Test, Geometri (1P) 2.1 Lengde og vinkler. 1) Hvor mange grader er en rett vinkel?
|
|
- Magnar Andresen
- 5 år siden
- Visninger:
Transkript
1 Test, Geometri (1P) 2.1 Lengde og vinkler 1) Hvor mange grader er en rett vinkel? ) Hva menes med en spiss vinkel? En vinkel som er større enn 90 En vinkel som er større enn 180 En vinkel som er mindre enn 90 3) Hva menes med en stump vinkel? En vinkel som er større enn 90 En vinkel som er mindre enn 180 En vinkel som er mindre enn 90 4) Vinkelsummen i en trekant er ) I en rettvinklet trekant er alltid en av vinklene 90 to vinkler like store alle sidene like lange 1
2 6) I en likebeint trekant er alltid en av vinklene 90 to vinkler like store alle sidene like lange 7) I en likesidet trekant er alltid en av vinklene 90 to vinkler like store alle sidene like lange 8) Vinkelsummen i en firkant er ) I det metriske målesystemet er grunnenheten meter desimeter centimeter 10) 1 meter = 10 cm 100 cm 1000 cm 11) 1 dm = 10 cm 100 cm 1000 cm 2
3 12) 100 mm = 1 m 1 dm 1cm 13) 100 dm = 1 meter 10 meter 1 km 14) 100 mm = 1 cm 0,1 m 0,01 dm 15) 10 m = 1000 cm 100 mm 0,1 km 16) 100 m = 1000 cm mm 0,1 km 17) Kilo betyr ti hundre 3
4 tusen 18) hekto betyr ti hundre tusen 19) En mikrometer er en tusendels meter en milliondels meter en milliarddels meter 20) En nanometer er en tusendels meter en milliondels meter en milliarddels meter 21) Gitt trekanten ovenfor. Nedenfor har tre elever skrevet ned det de mener er Pytagoras setning. Hvilket alternativ er riktig? AB + AC = BC AC + BC = AB BC + AB = AC 4
5 22) Pytagoras setning gjelder for Alle trekanter Alle rettvinkla trekanter Alle formlike trekanter 23) I en rettvinkla trekant er vinklene alltid 30, 60 og 90 Riktig Galt 24) I en rettvinkla trekant er hypotenusen alltid den lengste siden. Riktig Galt 25) Hvor lang er siden BC? Ca. 8,9 Ca. 9,5 Ca. 12 5
6 26) Hvor lang er siden BC? Ca. 1,8 Ca. 2,0 Ca. 2,2 27) En trekant har sider med lengde 3, 4 og 5. Er trekanten rettvinkla? Ja Nei 28) En trekant har sider med lengde 6, 8 og 10. Er trekanten rettvinkla? Ja Nei 29) En trekant har sider med lengde 4, 5 og 7. Er trekanten rettvinkla? Ja Nei 6
7 30) Hvilken side i trekanten ovenfor er hypotenus? AB AC BC 31) Gitt trekanten ovenfor. De to katetene har begge lengde a Hypotenusen har da lengde 2a 2a 2 2a 7
8 32) u v Vinkel u og vinkel v kalles Samsvarende vinkler Rette vinkler Toppvinkler 33) Toppvinkler er alltid like store. Riktig Galt 34) v n u m Vinkel u og vinkel v kalles Samsvarende vinkler Rette vinkler 8
9 Toppvinkler 35) Vinkel u og vinkel v kalles Samsvarende vinkler Rette vinkler Toppvinkler 36) Summen av to samsvarende vinkler er alltid 180 Riktig Galt 37) Når to parallelle linjer skjæres av en tredje linje, er de samsvarende vinklene like store. Riktig Galt 9
10 38) v u Vinkel u og vinkel v har vinkelbein som Er parallelle Er like lange Står parvis normalt på hverandre 39) v u Vinkel u og vinkel v er like store. Riktig 10
11 Galt 11
12 40) v n u m Vinkel u og vinkel v er like store. Riktig Galt 41) v u u = 40 v = 12
13 40 50 Det er ikke mulig å si hvor stor vinkel v er ut fra opplysningene som er gitt i oppgaven. 13
14 42) v u Vinkel u og vinkel v er like store. Riktig Galt 43) v n u m Vinkel u og vinkel v er Like store Til sammen
15 Til sammen mindre enn ) n m På figuren ser du en linje som krysser de to parallelle linjene m og n Det dannes da 8 vinkler. Hvor mange av disse vinklene er like store? Ingen
16 45) På figuren ser du to rette linjer som krysser hverandre. Det dannes 4 vinkler. Hvor mange av disse vinklene er like store? Ingen ) To figurer er formlike når vi ved å forstørre eller forminske den ene figuren kan få en figur som er lik den andre. Riktig Galt 47) To formlike trekanter er alltid like store. Riktig Galt 48) To formlike trekanter har alltid like lange sider. Riktig Galt 49) To trekanter er formlike dersom Trekantene har en rett vinkel Trekantene har parvis like store vinkler Trekantene har en spiss vinkel 16
17 50) Når to trekanter er formlike, vil forholdet mellom tilsvarende sider alltid være 0 1 Konstant 17
18 51) De to trekantene på figuren er formlike. Hva er forholdstallet mellom den største og den minste trekanten? ) De to trekantene på figuren er formlike. Riktig Galt 18
19 53) De to trekantene på figuren er formlike. Hvor lang er siden a i den lille trekanten? 6 6,5 7 54) De to trekantene på figuren er formlike. Hvor lang er siden b i den store trekanten? 13,
20 55) AB P ED De to trekantene på figuren er formlike. Riktig Galt 56) De to trekantene på figuren er formlike. Riktig Galt 20
21 57) Dersom v flytter punktet A, kan de to trekantene på figuren bli formlike. Hvilket krav må vi stille til linjestykkene AC og DE for at de to trekantene skal være formlike? Linjestykkene må være like lange Linjestykkene må være parallelle Linjestykkene må ha lengde 1 58) Dersom de to trekantene på figuren er formlike, vil BC og DF være tilsvarende (samsvarende) sider. Riktig Galt 21
22 59) Dersom de to trekantene på figuren er formlike, vil B = C B = E B = F 22
23 60) Dersom de to trekantene på figuren er formlike, vil AC = DF BC = EF AB = DE BC DF AB DF BC EF 23
24 2.2 Areal 1) Et kvadrat med sider 1 cm har et areal på 1 cm 2 1 cm 3 1 cm 2) 1 dm 2 = 10 cm cm 2 0,1 m 2 3) 1 mm 2 = 0,1 cm 2 0,01 dm 2 0,01 cm 2 4) 1 cm 2 = 10 mm mm 2 0,1 m 2 5) 1 m 2 = 10 dm cm mm 2 24
25 6) 1 da = 10 m m m 2 25
26 7) Det blå og det lyse røde området på fguren ovenfor har like stort areal. Riktig Galt 8) Figuren ovenfor kalles et parallellogram en rombe et trapes 9) Figuren ovenfor kalles et rektangel et parallellogram 26
27 en rombe 27
28 10) Figuren ovenfor kalles et kvadrat et rektangel en rombe 11) Arealet av figuren ovenfor er ) Arealet av figuren ovenfor er
29 13) Arealet av figuren ovenfor er ) Arealet av figuren ovenfor er
30 15) Arealet av sirkelen ovenfor er 3π 6π 9π 2.3 Volum 1) Et rett prisme med sidekanter 1 cm har et volum på 1 cm 3 1 cm 2 1 liter 30
31 2) 1 dm 3 = 10 cm cm cm 3 3) 1 cm 3 = 100 mm 3 0,001 m 3 0,001 dm 3 4) 1 dm 3 = 1000 mm 3 0,01 m 3 1 liter 5) 1 liter = 100 ml 100 cl 0,1 dl 6) 31
32 Kula ovenfor har volumet 9π 12π 36π 7) Kula ovenfor har et overflateareal på 9π 12π 36π 32
33 8) Kjegla ovenfor har volum 12π 15π 20π 9) Kjegla ovenfor har et overflateareal på 12π 20π 24π 33
34 10) Sylinderen ovenfor har volum 10π 16π 32π 11) Sylinderen ovenfor har et volum på 24 dm 3. En kjegle med samme radius og samme høyde som sylinderen, vil ha et volum på 8 dm 3 12 dm 3 24 dm 3 34
35 12) Et rett trekantet prisme har et volum på 48 cm 3. Prismet er 3 cm høyt. Arealet a grunnflaten er da 8 cm 2 16 cm 2 24 cm 2 13) Volumet av et prisme er gitt ved formelen V G står her for lengden av grunnlinja arealet av grunnflata omkretsen av grunnflata = G h 35
36 14) Pyramiden på figuren ovenfor har kvadratisk grunnflate med sidekanter lik 4. Høyden i pyramiden er 5. Volumet av pyramiden er da ) Et rett firkantet prisme rommer 318 liter. En firkantet pyramide med like stor grunnflate som prismet rommer 106 liter 158 liter 36
