote e utabeidet høste 2002 og e e posjektoppgave utabeidet i tilkytig til fodypigsemet føste semeste det 5. ået ved siviligeiøstudiet

Detaljer

REFERAT. Jorunn Lervik (Sosial- og helseavdeling/fylkesmannen) Marius Rønningen (Politiet) Arnfinn Brechan, leder, ønsket velkommen til møtet.

REFERAT. Jorunn Lervik (Sosial- og helseavdeling/fylkesmannen) Marius Rønningen (Politiet) Arnfinn Brechan, leder, ønsket velkommen til møtet. REFERAT fa møte n. 05/09 Tafikksikkehetsutvalget i Sø-Tøndelag, tosdag 19. novembe 2009 kl 09.00 på distiktskontoet, Statens hus, Pinsenes gt. 1, møteom 4.135 i 1. etasje Til stede: Meldt fofall: Ikke

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Bergen kino. Aktive dager på Kvamskogen! KulTur

Bergen kino. Aktive dager på Kvamskogen! KulTur Nr. 4 April 2015 20. årgg Berge kio Aktive dger på Kvmskoge! KulTur Bjørr hådbll I o h ld io k e Berg KulTur Kjære leser! De beste tide på året? Det er pril det! Edelig k vi legge bort ulludertøy, store

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

R2 2010/11 - Kapittel 3: 26. oktober 24. november 2011

R2 2010/11 - Kapittel 3: 26. oktober 24. november 2011 R / - Kapittel :. oktobe. novembe Plan fo koleået /: Kapittel : / /. Kapittel : / /. Kapittel : / /. Kapittel : / /. Pøve på elle koletime ette hvet kapittel. Én heildagpøve i hve temin. En del pøve vil

Detaljer

Om Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering

Om Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering Uke9. mars 2005 rafisk brukergresesitt med Swig og awt Litt Modell Utsy - Kotroll Del I Stei jessig Ist for Iformatikk Uiv. i Oslo UI (raphical User Iterface)-programmerig I dag Hvorda få laget et vidu

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer