Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi

Størrelse: px
Begynne med side:

Download "Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi"

Transkript

1 1 Jo Vislie; aril 015 ECO Prosedyre for løsig av ogaver Jeg sal ved hjel av oe ogaver/esemler fra rodusetes tilasig, gi forslag til rosedyre/hjel/veivalg til å løse ogaver i ECO 00. Det er tre tyer av sørsmål jeg tror mage stiller seg: «Hva er roblemet; hvor sal jeg starte?», «Hvorda sal jeg gå fram?» og «Hvorfor sal jeg gjøre det aurat så?». Dette otatet, som følges o seiere med e tilsvarede ogave fra osumetes tilasig, er u met som e støtte til teorie resetert i Strøm & Vislie dette otatet a å ige måte erstatte de gruleggede teorie. Ogaver vil (este) alltid være sesialtilfeller av mer geerelle modeller. Jeg sal først se å tilasige til e bedrift/roduset som bruer é variabel isatsfator til å rodusere ett rodut, der tilasige er styrt av et mål om å masimere rofitt eller oversudd. Deretter ser vi å et ostadsmiimerigsroblem for e bedrift som roduserer ett rodut med e rodutfusjo med flere fatorer som a substituere hveradre i større eller midre grad. Problem 1: Produsettilasig rofittmasimerig med é fator La oss først se å følgede ogave som sulle ha vært løst tidligere, emlig: Betrat e bedrift med e rodutfusjo = F( ) der 1 F ( ) = =, med følgede egesaer: F (0) = 0, greserodutivitet 1 1 F ( ) 0-1 = = >, og som selv er avtaede; dvs. 1 3 F ( ) =- - < 0 for alle > 0. Vi a tee oss at 4 er et mål å bru av arbeidsraft (atall asatte) er tidsehet og er rodusert megde er tidsehet. Her vil rodut og sysselsettig måles i samme ehet (litt ustig, asje); alterativt ue vi ha srevet = a, der a er e ostat som oversetter sysselsettig/atall asatt er ue til rodut er ue. I vår

2 roblemstillig er a 1. Vi fier da at = a =, der vestre side viser ( > 0) a atall sysselsatte er tidsehet er rodusert ehet er tidsehet, oe også høyre side må gjøre; dermed har mål som atall sysselsatte er rodutehet. Sørsmål: Agi ytterligere egesaer til dee rodutfusjoe. Setrale begreer, utover greserodutivitet og rodutaselerasjo, er gjeomsittsrodutivitet og greseelastisitet. Alle disse begreee må e jee til! For dee rodutfusjoe har vi vist at greserodutivitete er 1 1 F ( ) = -, mes gjeomsittsrodutivitete er -1 =. Vi ser at = F ( ) > F ( ). Videre har vi vist at rodutaselerasjoe er egativ; 1 3 F ( ) =- - < 0. (Side greserodutivitete er midre e 4 gjeomsittsrodutivitete, må være syede med.) Sett å at vi sulle besvare e ogave om hvorda gjeomsittsrodutivitete varierer med isatsfatore. Da må vi se hvorda F( ) -1 = = selv varierer med. Side dee fusjoe er deriverbar, følger det ved derivasjo av 1 - med hesy å, at d ( ) =- < 0. Gjeomsittsrodutivitete, for alle d > 0, er overalt fallede i brue av arbeidsraft. Et tredje jeeteg er gitt ved greseelastisitete; dvs. F ( ) 1 El F( ) = F ( ) = =. F ( ) este sørsmål: Utled ostadsfusjoe, med tilhørede grese og gjeomsittsostad. Hvorda varierer gjeomsittsostade med rodusert vatum? Vi sal da fram til e sammeheg mellom (miste) samlet fatorutlegg og rodusert vatum av ferdigvare. (Med flere rodusjosfatorer må e, som vi sal se seiere, velge de fatorombiasjo å e gitt isovat og som gir lavest

3 3 samlet fatorutlegg. Her er det u é rodusjosfator.) Vi sal ata at bedrifte egetlig øser å masimere oversuddet, og derfor vil de ie sløse med bru av arbeidsraft. Det betyr at om de sal rodusere e (vilårlig) megde av ferdigvare, vil de ie brue mer arbeidsraft e høyst ødvedig. (De står fritt til å brue mer e ødvedig, me det iebærer sløsig og dermed høyere ostader.) Dermed, om det sal roduseres eheter av ferdigvare (iefor de eriode vi ser å; f.es. e ue), vil bedrifte ie brue mer e så mye arbeidsraft at e aurat larer å frembrige det øsede atall eheter av ferdigvare. Vi fier da, fra rodutfusjoe i dette é fatortilfellet, (miste) ødvedig isats av arbeidsraft er ue ved å rodusere eheter av ferdigvare over e ue. Iverterig av rodutfusjoe gir da, side vi har X = =. Om hver ehet arbeidsraft oster bedrifte W roer er ue (dee løa tar bedrifte som e esoget, gitt størrelse, som risfast vatumstilasser i fatormaredet), vil ostadsfusjoe (eller det laveste fatorutlegget) for å rodusere eheter er ue, i roer, være CW (; ) = W. (Hus at ostadsfusjoe viser sammehege mellom miste fatorutlegg i roer for ehver gitt rodutmegde.) Dee har følgede egesaer: dc(; W ) C(; W ) dc C(0; W ) = 0, = W, = W <, og med d dc dc d = W. Greseostade, dc d, er stigede og større e gjeomsittsostade som selv er stigede i rodusert vatum, ide W jo stiger med rodusert vatum. Sørsmål: Hvor mye vil bedrifte øse å rodusere om målet er rofittmasimerig? De ostadsfusjoe vi har utledet sal å brues til å bestemme hvor mye bedrifte vil øse å rodusere av ferdigvare om oversuddet er ue sal masimeres. Ved utledige av ostadsfusjoe var vilårlig å sal de

4 4 bestemmes eller avledes fra et overordet mål om å masimere oversudd eller rofitt. Uder selve rofittmasimerige er rodusert vatum e edoge variabel. La hver ehet av ferdigvare selges til e (gitt) ris å et mared der bedrifte otrer som risfast vatumstilasser. Da a vi utlede et uttry for bedriftes oversudd målt i roer er ue som e fusjo av : (; W, ) CW (; ) W é Wù = - = - = êë - úû. Her er de variabel bedrifte selv sal fastlegge, mes risee ( W, ) er esoget gitte størrelser. Bedriftes mål er å: Velg ³ 0 sli at (; W, ) masimeres. Da bruer vi matematie og leter etter et masimum. For det første, ser vi at ³ 0 for alle 0. Det vil derfor aldri være løsomt å rodusere mer e W W eheter av rodutet er ue. (Mes har beevig roer er ehet av, vil W være lø er asatt er ue; der hver asatt svarer til vadratet av ; dvs. W har måleehet «atall eheter av rodutet».) Vi ser da å de førstederiverte av rofitte med hesy å. Vi fier da: d(; W, ) : = ( W ;, ) = - W, sli at (0; W, ) = > 0 og d ( ;, ) 0 W = - =- <. Fordi (; W, ) er e otiuerlig fusjo av å W é det luede itervallet 0, ù, vil de ha et masimum (og også et miimum, me ê W ú ë û det iteresserer ie oss her). Vi er å jat bare etter et masimum. Fordi vi har at (0; W, ) > 0, samme med (; 0 W, ) 0 og ( ;, ) 0 W <, samtidig som W (; W, ) =- W < 0for alle i det iteressate mulighetsområdet, vil (; W, ) ha et etydig globalt masimum i det idre av det området der rofitte er ieegativ; dvs. for e W * = Î (0, ) der W * * * ( ; W, ) = - W = 0 =. Videre har vi at rofitte selv er ositiv for dee rodutmegde side

