På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.
|
|
- Ella Ann-Kristin Kristensen
- 9 år siden
- Visninger:
Transkript
1 GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet de aller fleste et kvadrat (evnt et rektangel), en likesidet trekant (evnt likebeint) og en sirkel. For bygging av riktige og hensiktsmessige begreper, er det viktig at vi også i dagligtale bruker de mest presise betegnelsene på de geometriske formene. Et kvadrat er den strengeste firkanten vi kan tenke oss. Bare vi vet sidelengden, er kvadratet bestemt. Men for en generell firkant kan alle sidene være ulike lange, alle vinklene forskjellige, og ingen sider behøver å være parallelle. De spesielle firkantene vi håndterer i skolen er kvadrat, rektangel, rombe, parallellogram, trapes. Men for ALLE firkanter er summen av vinklene 360º. På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. Men for ALLE trekanter er vinkelsummen 180º. 2 og 3 dimensjoner I skolen har vi tradisjon for å presentere elevene for plangeometri før vi begynner med romgeometri. Barnas erfaringsverden er 3-dimensjoneal. De får befatning med klosser og baller fra de kan gripe. Dette er kanskje en av grunnene til at elevene bruker navn på 2- dimensjonale figurer når de skal beskrive 3-dimensjonale former. De blander begrepene og formene: Sirkel og kule (runding og ball), trekant og pyramide, firkant og kube
2 Elevene skal lære navn på og egenskaper ved - kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant, generelle trekanter De skal forstå hva som menes med hjørner, kanter og flater, og kunne beskrive figurene ut fra dette. AKTIVITET: DYNAMISKE MODELLER MED SUGERØR OG HYSSING 1) Klipp fire sugerør i like lange deler, ca 10 cm. Tre delene inn på en hyssing og knytt for endene så de danner en firkant. - Hva slags firkanter kan vi få fram med denne modellen? Vi ser at sugerørmodellen er fleksibel, og viser at vi kan få fram uendelig mange romber med denne omkretsen, men med forskjellig areal. - Hvordan ser figuren ut for at vi skal få størst mulig areal (størst plass inni firkanten)? Det er ikke vanskelig å innse at det blir kvadratet med denne omkretsen som gir det største arealet. Med denne lille øvelsen innser vi at selv om omkretsen er fast, kan arealet variere fra 0 til en bestemt maksimumsverdi.
3 2) Klipp av to av sugerørene like mye. Tre bitene på tråden igjen slik at to de to sugerørene som er klippet av, ligger ved siden av hverandre. Denne gangen kan vi også få ulike areal og ulike typer firkanter. Formen endrer seg fra drage til pil. 3) Jobb videre med to og to parvis like lange sugerør. Tre dem på hyssingen, annenhver kort og lang. Denne gangen ser vi at vi får fram parallellogrammer. Når vinklene er 90 grader, får vi et rektangel, og det er denne firkanten som har størst areal.
4 4) Klipp sugerørene slik at alle sidene får forskjellig lengder. Nå blir det helt uregelmessige firkanter med ulike arealer, men konstant omkrets. 5) Knytt opp knuten og ta av det ene sugerøret. Knytt en ny knute. Dette blir en stiv konstruksjon, en trekant, og det finnes bare EN trekant når alle sidene er bestemt. Trekanter er de mest stabile figurene vi har. Derfor brukes de til å lage stabile konstruksjoner. Legg merke til dette på broer og stillaser. Målinger: lengdemål, areal og volum Hva trenger vi lengdemål til? Still spørsmål som hvor langt er det bort til døra? Mål opp ved å telle antall skritt. Får vi samme svar. Har vi gått med like lange skritt? Har noen målt med museskritt? På denne måten kan vi skape en felles forståelse for at vi behøver noe som er likt for alle. Samtidig kan det gi oss en naturlig anledning til å snakke om meter, desimeter og centimeter. Et målband kan virke uoversiktlig i begynnelsen, det er alt for mange streker der. La heller barna få erfare å bygge meteren. Kapp for eksempel opp lister i meter, og la barna få hver sin. Hvor langt når meteren på kroppen deres? Legg stokkene etter hverandre for å måle opp en avstand. Men hva skjer hvis det ikke blir et helt antall meter? Da må vi dele opp meteren i 10 like store biter. La elevene få sette et merke for hver 10 cm. Det går akkurat 10 ganger!! Da gjør de erfaringen med at det går 10 desimeter på 1 meter. Mal annenhver desimeter rød og hvit. Hvis det ikke går opp med et helt antall
5 desimeter må de dele hver desimeter i 10 like store deler. Dette er centimeter. Det går 10 tiere på hundre. Kanskje vil noen barn telle for å godta dette. Mange lærere spør seg om de har tid til sånt i skolen. Svaret er JA! Elevene får en helt annen følelse med hva de ulike målene, og regningen kommer av seg selv etterpå. Med meterstokken klar kan barna gå ut og gjette avtander, og deretter måle og sjekke. Dette gir erfaringsbasert måling, og den kunnskapen sitter på en helt annen måte. Demonstrasjon Kan også lage meterstokk ved å sette sammen centikuber. Centikubene er 1 cm 1 cm 1cm. Sett sammen 10 og 10 av samme farge etter hverandre og lag meterstokken på denne måten. Det samme kan man gjøre med multilink, men disse er 2 cm 2 cm 2cm, og derfor trenger vi bare 5 for å lage en desimeter. Areal Å anslå et areal er vanskelig. Hvilken målenhet skal vi bruke til det? Vi kan bruke både sugerør og tau, og erfare hvordan arealet forandrer seg selv om omkretsen er konstant. Et annet ord for areal er flateinnhold. Også her må vi ha et felles mål for å kunne forklare for andre hvor stort arealet er. Aktivitet Legg handa oppå et blankt ruteark og tegn omrisset. Gjett hvor stort arealet er. Legg en transparent med rutenett på 1 cm 1 cm oppå og tell antall ruter. Hvor mange kvadratcentimeter er håndflata? Tegn det rektangelet som passer best til omrisset. Hvis vi tegner et inni vil arealet bli for lite. Hvis vi tenger et utapå vil arealet bli for stor. Det som passer best vil kanskje være et rektangel som av og til stikker litt utafor omrisset og av og til er inni. Vi vil kanskje få noen halvruter også. Tell sammen. Dette er et kvadrat med sider 1 cm. Derfor navnet KVADRATCENTIMETER Geobrettet Vi vet hvordan vi hvordan vi regner arealet av et rektangel. Parallellogrammet er den figuren som ligner mest på rektanglet. Hvordan regner vi arealet av det?
6 Finn et rektangel som er like stort. Konkret oppdrag. Hva er høyden i parallellogrammet? Lager et rektangel: Ser at vi får med en trekant for mye i forhold til parallellogrammet på høyre side, men denne trekanten er like stor som den på venstre side vi ikke får med. Derfor er arealet av parallellogrammet og rektanglet vi har laget like stort. Arealet blir altså grunnlinje høyde, der høyden er avstanden mellom de to parallelle linjene. Rettvinkla trekant Igjen tar vi utgangspunkt i arealet av rektangelet. Ved å bruke geobrettet kan vi lett se at arealet av den rettvinkla trekanten er halvparten av arealet av rektanglet. Vi får derfor: grunnlinje høyde 2 grunnlinje høyde Hva med en ikke-rettvinkla trekant? Er arealet fortsatt? 2 Vi kan lage høyden i trekanten og se at den er satt sammen av 4 trekanter. Vi kan altså dele opp i kjente figurer og finne formelen. Det samme kan vi gjøre med for eksempel trapeset.
7 Hele tiden er det en sammenheng mellom forståelse og ferdigheter. Lekse: Vi legger ut oppgaver om primtallsfaktorisering på nettsidene våre. MASSE Vi bruker skålvekter for å sammenlikne vekt. Aktivitet: Vi bruker skålveka og plastbamser i 3 forskjellige størrelser. Gjett på sammenhengen først, og bruk deretter skålvektene for å kontrollveie. - Hvilken sammenheng er det mellom vekta på bamsene? - Hvor mange små bamser veier en stor? - Hvor mange bamser veier mobilen din? - Vei ulike gjenstander. Oppsummering: I denne aktiviteten er bamsene måleenheten, og vi sier at den lille bamsen er 1 måleenhet. Det viser seg at det går 2 små bamser på en mellomstor bamse, og 3 små bamser (eller en liten og en mellomstor) på en stor bamse. Unger har i utgangspunktet ikke noe forhold til standard måleenheter. For dem kan det være like naturlig å veie noe i bamser som å veie i gram eller kilo.
