Eksamen MAT 1011 Matematikk 1P Va ren 2015
|
|
- Edvin Larssen
- 5 år siden
- Visninger:
Transkript
1 Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant er 180 grader. Det betyr at vinkel B i den minste trekanten er 180 9,9 48,5 38,6, altså like stor som vinkel E i den største trekanten. Det betyr også at vinkel D i den største trekanten er like stor som vinkel A i den minste. De to trekantene er da formlike, ettersom de har parvis like store vinkler. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 1 av 0
2 b) Bestem lengden av siden BC ved regning. BC AB EF DE BC BC 9 1 BC 6 Oppgave 3 ( poeng) Et vindu har form som et rektangel. Vinduet er 6 dm bredt og 7 dm høyt. Gjør beregninger og avgjør om det er mulig å få en kvadratisk plate med sider 9 dm inn gjennom vinduet. Den eneste måten det kan være mulig å få denne platen inn gjennom vinduet på, er dersom den går inn diagonalt. Jeg regner ut lengden av diagonalen, x, ved å bruke Pytagoras' setning: x x x x ettersom Det er mulig å få platen inn gjennom vinduet. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side av 0
3 Oppgave 4 ( poeng) Figuren ovenfor viser et rektangel PQRS. PQ = 1cm, QR = 3 cm og AB = CD = EF = cm. Bestem arealet av det blå området. Jeg finner først arealet av hele kvadratet PQRS: A PQRS 1 cm 3 cm 36 cm Trekantene har samme grunnlinje og høyde, og er dermed like store. Jeg finner arealet av de tre trekantene, og trekker dette arealet fra arealet over: A trekantene cm 3 cm 3 9 cm A 36 cm 9 cm 7 cm Arealet av det blå området er 7 cm. Oppgave 5 (4 poeng) Funksjonen f er gitt ved f( x) x x 3 a) Skriv av verditabellen nedenfor i besvarelsen din, og fyll inn tallene som mangler. x fx ( ) Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 3 av 0
4 b) Tegn grafen til f for 4 x. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 4 av 0
5 Oppgave 6 (3 poeng) Tenk deg at du har ni flasker med smoothie i kjøleskapet, to «Surf», tre «Jump» og fire «Catch». Du tar tilfeldig to flasker. a) Bestem sannsynligheten for at du ikke tar en «Jump»-smoothie. Det står ni flasker i kjøleskapet. 6 av disse er ikke «Jump»-smoothie P(ikke Jump) Sannsynligheten for at jeg ikke tar en «Jump»-smoothie er 5/1. b) Bestem sannsynligheten for at du tar én «Surf»- og én «Catch»-smoothie. Jeg kan trekke «Surf» først og så «Catch» eller «Catch» først og så «Surf» P(én Surf og én Catch) Sannsynligheten for at jeg trekker én «Surf»- og én «Catch»-smoothie er /9. Oppgave 7 ( poeng) I 01 kostet en vare 6 kroner. Indeksen for varen var da 10. I 014 var indeksen for varen 160. Hvor mye skulle varen ha kostet i 014 dersom prisen hadde fulgt indeksen? Pris Indeks Pris Indeks Pris014 6 kr kr Pris Pris 8 kr 014 Dersom prisen hadde fulgt indeksen skulle varen kostet 8 kr i 014 Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 5 av 0
6 Oppgave 8 (3 poeng) En formel er gitt ved 1 s v 0 t a t a) Bestem s når v 0 0, t 8 og a 10 1 s b) Bestem a når v 0 0, t 4 og s s v0 t a t 1 a t s v0 t at ( s v t) 0 s v0 t a Setter inn verdiene t a 4 (64) a a 8 a 8 Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 6 av 0
7 Oppgave 9 (3 poeng) Anders skal leie en bil hos bilfirma A eller bilfirma B. Grafene nedenfor viser hvor mye han må betale til hvert firma dersom han leier bilen én dag og kjører x kilometer. a) Sett opp et funksjonsuttrykk for hver av de to grafene. Begge grafene er lineære, og er dermed på formen konstantleddet. y a x b, der a er stigningstallet og b er Funksjon A har konstantledd 00, og stigningstall a Funksjon B har konstantledd 800, og stigningstall a A( x) 10x 00 B( x) 5x 800 b) Hva forteller den grafiske framstillingen om de to pristilbudene? Bilfirma B har et høyere fast beløp enn bilfirma A, men bilfirma A har til gjengjeld en høyere kilometerpris. Dersom du kjører mindre enn 10 km er bilfirma A det billigste alternativet. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 7 av 0
8 c) Er antall kilometer han kjører, og prisen han totalt må betale, proporsjonale størrelser? Begrunn svaret ditt. Dersom to størrelser er proporsjonale er grafen en rett linje som går gjennom i origo. Ingen av grafene over går gjennom i origo, så antall kilometer han kjører og prisen han totalt må betale, er ikke proporsjonale størrelser verken hos bilfirma A eller hos bilfirma B. Oppgave 10 ( poeng) Du har en boks med form som et rett, firkantet prisme og en boks med form som en sylinder. De to boksene er like høye. Grunnflaten i det rette, firkantede prismet er et rektangel med sider 7 cm og 4 cm. Radius i sylinderen er 3 cm. Hvilken boks har størst volum? Jeg lar h være høyden, og setter opp et uttrykk for volumene: V 7 4 h 8 h prisme V 3 h 3,14 3 h 8,6 h sylinder Sylinderen har størst volum. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 8 av 0
9 Oppgave 1 (3 poeng) Da forslaget til statsbudsjett for 015 ble lagt fram, var dette et av oppslagene på nettsidene til avisen Dagens Næringsliv: a) Hva kan du si om størrelsen på de direkte overføringene til FN-organisasjoner før dette? 906 millioner kroner utgjør omtrent 0 prosent av størrelsen på de direkte overføringene før kuttet. Jeg finner ut hvor mye 100 prosent da utgjør: Størrelsen på de direkte overføringene til FN-organisasjoner var på over 4,5 milliarder kroner før kuttet. b) Med hvor mange prosent ville regjeringen redusere støtten til FNs barneorganisasjon UNICEF? 1 0,5 0,48 48 % 1 Regjeringen vil redusere støtten til FNs barneorganisasjon UNICEF med 48 %. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 9 av 0
10 Oppgave (4 poeng) Ved en skole er det 437 elever. 164 av elevene drikker melk hver dag. 316 av elevene drikker juice hver dag. 67 av elevene drikker verken melk eller juice hver dag. a) Lag et venndiagram eller en krysstabell som beskriver situasjonen ovenfor. Krysstabell: Drikker melk hver dag Drikker ikke melk hver dag Drikker juice hver dag Drikker ikke juice hver dag Sum Sum Venndiagram: 437 Drikker melk hver dag Drikker juice hver dag b) Bestem sannsynligheten for at en tilfeldig valgt elev ikke drikker melk hver dag. 73 P(drikker ikke melk hver dag) 6,5 % 437 c) Bestem sannsynligheten for at en tilfeldig valgt elev som drikker melk hver dag, også drikker juice hver dag. 110 P(drikker juice hver dag drikker melk hver dag) 67,1 % 164 Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 10 av 0
11 Oppgave 3 ( poeng) Prisen på en vare er endret flere ganger. Først ble prisen satt opp med 0 %. Senere ble den satt opp med 10 % til. En stund etter ble prisen så satt ned med 30 %. Nå koster varen 3 34 kroner. Hva kostet varen før prisen endret seg første gang? Jeg lar x være den opprinnelige prisen, og setter opp følgende uttrykk: x 1, 1,1 0,7 334 kr Jeg regner i CAS i GeoGebra: Varen kostet 3500 kroner før prisen endret seg første gang. Oppgave 4 (4 poeng) Ovenfor ser du en boks «Stabbur-Makrell». Bunnen av boksen er tilnærmet lik et rektangel og to halvsirkler og har form som vist på figuren til høyre. Rektangelet har lengde 8, cm og bredde 6,6 cm. Anta at sideflaten står vinkelrett på topp og bunn, og at boksen er,1 cm høy. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 11 av 0
12 a) Bestem volumet av boksen. 8, V A h 6,6 8,,1 Jeg regner i CAS i GeoGebra: 3 4,6 cm 0,46 L Volumet av boksen er ca. 0, liter. b) Bestem overflaten av boksen. 8, 8, O,1 8, 6,6 6,6,1 Jeg regner i CAS i GeoGebra: 95,7 cm,957 dm Overflaten av boksen er ca. 3,0 dm. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 1 av 0
13 Oppgave 5 (8 poeng) En bedrift bruker i en periode vann fra et basseng i produksjonen av et nytt produkt. Funksjonen f er gitt ved 3 f( x) 0,0013x 0,59x 61x 000, 0 x 300 viser vannstanden f(x) millimeter i bassenget x dager etter at fabrikken startet produksjonen av produktet. a) Bruk graftegner til å tegne grafen til f. Tegner i GeoGebra: Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 13 av 0
14 b) Bestem forskjellen mellom høyeste og laveste vannstand i bassenget i denne perioden. Jeg finner topp- og bunnpunktet ved å skrive inn kommandoen Ekstremalpunkt[f], og finner så forskjellen mellom vannstanden: 389,7 mm 6,8 mm 306,9 mm Forskjellen mellom høyeste og laveste vannstand i denne perioden er ca. 307 mm. c) Bruk graftegner til å løse likningen ( ) 3000 fx Hva forteller løsningene om vannstanden i bassenget? Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 14 av 0
15 Jeg tegner linja y = 3000 og finner skjæringspunktet mellom denne og grafen til f ved å bruke kommandoen Skjæring mellom to objekt: Løsningen forteller oss at vannstanden i bassenget var 3000 mm på den 0. og på den 1. dagen. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 15 av 0
16 d) Bestem stigningstallet for den rette linjen som går gjennom punktene (90, f(90)) og (10, f(10)). Hva forteller dette stigningstallet om vannstanden i bassenget? Jeg markerer punktene ved å skrive inn (90, f(90)) og (10, f(10)) i innskrivingsfeltet, og finner så stigningstallet ved å tegne en rett linje mellom disse to punktene. Stigningstallet er -3,6, og forteller oss at mellom dag 90 og dag 10 synker vannstanden i gjennomsnitt med 3,6 mm per dag. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 16 av 0
17 Oppgave 6 (4 poeng) Et flytende rengjøringsmiddel skal blandes med vann i forholdet 3 : 10 Du skal lage 6,5 dl ferdig blanding. a) Hvor mye rengjøringsmiddel og hvor mye vann trenger du? 6,5 dl Den ferdige blandingen består av 13 deler. Én del utgjør 0,5 dl 13 Jeg skal ha tre deler rengjøringsmiddel á 0,5 dl, altså 1,5 dl. Jeg skal ha ti deler vann á 0,5 dl, altså 5 dl. Jeg trenger 1,5 dl rengjøringsmiddel og 5 dl vann. Oda har blandet rengjøringsmiddelet med vann i forholdet 3 : 8. Hun har en bøtte med 6,6 L av denne blandingen. b) Hva kan hun gjøre for å få riktig blandingsforhold i bøtta? Hun må tilsette mer vann. Denne blandingen består av 11 deler, og én del utgjør 6,6 dl 0,6 dl 11 Hun må tilsette to deler vann, altså 1, dl, for at blandingsforholdet skal bli rett. Oppgave 7 ( poeng) På et bilde er en bakterie cm lang. I virkeligheten er bakterien 0 μm lang. 6 1 μm 10 m Bestem målestokken til bildet. cm 10 m ( 5) Målestokken til bildet er 1000 : 1. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 17 av 0
18 Oppgave 8 (7 poeng) Jostein vil ha en oversikt som viser hvordan reallønnen hans har endret seg. a) Lag et regneark som vist ovenfor. Når Jostein har registrert konsumprisindeks og nominell lønn, skal han få beregnet reallønn. Han skal også få beregnet hvor mange prosent reallønnen har endret seg siden forrige registrering. Med formler: Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 18 av 0
19 Anta at konsumprisindeksen øker med,5 % per år i perioden fra 014 til 04. b) Hva må Josteins nominelle lønn i 04 være dersom han da skal få en reallønn som er 10 % høyere enn reallønnen i 014? Jeg får uttrykket: x 38716,96 1, ,9 1,05 Jeg løser dette i CAS i GeoGebra: Jostein må da ha en nominell lønn i 04 på kr. Oppgave 9 ( poeng) En vanntank har form som en sylinder. Tanken er 0,8 m høy og rommer 150 L. Bestem radius i tanken. 150 L 150 dm 0,15 m V r h 0,15 r 0,8 3 3 Jeg regner i CAS i GeoGebra: Radius i tanken er 0, m Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 19 av 0
20 Bildeliste FN: sttten-til-fn-kuttes-med- 900-millioner ( ) Andre bilder, tegninger og grafiske framstillinger: Utdanningsdirektoratet Løsninger: Roar Edland-Hansen, NDLA matematikk. Eksamen MAT1011 Matematikk 1P Våren 015 løsning Side 0 av 0
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen
DetaljerEksamen MAT 1011 matematikk 1P va ren 2015
Eksamen MAT 1011 matematikk 1P va ren 015 Oppgåve 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgåve ( poeng) a) Forklar at dei to trekantane over er formlike. Vinkelsummen i ein trekant
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen MAT 1011 matematikk 1P va ren 2015
Eksamen MAT 1011 matematikk 1P va ren 2015 Oppgåve 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgåve 2 (2 poeng) a) Forklar at dei to trekantane over er formlike. b) Bestem lengda av sida BC ved rekning.
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1P eksamen våren 2016 løsningsforslag
1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
Detaljer1P eksamen våren 2017 løsningsforslag
1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk P-Y Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
DetaljerEksamen. MAT1011 Matematikk 1P. Ny eksamensordning 26.05.2015. Del 1: 2 timar (utan hjelpemiddel) / 2 timer (uten hjelpemidler)
Eksamen 26.05.2015 MAT1011 Matematikk 1P Ny eksamensordning Del 1: 2 timar (utan hjelpemiddel) / 2 timer (uten hjelpemidler) Del 2: 3 timar (med hjelpemiddel) / 3 timer (med hjelpemidler) Minstekrav til
Detaljer1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
Detaljer1P eksamen våren 2016
1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Tenk deg at du har et spann med 8 L maling. Du vil helle malingen over i mindre bokser. I hver boks er det plass til 2 3 L. Hvor mange bokser trenger du? Oppgave
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2015
Eksamen MAT 1011 Matematikk 1P Høsten 015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt,4 g per dag. a) Hvor mange gram salt kan
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 45,1 0, 451 45,1 % 100 5 4 5 0 0 % 5 4 5 100 Oppgve Vinkelsummen i en treknt er 180. Vi regner
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
DetaljerEksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
DetaljerEksamen 1T våren 2015
Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave
Detaljer1P eksamen våren 2017
1P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i begre. I hvert
DetaljerEksamen MAT1005 Matematikk 2P-Y Høsten 2014
Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Vi fordeler malingen på de små oksene: 8 8 3 4 8 : 1 3 3 3 3 Vi trenger 1 okser. Oppgave
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 2013 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden
Detaljer1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
Detaljer1P eksamen høsten 2018 løsning
1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2012
Eksamen MAT 1011 Matematikk 1P Høsten 2012 Oppgave 1 (2 poeng) En dag har butikk A følgende tilbud: Du skal kjøpe 1,5 kg druer. I hvilken butikk lønner det seg å handle? Butikk A: 1,5 kg tilsvarer 3 beger,
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4
Detaljer2P-Y eksamen våren 2016 løsningsforslag
2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03
DetaljerEksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk 2P Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp prisen med 10 % eller 15 %. a) Hvor mye vil varen koste dersom prisen settes opp med 10 %? b) Hvor
DetaljerGeometri 1P, Prøve 2 løsning
Geometri 1P, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 a) Regn ut lengden AC. Vi bruker Pytagoras setning. AC AB BC AC 5 4 b) Regn ut arealet av ABC. Arealet er 1 4 6. c) Regn
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Detaljer1P eksamen høsten 2017
1P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp
DetaljerEksamen 1T våren 2016 løsning
Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket
Detaljer1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
DetaljerEksamen MAT1011 1P, Våren 2012
Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) I en vase står det 20 tulipaner. 25 % av tulipanene er hvite, 1 5 Hvor mange tulipaner er røde? er gule, og resten er røde. Oppgave 2 (2 poeng) Tabellen nedenfor
DetaljerKapittel 5. Areal, omkrets, volum og overflate
Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1P eksamen høsten 2018
1P eksamen høsten 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer, del 2 etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt
DetaljerØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 =
ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn Del 1: 2 timer. Maks 30,5 poeng. Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Bruk sort eller blå penn når du fører inn svar eller
Detaljer2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2015
Eksamen MAT 1011 Matematikk 1P Høsten 2015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt
Detaljer1P eksamen våren 2018 løsningsforslag
1P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.
DetaljerEksamen høsten Fag: MAT1001, Matematikk 1P-Y. Eksamensdato: 14. november Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 014 Fag: MAT1001,
DetaljerEksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
DetaljerDEL 1 Uten hjelpemidler
Eksamen MAT1013 Matematikk 1T Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7,5 10 4,0 10 12 4 Oppgave 2 (4 poeng) Siv har fire blå og seks svarte bukser
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1T våren 2016
Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerEksamen S1 høsten 2015 løsning
Eksamen S1 høsten 015 løsning Oppgave 1 (5 poeng) Løs likningene nedenfor a) x 3x 0 x(x3) 0 x 0 x 3 0 3 x 0 x b) 3x1 17 4 x lg 3 1 34 lg 3 x1 34 3x 1 lg 34lg 3x 1 lg lg 34 lg lg 3x 1 34 3 x 33 3 3 x 11
DetaljerTENTAMEN, VÅR FASIT MED KOMMENTARER.
TENTAMEN, VÅR 017. FASIT MED KOMMENTARER. DELPRØVE 1. OPPG 1 556 + 1555 = 111 3 85 = - (85 3) 85-3 6 3 85 = - 6 C: 30. 9 718 108 = 1798 D: 68 : 3 = 16 6 3 18 18 OPPG 3 50 mm = 3,50 m 0, h = 0,. 60 = 1
DetaljerEksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1001
DetaljerEksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
DetaljerEksamen MAT1013 Matematikk 1T Hausten 2014
Eksamen MAT1013 Matematikk 1T Hausten 01 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgåve (1 poeng) Løys likninga 16 lg lg16
DetaljerEksamen MAT1011 1P, Våren 2012
Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner
Detaljer1P eksamen hausten Løysingsforslag
1P eksamen hausten 2017 - Løysingsforslag Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Ei vare kostar 640 kroner. Butikkeigaren
DetaljerFaktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
Detaljer1P eksamen våren 2016 løysingsforslag
1P eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 ( poeng) Ved kommunevalet i haust fekk eit politisk parti
DetaljerEksamen 1P, Høsten 2011
Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl
Detaljer1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle
1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Et skolesenter har el-bil
Detaljer2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerAlle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs
DetaljerEksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgåve 1 ( poeng) Hilde skal kjøpe L mjølk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjer eit overslag og finn ut omtrent kor mykje ho må betale L mjølk:14,95 kr
DetaljerTest, Geometri (1P) 2.1 Lengde og vinkler. 1) Hvor mange grader er en rett vinkel?
Test, Geometri (1P) 2.1 Lengde og vinkler 1) Hvor mange grader er en rett vinkel? 90 120 180 2) Hva menes med en spiss vinkel? En vinkel som er større enn 90 En vinkel som er større enn 180 En vinkel som
DetaljerEksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål
Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:
DetaljerEksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
DetaljerØvingshefte. Geometri
Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT03 Matematikk T Høsten 04 Oppgave ( poeng) Regn ut og skriv svaret på standardform 50000000000,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng)
DetaljerLøsninger. Innhold. Funksjoner Vg1P
Løsninger Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 9 Modul 3. Mer om lineær vekst... 16 Modul 4. Andregradsfunksjoner... 5 Modul 5. Andre funksjoner... 30 Polynomfunksjoner...
Detaljer1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
DetaljerEksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 2013 Oppgave 1 (2 poeng) Hilde skal kjøpe 2 L melk 2,5 kg poteter 0,5 kg ost 200 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. Eksamen MAT1011
DetaljerOppgaver. Innhold. Funksjoner i praksis Vg2P
Oppgaver Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 10 Modul 3: Tredjegradsfunksjoner... 1 Modul 4: Potensfunksjoner og rotfunksjoner... 14 Modul 5: Eksponentialfunksjoner...
DetaljerDel 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.
Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1P våren 2011
Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen
Detaljerc) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time.
c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time. 1) Hvor mange prosent steg lønnen? Konsumprisindeksen (KPI) var 100 det året Grete tjente 160 kroner per time. 2)
DetaljerDu skal svare på alle oppgavene i Del 1 og 2. Skriv med sort eller blå penn når du krysser av eller fører inn svar.
Høsten 2014 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
Detaljer5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal du levere innen 5 timer.
Høst 2016 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2
DetaljerOppgaver. Innhold. Funksjoner Vg1P
Oppgaver Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 6 Modul 3. Mer om lineær vekst... 10 Modul 4. Andregradsfunksjoner... 13 Modul 5. Andre funksjoner... 16 Polynomfunksjoner...
Detaljer2P eksamen våren 2018 løsningsforslag
2P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgåve ( poeng) Rekn ut og skriv svaret så enkelt som mogleg
DetaljerEksamen MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål
Eksamen 16.05.017 MT0010 Matematikk el 1 Skole: Kandidatnr.: el 1 + ark fra el okmål okmål Eksamensinformasjon Eksamenstid: Hjelpemidler på el 1: Framgangsmåte og forklaring: 5 timer totalt. el 1 og el
Detaljer