5 5 é ù W ê Wú ë û W 4W * ( ; W, ) = ê- W ú = = > 0. (Her er det o å brue førstederivert teste; er vosede (avtaede) til vestre (høyre) for *.) este sørsmål: Hvorda åvires tilasige av e øig i W? Det er valig å sørre hvorda bedrifte reagerer å «sjo», risedriger eller adre ytre (esogee) edriger. Vi sal å se hvorda bedrifte vil edre tilasig om «realrise» W øer eller at rodutrise øer mer e løa er asatt er ue. Vi treger ie «rege» så mye å, side vi ser at tilbudt vatum * = da W vil øe. Da må selvsagt også ettersørsel eller bru av arbeidsraft er ue øe, side det er e ositiv sammeheg mellom og. Profitte vil (selvsagt) også øe. Problem : Produsettilasig ostadsmiimerig med to isatsfatorer å sal vi betrate et ostadsmiimerigsroblem med to variable rodusjosfatorer. Dette betyr at for et gitt rodusjosrav («isovatbetigelse»), sal e fastlegge fatorbrue sli at samlet fatorutlegg blir så lavt som mulig. Vi atar at et gitt vatum av ferdigvare a fremstilles ved et uedelig atall fatorombiasjoer, reresetert ved de gitte isovate 1 1 = F(,) = = =, der å er et gitt tall (rodusjosrav), samtidig som vi har atatt at rodutfusjoe er gitt somf (,) =, defiert for 0, Sørsmål: Bestem de ostadsmiimerede fatorombiasjoe. Med rise er ehet av og q som ris er ehet av, der begge risee tas som gitte størrelser av bedrifte, består å roblemet i å velge et ut å de gitte isovate sli at samlet fatorutlegg é + qù êë úû miimeres. Dette roblemet a løses ved Lagrages metode eller ved «isettig». Ta det siste først. Fra rodusjosravet følger direte at =, sli at isovate a

6 6 rereseteres ved =, som viser at isovate er syede i fatordiagrammet, d 0 d <, og rummet mot origo, som er evivalet med at de margiale substitusjosbrø, - d d =, er avtaede i. Setter vi i for = i uttryet for fatorutlegget, får vi e fusjo u av ; dvs., e vi defierer som y ( ): = + q, som vi sal fie miimum for. Vi leter da o stasjoærut(er): 0 -q q y ( ) = + = - = 0, dvs. vi fier = q q = ( ). (Bare de ositive rote gir meig.) Dette utet må være et miimumsut side vi har at q q y ( ) = = > 0. (Det er også 3 ( ) lett å se at y ( ) er syede for <, og stigede for >. («Førstederivertteste» viser dermed at løser vårt roblem.) Setter vi å i for i vår isovatbetigelse, fier vi de tilhørede ostadsmiimerede brue av som: = = =. q q Dermed har vi svar å vårt sørsmål: De fatorombiasjo som miimerer bedriftes fatorutlegg med de ogitte rodutfusjoe og med gitt ì q ü rodusjo, er: (, ) = ï, í ï ý. Dette gir oss samtidig de betigede q ïî ïþ fatorettersørselsfusjoee. Alterativ a vi beytte Lagrages metode. Side vi å vet at det fies e løsig, vet vi også at det fies e lagragemultiliator m > 0, sli at de

7 7 ostadsmiimerede fatorombiasjoe fremommer som stasjoærutee til Lagragefusjoe L (,, m) = + q-m é ê - ù ë ú, gitt ved û L = - - m = m = = L q 0 q q = - - m = m = = Samme med isovatbetigelse har vi da tre betigelser til å bestemme de tre variablee ( m,, ). (I e figur er dee løsige jeeteget ved at de gitte isovate tagerer e isoostlije; dvs. at MTSB = q, der vi å har MTSB F = = F 1 1 =.) Lagragemultiliatore a elimieres fra lihete q = q = som gir = q ; jfr. ravet også om at MTSB =. q Bruer vi dee sammehege i rodutfusjoe, som er bibetigelse i vårt roblem, fier vi: viste tidligere. = = = =, som gir q q q q =, sli vi Sørsmål: Hva jeeteger disse betigede fatorettersørselsfusjoee? De er lieære i rodusert vatum dette følger av at rodutfusjoe har ostat salautbytte eller homoge av grad é («ari assu»); summe av greseelastisitetee er li é. Videre ser vi at hver fator vil være syede i ege ris og vosede i de adre rise. Dette betyr at jo høyere er, jo midre vil e brue av og jo mer vil e brue av.

8 8 Sørsmål: Utled ostadsfusjoe og agi egesaer ved dee. Kostadsfusjoe er å det miimerte fatorutlegget, for de gitt rodusjoe; é q ù dvs., vi har Cq (;,): = + q = q é q q ù + = ê + ú= q q, ê ú ë û ë û der q = q = ( q) er ehetsostadsfusjoe, li greseostade, gitt dc som d = q. Side ehetsostade eller gjeomsittsostade er uavhegig av rodusert vatum, er ostadsfusjoe lieær i. Sørsmål: Hvorda varierer ostade med løa? Vi sal å se å gir oss: C. Partiell derivasjo av ostadsfusjoe med hesy å, C q = q = = ( ;, q) som er Shehard s lemma. De miimerte ostade er høyrer jo høyere e fatorris er. Sørsmål: Hvorfor er rofittmasimerig «roblematis» år vi har ostat salautbytte sli som her? (Svar: Se boa s )

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi Jo Vislie; mars 07 ECO 00 07 Prosedyre for løsig av ogaver Jeg sal ved hjel av oe ogaver/esemler fra rodusetes tilasig, gi forslag til rosedyre/hjel/veivalg til å løse ogaver i ECO 00. Det er tre tyer

Detaljer

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars Jo Vislie; mars 04 Ogave ECO 00 VÅRE 04: Ogaver til leumsøvelse de.mars E bedrift har rodutfusjoe = - b, der b er e ositiv ostat. Sisser grafe til dee og agi egesaee til rodutfusjoe (ved gjeomsittsrodutivitet,

Detaljer

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x Ogave a) f() = f 0 () = + 3 ) f() = g() f 0 () = g() g0 () g() c) f(; y) = (y + ) f 0 = (y + )y f 0 y = (y + ) d) f(; y) = ( y + ) ( y ) f 0 = ( y + ) r y ( y ) + ( y + ) ( y ) r y = ( y + )( r y y ) ((

Detaljer

Obligatorisk oppgave ECON 2200, Våren 2016

Obligatorisk oppgave ECON 2200, Våren 2016 Obligtoris ogve ECON 00, Våre 06 Ogve (0 oeg) Deriver følgede fusjoer med hes å lle rgumeter ) b) f ( ) 4 3 ( ) g 3 4 3 g'( ) 3 c) h( ) f ( )( ) h'( ) f '( )( ) f ( ) d) f ( ) g(, ) f '( ) g ' (, ) g'

Detaljer

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0 Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:

Detaljer

ECON 2200 våren 2012: Oppgave på plenumsøvelse den 21. mars

ECON 2200 våren 2012: Oppgave på plenumsøvelse den 21. mars EON våre Jo Vislie ECON våre : Oppgve på pleumsøvelse de. mrs Oppgve E edrift produserer e vre i megde x med produtfusjoe x A, der er ru v reidsrft og er relpitl. Bedrifte opptrer som prisfst vtumstilpsser

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Veiledning til obligatoriske oppgave ECON 3610 høsten 2012

Veiledning til obligatoriske oppgave ECON 3610 høsten 2012 1 Veiledig til obligatoriske oppgave CON 361 høste 212 Oppgave 1. Betrakt, i første omgag, e lukket økoomi med e stor gruppe like kosumeter som kosumerer e kosumvare i megde og eergi, målt ved. Vi atar

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse Kapittel 5. Biære søetrær Algoritmer og datastruturer Avsitt 5..5 Algoritmeaalyse Avsitt 5..5.5 - Gjeomsittlig avstad mellom to «aboer» i iorde i et biært søetre med forsjellige verdier ver permutasjo

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK2100 Løsigsforslag Eksamesdag: Torsdag 14. jui 2018. Tid for eksame: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

I dag: Produktfunksjoner og kostnadsfunksjoner

I dag: Produktfunksjoner og kostnadsfunksjoner ECON2200 Avedt økoomisk aalyse Diderik Lud, 8. februar 2010 Hva er dekket i disse otatee? Seks forelesiger av meg i ECON2200 våre 2010 8. og 22. februar, 2., 9. og 15. mars og 3. mai Legges ut på emeside

Detaljer

Bjørn Davidsen MATEMATIKK FOR INGENIØRER. Rekker

Bjørn Davidsen MATEMATIKK FOR INGENIØRER. Rekker Bjør Davidse MATEMATIKK FOR INGENIØRER Reer Reer Side Ihold FORORD REKKER 4 NOEN INNEDENDE DEFINISJONER 4 KONVERGENS AV REKKER 6 ARITMETISKE OG GEOMETRISKE REKKER 9 Aritmetise tallfølger og reer 9 Geometrise

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP Lekso 2 Mål for kurset teoretisk forståelse, gruleggede optimerig løsigsmetoder LP og utvidelser algoritmisk forståelse avedelser LP og utvidelser modellerig og løsig v.h.a. verktøy Ihold og forelesigspla

Detaljer

SIF53 Matemati Esame gir = 4 =:5 (legde νa delitervallee) og deleutee x =,x =:5, x =,x 3 =:5 ogx 4 =. Med f(x) = +x 4 fνar vi tabelle: x : :5 :

SIF53 Matemati Esame gir = 4 =:5 (legde νa delitervallee) og deleutee x =,x =:5, x =,x 3 =:5 ogx 4 =. Med f(x) = +x 4 fνar vi tabelle: x : :5 : SIF53 Matemati Esame 8..999 Norges teis-aturvitesaelige uiversitet Istitutt for matematise fag Lsigsforslag X = ( ) : Diverget. X = ( ) X ( ) : Absolutt overget. = : Betiget overget. (i) (ii) x! x! x(e

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

Sensorveiledning eksamen ECON 3610 Høst 2017

Sensorveiledning eksamen ECON 3610 Høst 2017 J; oember 07 a) Sesoreiledig eksame ECON 360 Høst 07 I dette problemet skal plalegger maksimere (, ) gitt at c G( ) og. i har tre ariable (,, ), og to bibetigelser; dermed har i é frihetsgrad som muliggjør

Detaljer

Løsning TALM1005 (statistikkdel) juni 2017

Løsning TALM1005 (statistikkdel) juni 2017 Løsig TALM1005 statistikkdel jui 2017 Oppgave 1 a Har oppgitt at sasyligte for at é harddisk svikter er p = 0, 037. Ifører hedelsee A : harddisk 1 svikter B : harddisk 2 svikter C : harddisk 3 svikter

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

ECON 3610/4610 Veiledning til oppgaver seminaruke 43. Planleggingsproblemet for en planlegger med en utilitaristisk velferdsfunksjon er her

ECON 3610/4610 Veiledning til oppgaver seminaruke 43. Planleggingsproblemet for en planlegger med en utilitaristisk velferdsfunksjon er her Jo Vislie; oktober 07 CON 360/460 Veiledig til oppgaer semiaruke 43 Oppgae Plaleggigsproblemet for e plalegger med e utilitaristisk elferdsfuksjo er her rett frem, med de atakelsee som er gjort: Max H

Detaljer

Obligatorisk oppgave nr. 3 i Diskret matematikk

Obligatorisk oppgave nr. 3 i Diskret matematikk 3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Uke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO

Uke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO Uke 12 IN3030 v2019 Eric Jul PSE-gruppa Ifi, UiO Oblig 5 Kovekse Ihylliga Itroduksjo De kovekse ihylliga til pukter Oblig 5 Hva er det, defiisjo Hvorda ser de ut Hva brukes de til? Hvorda fier vi de? 24

Detaljer

ECON 3610/4610 høsten 2017 Veiledning til seminaroppgave 2 uke 38. a) Avtakende MSB mellom de to godene er forklart i boka; antakelsen om at

ECON 3610/4610 høsten 2017 Veiledning til seminaroppgave 2 uke 38. a) Avtakende MSB mellom de to godene er forklart i boka; antakelsen om at Jon Vislie ECO 360/460 høsten 07 Veiledning til seminarogave uke 38 Ogave. a) Avtakende MSB mellom de to godene er forklart i boka; antakelsen om at er voksende, sier at «for å jobbe en time ekstra, må

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

Sensorveiledning eksamen ECON 3610/4610 Høst 2004

Sensorveiledning eksamen ECON 3610/4610 Høst 2004 1 Jon Vislie; november 2004 Sensorveiledning esamen ECO 3610/4610 Høst 2004 Modellen har fem lininger og sju variable (,n,m,,k,x og c); med to frihetsgrader i utgangspuntet og som an brues til å masimere

Detaljer

Løsningsforslag til prøveeksamen i MAT1110, våren 2012

Løsningsforslag til prøveeksamen i MAT1110, våren 2012 Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Noen vanlige. Indikatorfordeling: 1, dersom suksess. I mange situasjoner kan fenomenet vi ser på. 0, dersom ikke suksess

Noen vanlige. Indikatorfordeling: 1, dersom suksess. I mange situasjoner kan fenomenet vi ser på. 0, dersom ikke suksess Kapittel 5: Noe valige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighets- fordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8% Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

Repetisjonsoppgaver kapittel 8 løsningsforslag

Repetisjonsoppgaver kapittel 8 løsningsforslag epetisjosoppgaver apittel 8 løsigsforslag Eletrisitet Oppgave 1 a) Ett eletro har ladige 1,6 10 19 C. Dee ladige aller vi e (egativ) elemetærladig. b) Siletørleet får e egativ ladig på 3,0 10 8 C. c) Stave

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Polynominterpolasjon

Polynominterpolasjon Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

LØSNING: Eksamen 28. mai 2015

LØSNING: Eksamen 28. mai 2015 LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100

Detaljer

IN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk

IN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk IN3030 Uke 12, v2019 Eric Jul PSE, Ist. for iformatikk 1 Hva skal vi se på i Uke 12 Review Radix sort Oblig 4 Text Program Parallellizig 2 Oblig 4 Radix sort Parallelliser Radix-sorterig med fra 1 5 sifre

Detaljer

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018 Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 05.0.08 EKSAMEN løsigsforslag Emekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 09.00 3.00 Faglærer: Christia F Heide

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle

Detaljer

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 9

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 9 IF00 Digital Mikroelektroikk Løsigsforslag DEL 9 I. Oppgaver. Oppgave 6.7 Teg trasistorskjema for dyamisk footed igags D og O porter. gi bredde på trasistoree. va blir logisk effort for portee?. Løsigsforslag

Detaljer

Løsningsforslag Oppgave 1

Løsningsforslag Oppgave 1 Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

Løsning obligatorisk oppgave 3, ingeniørmatematikk 3.

Løsning obligatorisk oppgave 3, ingeniørmatematikk 3. Oppgave eltet har kompoeter og avheger av variable Jacobimatrise er da av forme Partiell derivasjo gir: ( y) ( y) ( y) y J ( x, y, ) x ( x ) x x x y x x e partielt derivert er polyomer og rasjoale fuksjoer

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Side 1 av 1 Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: okmål Dato: 30.11.016 Tid: 5 timer / kl. 9-14 tall sider ikl. forside: 1 tall ogaver: 10 Tillatte

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1 Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare!

Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Side 1 av 7 Noe viktige pukter: (i) (ii) (iii) (iv) Les hele eksamessettet øye før du begyer! Faglærer går ormalt é rude gjeom lokalet. Ha evt. spørsmål klare! Skriv svaree die i svarrutee og levér i oppgavearket.

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016 Numeriske metoder: Euler og Ruge-Kutta Matematikk 3 H 06 Iledig Differesiallikiger spiller e setral rolle i modellerigsproblemer i igeiør viteskap, matematikk, fsikk, aeroautikk, astroomi, damikk, elastisitet,

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Tema. Statistikk og prøvetakning. Hvorfor måle mer enn en gang? Fordelinger en innledning. Hvorfor måle mer enn en gang

Tema. Statistikk og prøvetakning. Hvorfor måle mer enn en gang? Fordelinger en innledning. Hvorfor måle mer enn en gang Tema Statistikk og prøvetakig Marti Veel Svedse Trodheim, 31. jauar 017 Hvorfor måle mer e e gag praktisk tilærmig til statistikk Basis statistiske begreper Best. r 450 krav/veiledig til måliger Eksempler

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L

Detaljer