8 Som en avslutning på aktiviteten måler de hvor mange centikuber bamsene veier. Centikubene veier nøyaktig 1 gram. Demonstrasjon: I den ene skåla har vi 3 centikuber, og i den andre har vi 8 centikuber. Deltakerne vet ikke hvor mange det er oppi. Hva er forskjellen? Hvor mange må vi legge til i den letteste for at det skal bli like mye i hver skål? Gjett og sjekk. Det er lov å ombestemme seg etter hvert som flere centicuber blir putta oppi. Legg oppi centikuber, en etter en, og tell. Dette kan bli trening i addisjon og subtraksjon. Når vi får grei på hvor mange det var i den ene skåla, kan vi regne ut hvor mange det var i den andre. Velg størrelse på tallene i forhold til alder. På et senere stadium kan man se på dette som ligninger.
9 TREDIMENSJONAL GEOMETRI Demonstrasjon Hvis vi fyller den kvadratiske pyramiden 3 ganger fyller vi akkurat kuben: Dette er sånn fordi grunnflata og høyden i den kvadratiske pyramiden og kuben er akkurat like store. Hvis vi fyller kjegla 3 ganger fyller vi akkurat sylinderen: Dette er sånn fordi grunnflata er lik i sylinderen og kjegla, og høyden er den samme i begge.
10 Senere lærer vi at volumet av en pyramide og en kjegle er 1 g h, der g er grunnflata og h er 3 høyden, mens sylinderen og kuben er g h. Nå har de erfart dette i praksis. Sylinderen og kuben har plass til 3 ganger så mye som de som ender i en spiss. Dette gjelde for alle romlegemer med samme grunnflat og høyde, der den ene er rett og dan andre ender i en spiss. Aktivitet Bygg med de 3-kanta jovobrikkene. Vi studerer de romlige figurene, og teller antall hjørner kanter flater. Tabellen viser egenskaper til noen figurer. Hjørner Kanter Flater Er det noen sammenheng mellom antall hjørner, kanter og flater? Hjørner Kanter Flater Hjørner + flater Av tabellen ser vi at hjørner + flater = kanter + 2 Det var den kjente matematikeren Euler som først fant denne sammenhengen. En annen måte å beskrive figurene på er å se på symmetriene. Hvis figuren ser lik ut fra alle hjørnene, er den regulær. 20 flater: ikosaeder 4 flater: tetraeder
11 8 flater: oktaeder Dette er de greske navnene på figurene, og disse 3 er de eneste regulære figurene vi kan lage med 3-kanter. Dette er platonske legemer. Fotballen er ikke et platonsk legeme, men et arkimedisk legeme. Dette fordi den er sammensatt av 2 sekskanter og 1 femkant i hvert hjørne. Hvis vi setter sammen kvadrater, hvilke figurer kan vi få da? Da kan vi kun lage terningen. Hvis vi skal sette sammen flere fyller vi planet, det vil si det blir ingen romlig figur, men helt flatt. Da sier vi at vi driver med fliselegging i stedet.
12 Videre: - Klarer vi å bygge regulære figurer med bare sekskanter? - Klarer vi å bygge regulære figurer med bare femkanter? Med bare sekskanter går det ikke. Men vi klarer å bygge et platonsk legeme med bare femkanter. Denne figuren har 12 flater. Det er en viktig del av matematikken å bli kjent med 2- og 3- dimensjonale figurer.
Lengdemål, areal og volum
Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om
Grunnleggende geometri
Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det
5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri
5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri Målinger finnes naturlig i hverdagen vår. Denne kurskvelden skal vi forsøke å møte de ulike begrepene slik som ungene møter dem og
4. kurskveld: Brøk og geometri
4. kurskveld: Brøk og geometri I dag skal vi se på begrepet brøk, regning med brøk, og hvorfor de ulike regnereglene fungerer. Mange har bedre grep om desimaltall fordi regnereglene er lik regnereglene
GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE
GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale
Lag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
Test, Geometri (1P) 2.1 Lengde og vinkler. 1) Hvor mange grader er en rett vinkel?
Test, Geometri (1P) 2.1 Lengde og vinkler 1) Hvor mange grader er en rett vinkel? 90 120 180 2) Hva menes med en spiss vinkel? En vinkel som er større enn 90 En vinkel som er større enn 180 En vinkel som
Geometriske morsomheter 8. 10. trinn 90 minutter
Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske
Hovedområder og kompetansemål fra kunnskapsløftet:
Lærerveiledning: Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram der elevene får trening i å definere figurer ved hjelp av geometriske
Geometriske morsomheter trinn 90 minutter
Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske
Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO
Geometri Noen sentrale begrep Nord-Gudbrandsdalen, 20.-23.10.14 Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Eksempelundervisning Tema på eksempelundervisningen denne gangen var Geometri, men
INNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
OVERFLATE FRA A TIL Å
OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c
Fasit. Grunnbok. Kapittel 4. Bokmål
Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1
Matematisk juleverksted
GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til
VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE
VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d
Kapittel 5. Areal, omkrets, volum og overflate
Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at
En presisering av kompetansemålene
En presisering av kompetansemålene - med vekt på aktiviteter Mål for kompetanse, og innhold? M87: Innholdsplan, eks geometri 5.-7. trinn: Geometriske begreper: Punkt, linjestykke, rett linje, kurve, vinkel
Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?
Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken
Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.
SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten
Test, 2 Geometri. 2.1 Grunnleggende begreper og sammenhenger. 1T, Geometri Quiz løsning. Grete Larsen
Test, Geometri Innhold.1 Grunnleggende begreper og sammenhenger... 1. Mangekanter og sirkler... 6.3 Formlikhet... 10.4 Pytagoras setning... 16.5 Areal... 1.6 Trigonometri 1... 7.7 Trigonometri... 35 Grete
Tall og form 1 UTFORDRINGER UTFORDRINGER GENIER UTFORDRINGER UTFORDRINGER
Hvorfor er de vridd? Undersøk og sammenlikn de blå, gule og røde pinnene. Legg merke til at de blå pinnene er rette mens de gule og røde er vridd på midten. Hvorfor? Lag formen på pinnene Legg merke til
Utforsk mønster og former Barnehagens siste år 60 minutter
Lærerveiledning: Passer for: Varighet: Utforsk mønster og former Barnehagens siste år 60 minutter Utforsk mønster og former er et barnehageprogram der barna sammenligner former og finner likheter og forskjeller.
Familiematematikk MATTEPAKKE 2. Trinn
Familiematematikk MATTEPAKKE 2. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Sauen Erik Du trenger 50 tellebrikker som skal være sauene foran Erik i køen. Oppgave: Sauen Erik skulle få klippet
GRUNNLEGGENDE TALLFORSTÅELSE OG GRUNNLEGGENDE GEOMETRI. Elevene skal møte begrepene på mange ulike måter, og få innblikk i
GRUNNLEGGENDE TALLFORSTÅELSE OG GRUNNLEGGENDE GEOMETRI TALL PÅ MANGE MÅTER Elevene skal møte begrepene på mange ulike måter, og få innblikk i - Tall som antall/mengde (kardinaltall) Mange barn vi tror
Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.
Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m
Familiematematikk MATTEPAKKE. 7. Trinn
Familiematematikk MATTEPAKKE 7. Trinn Tangoes: Tangram er basert på et gammelt kinesiske puslespillet med former som kan settes sammen til et bilde eller et mønster. Tangram ble oppfunnet for mange århundrer
Er hvitveisen speilsymmetrisk?
Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling
GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.
GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg
GEOMETRISPILL; former, omkrets og areal.
GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til
Å utforske form - forkortet og bearbeidet versjon av kapittel 7 i boka Matematikkens kjerne.
Å utforske form - forkortet og bearbeidet versjon av kapittel 7 i boka Matematikkens kjerne. Mens du leser teksten skal du tenke over følgende og notere stikkord: Hva i teksten er kjent for deg, og hva
Moro med figurer trinn 90 minutter
Lærerveiledning Passer for: Varighet: Moro med figurer 3. 4. trinn 90 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no
Form og mål hva er problemet?
Form og mål hva er problemet? Ny GIV Finnmark våren 2014 Anne-Gunn Svorkmo 12-Feb-14 Måling Måling er å sammenligne en enhet knyttet til et element eller en situasjon mot et lignende element eller situasjon
Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte.