37 208 liter 37
38 2.3 Geometri i yrkesliv, kunst og arkitektur 2.4 Flislegging 1) Et kart har målestokk 1 : Det betyr at 1 cm på kartet svarer til m i virkeligheten 1 km i virkeligheten 10 km i virkeligheten 2) En arbeidstegning er i målestokk 1 : 1. Det betyr at målene på tegningen er mindre enn i virkeligheten større enn i virkeligheten like store som i virkeligheten 3) Dersom 9 cm på et kart svarer til 4,5 km i virkeligheten, er kartet i målestokk 1 : : : ) Figuren ovenfor er tegnet i ettpunktsperspektiv topunktsperspektiv trepunktsperspektiv 38
39 5) Figuren ovenfor er et eksempel på froskeperspektiv sentralperspektiv fugleperspektiv 6) Figuren ovenfor er et eksempel på froskeperspektiv sentralperspektiv fugleperspektiv 39
40 7) Huset ovenfor er tegnet i ettpunktsperspektiv topunktsperspektiv trepunktsperspektiv 8) Melkekartongen på bildet ovenfor er tegnet i ettpunktsperspektiv topunktsperspektiv trepunktsperspektiv 40
41 9) Melkekartongen på bildet ovenfor er tegnet i ettpunktsperspektiv topunktsperspektiv trepunktsperspektiv 10) Ved topunktsperspektiv er det to forsvinningspunkt som ligger på samme horisontale linje, horisontlinjen. Riktig Galt 11) En regulær mangekant er en figur som er avgrenset av et visst antall like lange sidekanter. Vinklene mellom to tilstøtende sidekanter er like store. Riktig Galt 41
42 12) Vi kan lage mønster av regulære femkanter og fylle hele planet. Riktig Galt 13) Vi kan lage mønster av regulære sekskanter og fylle hele planet. Riktig Galt 14) Dersom vi kombinerer regulære åttekanter med en annen type regulære mangekanter, kan vi fyllehele planet. Den andre typen regulære mangekanter er regulære trekanter regulære firkanter regulære femkanter 15) Vinkelen mellom tilstøtende sider i en regulær femkant er
Test, 2 Geometri. 2.1 Grunnleggende begreper og sammenhenger. 1T, Geometri Quiz løsning. Grete Larsen
Test, Geometri Innhold.1 Grunnleggende begreper og sammenhenger... 1. Mangekanter og sirkler... 6.3 Formlikhet... 10.4 Pytagoras setning... 16.5 Areal... 1.6 Trigonometri 1... 7.7 Trigonometri... 35 Grete
DetaljerINNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
DetaljerFasit. Grunnbok. Kapittel 2. Bokmål
Fasit Grunnbok Kapittel 2 Bokmål Kapittel 1 Trekantberegning 2.1 a Likesidet trekant b Rettvinklet trekant c Likebeint trekant d Rettvinklet og likebeint trekant 2.2 a 9,4 cm b 5 cm c 4,5 cm 2.3 2.11 Korteste
Detaljer1P kapittel 3 Geometri Løsninger til innlæringsoppgavene
1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km
DetaljerBasisoppgaver til 1P kap. 3 Geometri
Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate
DetaljerGeometri Vg1P MATEMATIKK
Geometri Innhold Innhold... 1 Kompetansemål i læreplanen for Vg1P... Innledning. Historikk... 3.1 Lengde og vinkler... 4 Måleenheter for lengde... 6 Måleredskaper... 7 Presisjon og målenøyaktighet... 7
DetaljerLøsninger. Innhold. Geometri Vg1P
Løsninger Innhold Modul 1: Linjer og vinkler... Modul : Måling av lengder og vinkler... 4 Modul 3: Setninger om vinkler... 7 Modul 4: Mangekanter og sirkler... 9 Modul 5: Formlikhet... 13 Modul 6: Pytagoras
DetaljerOppgaver. Innhold. Geometri Vg1P
Oppgaver Innhold Modul 1: Linjer og vinkler... 2 Modul 2: Måling av lengder og vinkler... 3 Modul 3: Setninger om vinkler... 6 Modul 4: Mangekanter og sirkler... 7 Modul 5: Formlikhet... 9 Modul 6: Pytagoras
DetaljerEt internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.
SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten
DetaljerTangens, sinus og cosinus Arealformel for trekanter Trigonometri
Fasit Innhold.1 Grunnleggende begreper og sammenhenger.....mangekanter og sirkler... 5.3 Formlikhet... 7.4 Pytagoras setning... 8.5 Areal... 9.6 Trigonometri 1... 10 Tangens, sinus og cosinus... 11 Arealformel
DetaljerOppgaver. Innhold. Geometri 1P og 1P-Y
Oppgaver Innhold Linjer og vinkler... 2 Måling av lengder... 3 Setninger om vinkler... 6 Mangekanter og sirkler... 7 Formlikhet... 10 Kart og arbeidstegninger... 14 Pytagoras setning... 17 Areal... 20
DetaljerGeometri R1. Test, 1 Geometri
Test, 1 Geometri Innhold 1.1 Formlikhet... 1 1.2 Pytagoras setning... 8 1.3 Setningen om periferivinkler og Thales setning... 15 1.4 Geometriske steder... 21 1.5 Skjæringssetninger i trekanter... 25 1.6
DetaljerJULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
DetaljerMatematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m
DetaljerKapittel 5. Areal, omkrets, volum og overflate
Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at
DetaljerGeometri. Mål. for opplæringen er at eleven skal kunne
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen
DetaljerMATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.
MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 3 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag
DetaljerNår du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne
Geometri Innhold Kompetansemål i læreplanen for Vg1P... 1 Modul 1: Linjer og vinkler... Modul : Måling av lengder og vinkler... 6 Modul 3: Setninger om vinkler... 10 Modul 4: Mangekanter og sirkler...
DetaljerKapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets
DetaljerKapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger
DetaljerKapittel 6. Trekanter
Kapittel 6. Trekanter Mål for kapittel 6: Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger i praktisk arbeid
DetaljerKapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
DetaljerGeometri 1P, Prøve 2 løsning
Geometri 1P, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 a) Regn ut lengden AC. Vi bruker Pytagoras setning. AC AB BC AC 5 4 b) Regn ut arealet av ABC. Arealet er 1 4 6. c) Regn
Detaljer5.4 Konstruksjon med passer og linjal
5.4 Konstruksjon med passer og linjal OPPGAVE 5.40 Analyse: Vi skal konstruere trekanten til høyre. Vi starter da med å konstruere en rettvinklet trekant med kateter lik 7 cm og 3 cm. Forlenger så hypotenusen
DetaljerMatematikk. Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL
Matematikk 1P Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL Geometri «Schaukeln» (Svingninger), 195, av den russiske kunstneren Vassily Kandinsky (1866 1944) AKTIVITET: Maksimalt
DetaljerGeometri. A1A/A1B, vår 2009
Geometri A1A/A1B, vår 2009 27. mars 2009 1. Grunnleggende begreper 2. Areal 3. Kongruens og formlikhet 4. Periferivinkler og Thales setning 5. Pytagoras setning 6. Romfigurer, overflate og volum 7. Undervisning
Detaljerivar richard larsen/geometri, oppsummert/ Side 1 av 25
Side 1 av 25 INNHOLDSFORTEGNELSE INNHOLDSFORTEGNELSE... 2 DEFINISJON... 4 LÆREPLAN I MATEMATIKK FELLESFAG... 4 NOEN GUNNLEGGENDE GEOMETRISKE BEGREPER... 4 Punkt... 4 Linje... 4 Linjestykke... 4 Stråle...
DetaljerGeometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid løse praktiske problemer knyttet til lengde, vinkel, areal og volum
DetaljerGeometri Vg1P MATEMATIKK
Løsninger Innhold Innhold... 1.1 Lengde og vinkler... Måleenheter for lengde... Pytagoras setning... 5 Formlike trekanter... 9. Areal og volum... 1 Definisjon og måleenheter areal... 1 Arealformler...
DetaljerKapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger
DetaljerØvingshefte. Geometri
Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)
DetaljerPå samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.
GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet
DetaljerGrunnleggende geometri
Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det
DetaljerLøsningsforslag kapittel 3
Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave
Detaljer5 Geometri. Trigonometri
MTEMTIKK: 5 Geometri. Trigonometri 5 Geometri. Trigonometri Ordet geometri kan deles opp i geo, som betyr jord eller land, og metri, som betyr å måle. Geometri kan oversettes med jordmåling eller landmåling.
DetaljerÅrsprøve i matematikk for 9. trinn Kannik skole
Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men
DetaljerInnhold Kompetansemål - Geometri, 1T Grunnleggende begreper og sammenhenger... 4
2 Geometri Innhold Kompetansemål - Geometri, 1T... 3 2.1 Grunnleggende begreper og sammenhenger... 4 Punkt... 4 Linje... 4 Linjestykke... 4 Stråle... 4 Plan... 5 Parallelle linjer... 5 Vinkel... 5 Vinkelmål...
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 9A og 9B
SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi
DetaljerMoro med figurer trinn 90 minutter
Lærerveiledning Passer for: Varighet: Moro med figurer 3. 4. trinn 90 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no
DetaljerNavn på hjørner og sider i trekanter Tangens, sinus og cosinus Arealformel for trekanter Trigonometri 2...
Løsninger Innhold.1 Grunnleggende begreper og sammenhenger.....mangekanter og sirkler... 8.3 Formlikhet... 1.4 Pytagoras setning... 17.5 Areal... 3.6 Trigonometri 1... 9 Navn på hjørner og sider i trekanter...
DetaljerKapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?
Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9
DetaljerGeoGebra U + V (Elevark)
GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:
DetaljerFasit. Grunnbok. Kapittel 4. Bokmål
Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1
Detaljer1 Geometri R2 Oppgaver
1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...
DetaljerLøsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6
Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300
DetaljerTessellering og mangekanter:
Tessellering og mangekanter: 1. Hva menes med et tessellering? 2. Hva mener vi når vi sier at en figur tessellerer? 3. Hva er en mangekant? 4. Hva menes en regulær mangekant? 5. Regulære mangekanter kan
DetaljerGEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE
GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer
DetaljerGeometri 1T, Prøve 2 løsning
Geometri 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt trekanten til høyre. a) Bestem sin B, cos B og tanb. 4,9 sinb 0,70, 7,0 5,0 cosb 0,71, 7,0 Du får oppgitt at sinb i
DetaljerLøsning del 1 utrinn Høst 13
//06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t
DetaljerGEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.
GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg
DetaljerFaktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Vi fordeler malingen på de små oksene: 8 8 3 4 8 : 1 3 3 3 3 Vi trenger 1 okser. Oppgave
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 10A og 10B
SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet
DetaljerKapittel 7. Lengder og areal
Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
DetaljerInnhold Kompetansemål - Geometri, 1T... 3 Innledning Grunnleggende begreper og sammenhenger... 7
2 Geometri Innhold Kompetansemål - Geometri, 1T... 3 Innledning... 4 2.1 Grunnleggende begreper og sammenhenger... 7 Punkt... 7 Linje... 7 Linjestykke... 7 Stråle... 7 Plan... 8 Parallelle linjer... 8
DetaljerLærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
DetaljerMATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017
UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative
Detaljer3Geometri. Mål. Grunnkurset K 3
Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,
DetaljerGeometri R1, Prøve 2 løsning
Geometri R, Prøve løsning Del Tid: 90 min Hjelpemidler: Skrivesaker Oppgave Gitt punktene A,, B 0, og D,6 a) Bestem koordinatene til AB og lengden til AB AB 0, 8, AB 8 68 7 A, B og D er hjørner i parallellogrammet
DetaljerLøsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K
Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.
Detaljer99 matematikkspørsma l
99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet
DetaljerE.1: Kunne regne ut areal av formlike figurer når målestokken er oppgitt, med omgjøring av enheter E.2: Kunne anvende regelen om samsvarende
11. mai 2014 INNHOLD INNHOLD... 2 INNLEDNING... 4 STEGARK... 5 GJENNOMGANG AV HVERT STEG... 11 NIVÅ A: FINNE LENGDER I FORMLIKE FIGURER NÅR MÅLESTOKKEN ER OPPGITT13 A.1: En figur, hvor minst en lengde
DetaljerLærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?
Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store
DetaljerR1 kapittel 6 Geometri Løsninger til innlæringsoppgavene
R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for
DetaljerLøsningsforslag til eksamen i MAT101 høsten 2015
sforslag til eksamen i MAT101 høsten 2015 Oppgave 1 (vekt 30 %) a) Gjør om tallene til det angitte tallsystemet i) 632 syv = ti ii) 346 ti = åtte : i) 632 syv = 6 7 2 + 3 7 + 2 = 317 ii) 346 ti = 5 8 2
DetaljerLag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
DetaljerPeriode Tema Kompetansemål Læringsaktiviteter Vurdering Uke 34-38
ÅRSPLAN MATEMATIKK FOR 7. TRINN 2018-2019 Periode Tema Kompetansemål Læringsaktiviteter Vurdering 34-38 Hele tall Titallsystemet Addisjon og subtraksjon Multiplikasjon og divisjon Regning med parenteser
DetaljerNavn på hjørner og sider i trekanter Tangens, sinus og cosinus Arealformel for trekanter Trigonometri 2...
Oppgaver Innhold 2.1 Grunnleggende begreper og sammenhenger... 2 2.2.Mangekanter og sirkler... 6 2.3 Formlikhet... 8 2.4 Pytagoras setning... 12 2.5 Areal... 15 2.6 Trigonometri 1... 18 Navn på hjørner
Detaljer1 Å konstruere en vinkel på 60º
1 Å konstruere en vinkel på 60º Vi skal konstruere en 60º vinkel med toppunkt i A. Høyre vinkelbein skal ligge langs linja l. Slå en passende sirkelbue om A. Sirkelbuen skjærer l i et punkt B. Slå en sirkelbue
DetaljerPunktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.
Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser
DetaljerLærerveiledning uke 2-7: Geometri. volum, overflate og massetetthet Kompetansemål Geometri Måling Læringsmål Trekantberegning Kart og målestokk
Lærerveiledning uke 2-7: Geometri. volum, overflate og massetetthet Geogebra - Anders film - Nappeinnlevring Kompetansemål Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar
DetaljerBedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)
Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere
Detaljerb, og de er dermed like lange. 3) Ettersom trekantene er kongruente, er alle rettvinklet, og vinklene mellom sidekantene i det ytre området er 90.
5.9 Bevis OPPGAVE 5.90 a) For å vise at den ytre figuren er et kvadrat, må vi vise 1) at sidekantene faktisk er fire rette linjestykker (ingen «knekk» der to trekanter møtes) ) at alle sidekantene er like
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
DetaljerEit internasjonalt môlesystem, ogsô kalla det metriske systemet
SI-systemet Lengder Masse Volum Eit internasjonalt môlesystem, ogsô kalla det metriske systemet Den grunnleggjande SI-eininga for môling av lengder er meter. Symbolet for meter er m. Den grunnleggjande
DetaljerNavn på hjørner og sider i trekanter Tangens, sinus og cosinus Arealformel for trekanter Trigonometri 2...
Løsninger Innhold.1 Grunnleggende begreper og sammenhenger.....mangekanter og sirkler... 7.3 Formlikhet... 11.4 Pytagoras setning... 16.5 Areal... 1.6 Trigonometri 1... 7 Navn på hjørner og sider i trekanter...
DetaljerOm former og figurer Mønster
Tre grunnleggende geometriske prosesser (Fosse&Munter): - Romforståelse - Formgjenkjenning - Målingsforståelse Om former og figurer Mønster Barn oppdager matematikk kap.g Sogndal 15.02.17 Solbjørg Urnes
DetaljerInnhold. Matematikk for ungdomstrinnet
Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...
DetaljerGeometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale
DetaljerMatematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold
1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter
DetaljerEksamen 1P våren 2011
Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen
Detaljer1.9 Oppgaver Løsningsforslag
til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45
DetaljerEksamen i matematikk løsningsforslag
Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:
DetaljerLærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.
Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider
DetaljerTENTAMEN, VÅR FASIT MED KOMMENTARER.
TENTAMEN, VÅR 017. FASIT MED KOMMENTARER. DELPRØVE 1. OPPG 1 556 + 1555 = 111 3 85 = - (85 3) 85-3 6 3 85 = - 6 C: 30. 9 718 108 = 1798 D: 68 : 3 = 16 6 3 18 18 OPPG 3 50 mm = 3,50 m 0, h = 0,. 60 = 1
DetaljerLengdemål, areal og volum
Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om
Detaljer7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52
1 7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: utvikle, og bruke metodar for hovudrekning, overslagsrekning og skriftleg rekning,
DetaljerForelesning 1, 10.01: Geometri før Euklid
Forelesning 1, 10.01: Geometri før Euklid Antikk Geometri før Grekerne (Egypt, Kina, Babylonia) 1. er forhold mellom sirkelens omkretsen (den er lengde av sirkelpereferi) og diameteren, SIRKELEN = omkretsen
DetaljerMatematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold
1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter
Detaljer1 Geometri R2 Løsninger
1 Geometri R Løsninger Innhold 1.1 Vektorer... 1. Regning med vektorer... 1 1.3 Vektorer på koordinatform... 9 1.4 Vektorprodukt... 35 1.5 Linjer i rommet... 46 1.6 Plan i rommet... 55 1.7 Kuleflater...
Detaljer1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
DetaljerSum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell.
NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ Mal መሕበሪ መስመር Tabell ሰሌዳ ዝርዝራት Vunnet Tapt Uavgjort 3 2 4 Søylediagram ቻርት( ዓንዲ ሓባሪ ሰሌዳ) 100 90 80 70 60 50 40 30 20 10 0 Øst Vest Nord Stolpediagram ቻርት( ዓንዲ
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
DetaljerGeometri 1P, Prøve 1 løsning
Geometri 1P, Prøve 1 løsning Del 1 Tid: 50 min Hjelpemidler: Skrivesaker Oppgave 1 Gjør om a),04 m 04 cm b) 154 mg 0, 154 g c) d) e) 150 m 1 500 000 cm 3 3 145 000 mm 0,145 dm 34 dl 3,4 L 3, 4 dm 3 Oppgave
DetaljerEksamen MAT 1011 Matematikk 1P Va ren 2015
Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant
DetaljerHovedområder og kompetansemål fra kunnskapsløftet:
Lærerveiledning: Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram der elevene får trening i å definere figurer ved hjelp av geometriske
DetaljerLærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.
Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm
DetaljerREPETISJON, 10A, VÅR 2017.
REPETISJON, 10A, VÅR 2017. Jeg har satt opp en sjekkliste som kan benyttes som hjelp til repetisjon før heldagsprøva, 23.03.17, og eksamen. Bruk lærebokas oppsummeringskapittel, utdelte hefter og diverse
Detaljer03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS
03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...
Detaljer