Unneberg skole ÅRSPLAN I MATEMATIKK. trinn 2016-2017 Rød skrift marker det som er fra utviklende matte. KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Eleven skal kunne
Geometri. A1A/A1B, vår 2009
Geometri A1A/A1B, vår 2009 27. mars 2009 1. Grunnleggende begreper 2. Areal 3. Kongruens og formlikhet 4. Periferivinkler og Thales setning 5. Pytagoras setning 6. Romfigurer, overflate og volum 7. Undervisning
MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017
UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative
Platonske legemer i klasserommet
Platonske legemer i klasserommet Kristian Ranestad 13. mai 2005 2 Innhold Forord iii 1 Innledning 1 2 Regulære mangekanter 3 3 Platonske legemer 7 3.1 Dualitet eller søskenforhold................... 12
Geometri Vi på vindusrekka
Geometri Vi på vindusrekka Rektangel og kvadrat... 2 Trekant... 3 Sirkel... 6 Omkrets... 7 Omkrets av sirkel... 9 Pi... 11 Areal... 13 Punkt... 18 Linje... 19 Kurve... 20 Vinkel... 21 Normal... 22 Parallelle
Begynneropplæring i matematikk Geometri og måling
Begynneropplæring i matematikk Geometri og måling Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 26-Jan-07 Dagsoversikt Problemløsning som metode i å
Kompetansemål etter 2. trinn
Kompetansemål etter 2. trinn Tall: 1. telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2. bruke tallinjen til beregninger og å angi tallstørrelser 3. gjøre overslag
Tessellering og mangekanter:
Tessellering og mangekanter: 1. Hva menes med et tessellering? 2. Hva mener vi når vi sier at en figur tessellerer? 3. Hva er en mangekant? 4. Hva menes en regulær mangekant? 5. Regulære mangekanter kan
GeoGebra U + V (Elevark)
GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:
LOKAL LÆREPLAN Matte Trinn 5
LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal
Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.
Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor
- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står
Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje
Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.
Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm
Geometri. Mål. for opplæringen er at eleven skal kunne
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen
Hovedområde: Tall. Kompetansemål etter 2. trinn 1. trinn 2. trinn Forslag til metoder / materiell
Hovedområde: Tall. Kompetansemål etter 2. trinn MÅL: telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper Forstå hva en en-mengde, to- mengde, tre-mengde, fire-mengde,
2.4 Sprettoppfigurer, overraskelseseffekter med mye matematikk
2.4 Sprettoppfigurer, overraskelseseffekter med mye matematikk Sprettoppfigurer er noe de aller fleste har sett eller kanskje til og med laget selv. Allerede på 1600-tallet ble de første bøkene med sprettoppfigurer
Familiematematikk MATTEPAKKE 6. Trinn
Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges
1P kapittel 3 Geometri Løsninger til innlæringsoppgavene
1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km
Om former og figurer Mønster
Tre grunnleggende geometriske prosesser (Fosse&Munter): - Romforståelse - Formgjenkjenning - Målingsforståelse Om former og figurer Mønster Barn oppdager matematikk kap.g Sogndal 15.02.17 Solbjørg Urnes
Periode Tema Kompetansemål Læringsaktiviteter Vurdering Uke 34-38
ÅRSPLAN MATEMATIKK FOR 7. TRINN 2018-2019 Periode Tema Kompetansemål Læringsaktiviteter Vurdering 34-38 Hele tall Titallsystemet Addisjon og subtraksjon Multiplikasjon og divisjon Regning med parenteser
Kapittel 7. Lengder og areal
Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
99 matematikkspørsma l
99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet
JULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
Læringstrapp tall og plassverdisystemet
Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,
MÅLING. Mattelyst, mars 2014 Eksempelundervisning. 4-Apr-14
MÅLING Mattelyst, mars 2014 Eksempelundervisning 4-Apr-14 Matematikk formål med faget Måling vil seie å samanlikne og oftast knyte ein talstorleik til eit objekt eller ei mengd. Denne prosessen krev at
plassere negative hele tall på tallinje
Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne
Familiematematikk MATTEPAKKE 4. Trinn
Familiematematikk MATTEPAKKE 4. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Penta-blokker Bygg noe fint med penta-blokkene. Se om du klarer å bygge noen av de store klossene ved å
Areal av polygoner med GeoGebra
1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer
Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6
Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300
Årsplan i matematikk 6.trinn 2015/2016
Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet
Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:
Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.
Fasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016. Endringer kan forekomme
ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016 Endringer kan forekomme Uke Kompetansemål Innhold Arbeidsmåter Vurdering 34 35 Statistikk: Elevene skal kunne samle, sortere, notere og illustrere data på formålstjenlige
Forelesning 1, 10.01: Geometri før Euklid
Forelesning 1, 10.01: Geometri før Euklid Antikk Geometri før Grekerne (Egypt, Kina, Babylonia) 1. er forhold mellom sirkelens omkretsen (den er lengde av sirkelpereferi) og diameteren, SIRKELEN = omkretsen
Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?
Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9
Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida.
Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. Skoleåret: 2017/2018 Faglærer: Charlotte Nyheim Lambela ÅRSPLAN I MATEMATIKK Emne/
- individuelt arbeid - tavleundervisning - ulike aktiviteter - undersøkelser - regnefortellinger - lesing av diagrammer
RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3. trinn 2014/15 TID TEMA KOMPETANSEMÅL Eleven skal kunne: Uke 34-35 36-39 Flersifrede tall - addisjon og subtraksjon med tresifrede tall - ulike
Læringsmål: Visualisere deling og sammensetting av 3d former, beskrive egenskaper til 3d former, måle volumet av 3d former.
Matematikkoppgaver og aktiviteter med OktaSpace LÆRERVEILEDNING 12-19 år Utrolige oktaeder modeller Læringsmål: Visualisere deling og sammensetting av 3d former, beskrive egenskaper til 3d former, måle
LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6.
LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6. Uke Kompetansemål i LK-06 1-2 Rekne med desimaltal. Utvikle, bruke og diskutere metodar for overslagsrekning. Bruke digitale verktøy
MATEMATIKK. September
MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke
KOMPETANSEMÅL ETTER 2. TRINNET Tall:
KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag
Familiematematikk MATTEPAKKE 3. Trinn
Familiematematikk MATTEPAKKE 3. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Geobrett Hvor mange forskjellige kvadrater kan du finne? Hvor mange kvadrater av ulik størrelse kan du
ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok.
Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand
Årsplan i matematikk 6.trinn 2017/2018
Årsplan i matematikk 6.trinn 2017/2018 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /36 Statistikk Planleggje og samle inn data i samband med observasjonar,
7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11
1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke
Lokal læreplan Sokndal skole:
Lokal læreplan Sokndal skole: Fag: Matematikk Trinn:7. Uk er 1/2 time pr uke halv e året 1/2 time pr uke halv e året 34-37 Tema Tid og fart Ligninger Kap. 1: Tall Plassverdisystemet Naturlige Digitale
Eksamen i matematikk løsningsforslag
Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:
Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet
Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet -Kunne lese og tolke en Mål for opplæringa er at eleven skal kunne rutetabell Måling: -velje høvelege målereiskapar
Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk
Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar samle, sortere, notere samle inn data 33-34 Data og statistikk Grunnbok 3a og illustrere
Halvårsplan for: 3. trinn, høst 2018
Halvårsplan for: 3. trinn, høst 2018 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar 34-36 Data og statistikk Kap. 1 samle, sortere, notere og illustrere data på formålstenlege
Læreplanene for Kunnskapsløftet
Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner
Årsplan i Matematikk
Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode
Kapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger
H. Aschehoug & Co www.lokus.no Side 1
1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss
Arbeid med geometriske figurer på 1. trinn
Bjørg Skråmestø Arbeid med geometriske figurer på 1. trinn På 1. trinn har vi jobbet med geometriske figurer på forskjellige måter. Vi har lagt vekt på at barna skulle få bli kjent med figurene gjennom
Øvingshefte. Geometri
Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
5 Geometri. Trigonometri
MTEMTIKK: 5 Geometri. Trigonometri 5 Geometri. Trigonometri Ordet geometri kan deles opp i geo, som betyr jord eller land, og metri, som betyr å måle. Geometri kan oversettes med jordmåling eller landmåling.
Lokal læreplan matematikk 3. trinn
Lokal læreplan matematikk 3. trinn Lærebok: Multi 3 Antall uker Tema: (Statistikk) 2 Data og statistikk Multi grunnbok 3a s.2-15. Oppgavebok s. 2-7. Nettoppgave 2, nivå 1 og 3. Bruke legoklosser, knapper,
SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B
SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi
Årsplan Matematikk 3.trinn Uke: Tema: Kunnskapsløftet sier:
Årsplan Matematikk 3.trinn 2018-2019 Uke: Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 33 35 Kap. 1 Data og statistikk samle, sortere, notere og illustrere data på hensiktsmessige
Tangram. Trine S. Forfang
Tangram Trine S. Forfang TANGRAM Legenden om jadestykket For omkring 4000 år siden bodde det i Kina en flink håndverker som het Tan. Til ære for keiseren laget han en dag en svært vakker kvadratisk flis
2 Geometri som skapende virksomhet
2 Geometri som skapende virksomhet For å kunne beskjeftige seg med geometri på en formell måte trengs det først konkrete geometriske erfaringer fra den fysiske verden. De første geometriske begreper og
Årsplan Matematikk 3.trinn
Årsplan Matematikk 3.trinn 2016-2017 Uke Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 34 35 Kap. 1 Data og statistikk Samle og sortere objekter i passende kategorier. Illustrere
Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene