5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri

Størrelse: px
Begynne med side:

Download "5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri"

Transkript

1 5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri Målinger finnes naturlig i hverdagen vår. Denne kurskvelden skal vi forsøke å møte de ulike begrepene slik som ungene møter dem og se hvorfor det kan oppleves som vanskelig. TID OG KLOKKA Se på regnestykkene nedenfor. Vi påstår at alle er riktige. Hvorfor? = = = = 5 Hvis det er klokkeslett vi snakker om, er regnestykkene riktig. Hvis svaret på addisjonen er mer enn 12, trekker vi fra 12, slik at vi står igjen med det tall mellom 1 og 12. Dette heter regning modulo 12. Vi ser hvor mange ganger 12 går opp i svaret, men det vi egentlig er interessert i er resten som er igjen. Hvis vi regner med 24 timers visning, skal vi regne modulo 24. Mange elever oppfatter klokka og tid som vanskelig. Til og med mange ungdomsskoleelever synes dette er vanskelig. Å kunne klokka er en ting, men å regne med tidsintervaller er enda vanskeligere, og i alle fall hvis de får oppgaven i en matematikktime. Utstrakt bruk av mobiltelefon kan fører til dårligere tidsbegrep. I stedet for å skulle følge med på klokka for å komme seg hjem til riktig tid, blir mange barn ringt etter. På mobiltelefoner er det som regel ei digital klokke. Hjelp barna med å sammenlikne klokka på mobilen med ei analog klokke, slik at de blir vant til å bruke begge deler. Det er viktig at barna naturlig forholder seg til tid og gjør erfaringer. Dette må de oppleve for å forstå det. Når vi skal si hva klokka er, sier vi for eksempel at klokka er 5 på halv 6 i stedet for å si at den er 25 over 5. Ungene må bli klar over at det er hvert kvarter som skiller over og på. Aktivitet: Få en følelse med tid og varighet. Vi bruker 5 timeglass som viser ulik tid. Gjett hvilket som tar kortest tid. Ranger dem etter tid, og gjett på hvor lang tid de ulike timeglassene måler. Kurslederen har med et større timeglass som hun snur.

2 Kursdeltakerne snur alle timeglassene sine samtidig. Hvilket av deres timeglass måler samme tid som kurslederens timeglass? Hvor lang tid målte det? (Det tok 1 minutt) Barn kan lett tenke at størrelsen på timeglassene og mengden sand er avgjørende for hvor lang tid de måler. De tror at små timeglass varer kortere enn større timeglass, og tenker ikke i utgangspunktet på at hullet sanda skal renne gjennom kan være trangt eller åpent. Hvis vi ikke har klokka og kan sjekke hvor lenge timeglassene måler, kan vi telle. Men hvor fort skal vi telle? Bruk ei analog klokke og se på sekundviseren. Vi må telle sekundersakte. Det er viktig at barn også får et forhold til små tidsintervall. Når vi vet varigheten på det ene timeglasset kan vi bruke det til å måle hvor lang tid de andre timeglassene måler. Spørsmål de kan stille barna. - Vi vet at noe varer ½ time, og det starter kl Hvor langt har storviseren kommet da? Se på klokka sammen først, og få elevene til å følge med på klokka si underveis. - Se hva klokka er nå, og si fra når det har gått 20 minutter. Hvordan møter vi dette i hverdagen? Vi forholder oss til klokka hele tiden i hverdagen vår. For eksempel er busstabellene for bussene i Trondheim ganske vanskelige. Hvordan skal vi lese busstabellen? Vi ser når bussen går, og må legge til antall minutter bussen bruker fram til holdeplassen der vi skal gå på. Aktivitet Bruk passeren, og konstruer ei klokke. Hvordan skal vi gjøre dette nøyaktig? Hvordan skal vi få avsatt timene rundt urskiva? Erfar at passeråpningen går 6 ganger rundt sirkelperiferien. Dermed får vi satt av klokka 2, 4, 6, 8, 10 og 12.

3 Men hvordan får vi med klokka 1, 3, 5, 7, 9 og 11? Halver avstandene mellom for eksempel kl 12 og klokka 2, da får vi satt av kl 1. Det er moro å bruke passeren slik, det synes ungene også. De kan tegne på frihånd først, deretter med passeren. Da blir det mye finere. Når alle 5-minuttene er på plass kan de eventuelt bruke en gradskive for å få satt av alle minuttene, eller tegne det inn på frihånd. Demonstrasjon På bildet ser vi ulike urskiver for overhead. En er uten både timer og minutter, en annen er med både timer og minutter, to andre er en mellomting mellom disse, og den siste har romertall i stedet for vanlige tall.

4 Aktivitet med timeglassene: Dere bruker timeglass som måler 3 min og 5 min. Klarer vi å måle 7 minutter ved hjelp av disse to timeglassene? Hvordan vil dere gå fram for å måle 7 min? Tegn og beskriv framgangsmåten. Oppsummering: Vi klarer å måle 7 minutter med disse to timeglassene, men vi klarer ikke å måle 7 minutter ved å starte tidtakingen når noen sier nå!. Vi snur begge timeglassene samtidig, og etter 10 minutter er vi ferdig med målingen. Når sanda i det første glasset har rendt ut (etter 3 minutter), er det igjen 2 minutter i det andre glasset. Da starter målingen! Når sanda er rendt ut, har det gått 2 minutter, og vi snur glasset på nytt. Det tar 5 minutter ekstra, til sanda er rent ut for annen gang. Da har vi målet 2 min + 5 min = 7 min Med disse to timeglassene klarer vi å måle 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 9 min, 10 min osv. Med mynter og veksling klarer vi å gjøre det samme så lenge de to myntene er innbyrdes primiske. Innbyrdisk primiske betyr at største felles faktor for tallene er 1, det vil si de har ingen felles faktor. Eksempel: 2 og 5 er innbyrdes primiske fordi de ikke har noen felles faktorer.4 og 9 er innbyrdes primiske fordi de ikke har noen felles faktorer. 10 og 21 er også innbyrdes primiske. Merk at tallene behøver ikke å være primtall. Stoppeklokka Stoppeklokka måler minutter, sekunder, tideler og hundredeler. Vet elever om situasjoner der det måles i tideler og hundredeler? Nå er elevene kjent med at døgnet har 24 timer, klokka starter på nytt igjen etter 12 timer,. Det er 60 minutter i en time og 60 sekunder i ett minutt. Med korte tidsintervaller er det derimot annerledes, der brukes tideler og hundredeler. Stoppeklokka blir dermed en blanding av 10-tallsystemet og 60-tallsystemet. Dette er komplisert. Det er veldig vanskelig å regne med klokkeslett, blant annet fordi det ikke er en enkel måte å regne om fra et klokkeslett til et desimaltall. Oppfordre ungene til å følge med på stoppeklokka, se hvor fort tidelene og hundredelene går. Når er tidelene avgjørende? Hvor langt klarer vi å bevege opp på ett tidels sekund? KALENDEREN Kalenderen Barn bør tidlig lære navn og rekkefølge på dagene og månedene, både forlengs og baklengs. De bør vite hvilke måneder som har 30 dager og hvilke som har 31 dager. I tillegg må de kjenne til at februar har 28 dager, men hvert 4. år er det skuddår og da har februar 29 dager. Spørsmål: Går det an å ha hatt bursdag 2 ganger og gå i 5.klasse?

5 Det er faktisk mulig hvis en er født den 29. februar. Forslag til aktiviteter: - Tegn et år. Hvordan vil vi illustrere et år? Som et linjestykke, som en sirkel, som en spiral? Tegn inn på årshjulet hvem som har bursdag i de ulike månedene. Aktivitet: - Hvor mange år er du? - Hvor mange måneder er du? - Hvor mange dager er du? (inklusive skuddår) - Hvor mange timer er du? - Hvor mange minutter er du? For å kontrollere om en har regnet riktig antall dager, kan en beregne at 3 leveår er omtrent 1000 dager. Oppsummering: Elevene synes det er morsomt å regne på ting som er relatert til dem selv. I denne oppgaven må de for eksempel kalkulere med når det er skuddår. (Hvert 4. år er skuddår, men det er unntak for noen hundreår var et skuddår, men år 1900 var ikke det. Regelen er sånn at hvis hundreåret er delelig med 400 så er det et skuddår, ellers ikke.) MASSE Vi bruker skålvekter for å sammenlikne vekt. Aktivitet: Vi bruker skålveka og plastbamser i 3 forskjellige størrelser. Gjett på sammenhengen først, og bruk deretter skålvektene for å kontrollveie. - Hvilken sammenheng er det mellom vekta på bamsene? - Hvor mange små bamser veier en stor? - Hvor mange bamser veier mobilen din? - Vei ulike gjenstander.

6 Oppsummering: I denne aktiviteten er bamsene måleenheten, og vi sier at den lille bamsen er 1 måleenhet. Det viser seg at det går 2 små bamser på en mellomstor bamse, og 3 små bamser (eller en liten og en mellomstor) på en stor bamse. Unger har i utgangspunktet ikke noe forhold til standard måleenheter. For dem kan det være like naturlig å veie noe i bamser som å veie i gram eller kilo. Som en avslutning på aktiviteten måler de hvor mange centikuber bamsene veier. Centikubene veier nøyaktig 1 gram.

7 Demonstrasjon: I den ene skåla har vi 3 centikuber, og i den andre har vi 8 centikuber. Deltakerne vet ikke hvor mange det er oppi. Hva er forskjellen? Hvor mange må vi legge til i den letteste for at det skal bli like mye i hver skål? Gjett og sjekk. Det er lov å ombestemme seg etter hvert som flere centicuber blir putta oppi. Legg oppi centikuber, en etter en, og tell. Dette kan bli trening i addisjon og subtraksjon. Når vi får grei på hvor mange det var i den ene skåla, kan vi regne ut hvor mange det var i den andre. Velg størrelse på tallene i forhold til alder. På et senere stadium kan man se på dette som ligninger. TREDIMENSJONAL GEOMETRI Demonstrasjon Hvis vi fyller den kvadratiske pyramiden 3 ganger fyller vi akkurat kuben: Dette er sånn fordi grunnflata og høyden i den kvadratiske pyramiden og kuben er akkurat like store.

8 Hvis vi fyller kjegla 3 ganger fyller vi akkurat sylinderen: Dette er sånn fordi grunnflata er lik i sylinderen og kjegla, og høyden er den samme i begge. Senere lærer vi at volumet av en pyramide og en kjegle er 1 g h, der g er grunnflata og h er 3 høyden, mens sylinderen og kuben er g h. Nå har de erfart dette i praksis. Sylinderen og kuben har plass til 3 ganger så mye som de som ender i en spiss. Dette gjelde for alle romlegemer med samme grunnflat og høyde, der den ene er rett og dan andre ender i en spiss.

9 Aktivitet Bygg med de 3-kanta jovobrikkene. Vi studerer de romlige figurene, og teller antall hjørner kanter flater. Tabellen viser egenskaper til noen figurer. Hjørner Kanter Flater Er det noen sammenheng mellom antall hjørner, kanter og flater? Hjørner Kanter Flater Hjørner + flater Av tabellen ser vi at hjørner + flater = kanter + 2 Det var den kjente matematikeren Euler som først fant denne sammenhengen. En annen måte å beskrive figurene på er å se på symmetriene. Hvis figuren ser lik ut fra alle hjørnene, er den regulær. 20 flater: ikosaeder 4 flater: tetraeder

10 8 flater: oktaeder Dette er de greske navnene på figurene, og disse 3 er de eneste regulære figurene vi kan lage med 3-kanter. Dette er platonske legemer. Fotballen er ikke et platonsk legeme, men et arkimedisk legeme. Dette fordi den er sammensatt av 2 sekskanter og 1 femkant i hvert hjørne. Hvis vi setter sammen kvadrater, hvilke figurer kan vi få da? Da kan vi kun lage terningen. Hvis vi skal sette sammen flere fyller vi planet, det vil si det blir ingen romlig figur, men helt flatt. Da sier vi at vi driver med fliselegging i stedet.

11 Videre: - Klarer vi å bygge regulære figurer med bare sekskanter? - Klarer vi å bygge regulære figurer med bare femkanter? Med bare sekskanter går det ikke. Men vi klarer å bygge et platonsk legeme med bare femkanter. Denne figuren har 12 flater. Det er en viktig del av matematikken å bli kjent med 2- og 3- dimensjonale figurer. PROSENTREGNING Prosent er brøk regnet om til hundredeler. For å kunne regne med prosent og regne over til 100-deler er det en forutsetning å være trygg på likeverdige brøker. For eksempel er 5 1 det samme som 20 %. Da må vi gjøre om 5 1 til Prosentregning blir vanskelig hvis en ikke er trygg på brøkregning. Mange voksne har lært prosentregning etter en bestemt formel. Denne blir de ofte hengende med hele livet, og klarer ikke å regne prosent på en rask og enkel måte, avhengig av situasjonen og tallene. Oppgaver - 1) En vare koster 1000 kr. Så øker prisen med 20 %, deretter avtar prisen med 20 %. Er prisen igjen 1000 kr? - 2) En vare koster 350 kroner. Ny pris er 280 kr. Hvor stort er avslaget?

12 Svar: 1) Når prisen øker med 20 % prosent på varen som kostet 1000 kr blir ny pris 1200 kroner. Når prisen deretter avtar med 20 % vil det si 20 % av 1200 kr slik at avslaget blir 240 kroner. Den nye prisen blir da = 960 ( ) ) Kan regnes på mange måter. For eksempel: = = = 20% Aktivitet: To spillere med hvert sitt geobrett og mange strikk. Bruk %-terninger. Kast terningene hver sin gang, og marker så stort område på geobrettet som det terningen viser. Førstemann til å fylle brettet har vunnet. Spørsmål som spillerne må avgjøre: Skal vi regne prosent av området som er igjen, eller av hele brettet? Hvis vi gjør det første, hva skal til for å vinne (det finnes 100 % på terningen)?

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

Lengdemål, areal og volum

Lengdemål, areal og volum Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om

Detaljer

Familiematematikk MATTEPAKKE 4. Trinn

Familiematematikk MATTEPAKKE 4. Trinn Familiematematikk MATTEPAKKE 4. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Penta-blokker Bygg noe fint med penta-blokkene. Se om du klarer å bygge noen av de store klossene ved å

Detaljer

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Inviter foreldrene på matematisk aften (forslag til invitasjon nederst i dette dokumentet).

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Læringsmål. 4 - Tid. Differensiering

Læringsmål. 4 - Tid. Differensiering Læringsmål 7 kunne samtale om erfaringer med tidsenheten minutter kunne lese av og skrive klokkeslett som viser kvart over og kvart på Oppdag sammenhenger og diskuter. I tillegg til å jobbe med klokkeslett

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte.

Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte. Unneberg skole ÅRSPLAN I MATEMATIKK. trinn 2016-2017 Rød skrift marker det som er fra utviklende matte. KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Eleven skal kunne

Detaljer

Platonske legemer i klasserommet

Platonske legemer i klasserommet Platonske legemer i klasserommet Kristian Ranestad 13. mai 2005 2 Innhold Forord iii 1 Innledning 1 2 Regulære mangekanter 3 3 Platonske legemer 7 3.1 Dualitet eller søskenforhold................... 12

Detaljer

http://www.nelostuote.fi/norja/discoveryregler.html

http://www.nelostuote.fi/norja/discoveryregler.html Sivu 1/6 Innhold 2 kart (spillebrett), 2 gjennomsiktige plastark (som legges oppå spillebrettene), Sjekkometer, 28 sjekkometerkort, 18 utstyrskort, 210 terrengbrikker, 2 tusjpenner. Hvem vinner? I Discovery

Detaljer

Familiematematikk MATTEPAKKE 3. Trinn

Familiematematikk MATTEPAKKE 3. Trinn Familiematematikk MATTEPAKKE 3. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Geobrett Hvor mange forskjellige kvadrater kan du finne? Hvor mange kvadrater av ulik størrelse kan du

Detaljer

BRUKSANVISNING. Bucket Blast Spill- og aktivitetssett. Inneholder:

BRUKSANVISNING. Bucket Blast Spill- og aktivitetssett. Inneholder: BRUKSANVISNING Bucket Blast Spill- og aktivitetssett Inneholder: 24 erteposer 4 x 6 farger 6 bøtter i ass. farger 6 belter for bøttene 6 øyebind i ass farger 4 kjegler Innendørs spill (I) Utendørs spill

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

- individuelt arbeid - tavleundervisning - ulike aktiviteter - undersøkelser - regnefortellinger - lesing av diagrammer

- individuelt arbeid - tavleundervisning - ulike aktiviteter - undersøkelser - regnefortellinger - lesing av diagrammer RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3. trinn 2014/15 TID TEMA KOMPETANSEMÅL Eleven skal kunne: Uke 34-35 36-39 Flersifrede tall - addisjon og subtraksjon med tresifrede tall - ulike

Detaljer

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje

Detaljer

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

Tallinjen FRA A TIL Å

Tallinjen FRA A TIL Å Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter. Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,

Detaljer

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2019-2020 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 43 dag 1 1. Line-Marie strikker et lilla skjerf. Skjerfet er 80 masker bredt, og det tar 1 sekund å strikke en maske. Det går 3 rader per centimeter, og skjerfet

Detaljer

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter? Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

Foreldrene betyr all verden!

Foreldrene betyr all verden! Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Doktorgradsstipendiat, Universitetet i Agder Lærebokforfatter, MULTI www.fiboline.no 29-Oct-4 2 Hvilken rolle har foreldrene? Formell notation

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Trekanter på geobrettet. - oppgavene er hentet fra ressurspermen til Ingvill M. Stedøys Matematiske koffert

Trekanter på geobrettet. - oppgavene er hentet fra ressurspermen til Ingvill M. Stedøys Matematiske koffert G E O B R E T T Innledende tips- differensiering Når dere jobber med geobrettet kan det være fint å bruke bare en liten del av brettet, for at det ikke skal bli for vanskelig til å begynne med. Sett på

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Veiledning og tilleggsoppgaver til kapittel 8 i Her bor vi 2

Veiledning og tilleggsoppgaver til kapittel 8 i Her bor vi 2 Veiledning og tilleggsoppgaver til kapittel 8 i Her bor vi 2 Generelle kommentarer til kapittel 8 Hva er i veien med deg? I dette kapittelet står helsa i sentrum. Den innledende tegningen viser Arif på

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2018-19 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Lærebokforfatter, MULTI Matematikksenteret, NTNU 10-Oct-10 2 Mastermind Grunntanken bak Multi Faglig fokus og tydelige læringsmål Elevene skal

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2017/2018 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

TRENINGSØKTA. Nils Henrik Valderhaug - September 2010 - Tlf 41647690

TRENINGSØKTA. Nils Henrik Valderhaug - September 2010 - Tlf 41647690 TRENINGSØKTA 1 Nils Henrik Valderhaug - September 2010 - Tlf 41647690 Deler opp i fem deler : Basis-ferdigheter (side2) - Tema: Touch på ball, såle-rulle ball, heading, demping, triksing, finter. Føring

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

Areal. Arbeidshefte for lærer

Areal. Arbeidshefte for lærer Arbeidshefte for lærer Areal Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene gjengir formelen for hvordan man finner arealet av et rektangel i stedet for

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Etterarbeid til forestillingen «stor og LITEN»

Etterarbeid til forestillingen «stor og LITEN» Etterarbeid til forestillingen «stor og LITEN» Beate Børresen har laget dette opplegget til filosofisk samtale og aktivitet i klasserommet i samarbeid med utøverne. Det er en fordel at klassen arbeider

Detaljer

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Geometri Noen sentrale begrep Nord-Gudbrandsdalen, 20.-23.10.14 Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Eksempelundervisning Tema på eksempelundervisningen denne gangen var Geometri, men

Detaljer

Årsplan matematikk 3. trinn 2015/2016

Årsplan matematikk 3. trinn 2015/2016 Årsplan matematikk 3. trinn 2015/2016 Katrine Hansen Tidspunkt (uke ) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 34-35 kap 1 samle, sortere, notere og illustrere data på

Detaljer

Matematisk julekalender for 5. - 7. trinn, 2009

Matematisk julekalender for 5. - 7. trinn, 2009 Matematisk julekalender for 5. - 7. trinn, 2009 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Å utforske form - forkortet og bearbeidet versjon av kapittel 7 i boka Matematikkens kjerne.

Å utforske form - forkortet og bearbeidet versjon av kapittel 7 i boka Matematikkens kjerne. Å utforske form - forkortet og bearbeidet versjon av kapittel 7 i boka Matematikkens kjerne. Mens du leser teksten skal du tenke over følgende og notere stikkord: Hva i teksten er kjent for deg, og hva

Detaljer

Tre sett med oppgaver for mattebingo, småskolen Sett 1

Tre sett med oppgaver for mattebingo, småskolen Sett 1 Tre sett med oppgaver for mattebingo, småskolen Sett 1 Spørsmål Svar 1. Hvor mange hjørner har et kvadrat? 4 2. Hvor mange 50-ører får du for 10 kroner? 20 3. Hva er halvparten av 4? 2 4. Hva er det dobbelte

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 8 dag 1 1. Tidlig en morgen starter en snegle på bakken og klatrer oppover en 12 meter høy stolpe. Hver dag kryper den 2 meter oppover, men om natten sklir den

Detaljer

2.4 Sprettoppfigurer, overraskelseseffekter med mye matematikk

2.4 Sprettoppfigurer, overraskelseseffekter med mye matematikk 2.4 Sprettoppfigurer, overraskelseseffekter med mye matematikk Sprettoppfigurer er noe de aller fleste har sett eller kanskje til og med laget selv. Allerede på 1600-tallet ble de første bøkene med sprettoppfigurer

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Spill "Til topps" - transkripsjon av samtalen

Spill Til topps - transkripsjon av samtalen Spill "Til topps" - transkripsjon av samtalen Elevene på 6. trinn sitter to og to ved pultene. Thomas er læreren og sier at de skal ha et spill i dag. 1 Thomas Det er slik at dere skal være på lag med

Detaljer

Mangekanter og figurtall

Mangekanter og figurtall Mangekanter og figurtall ra papirbretting til algebra og funksjoner eskrivelse Opplegget starter med bretting av noen regulære mangekanter og en analyse av dem Her er vinkelberegning, kongruente og formlike

Detaljer

SPØRSMÅL OG SVAR. - for barn og unge med et familiemedlem i fengsel

SPØRSMÅL OG SVAR. - for barn og unge med et familiemedlem i fengsel SPØRSMÅL OG SVAR - for barn og unge med et familiemedlem i fengsel For Fangers Parorende (FFP) er en organisasjon for de som kjenner noen som er i fengsel. Ta gjerne kontakt med oss! Hvorfor må noen sitte

Detaljer

Vil du være med i en undersøkelse?

Vil du være med i en undersøkelse? Helse, ernæring og bomiljø 06.01.2012 Lettlest versjon Vil du være med i en undersøkelse? Helse, ernæring og bomiljø for personer med Prader-Willis syndrom, Williams syndrom og Downs syndrom fra 16 til

Detaljer

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/ Årsplan i matematikk for 2 tr. 15-16 Læreverk: Multi 2A, 2B og oppgavebok. MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 15-16 34 35 36 37 38 39 Tallene 0- med tallene opp til -Bruke tallinja til

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 5.-7.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Veiledning og tilleggsoppgaver til Kapittel 12 i Her bor vi 1

Veiledning og tilleggsoppgaver til Kapittel 12 i Her bor vi 1 Veiledning og tilleggsoppgaver til Kapittel 12 i Her bor vi 1 Generelt om kapittel 12 Når går bussen? Dette kapittelet handler i stor grad om ulike transportmidler. Åpningsbildet på side 174 gir rik anledning

Detaljer

En presisering av kompetansemålene

En presisering av kompetansemålene En presisering av kompetansemålene - med vekt på aktiviteter Mål for kompetanse, og innhold? M87: Innholdsplan, eks geometri 5.-7. trinn: Geometriske begreper: Punkt, linjestykke, rett linje, kurve, vinkel

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Straffespark Introduksjon Scratch Lærerveiledning

Straffespark Introduksjon Scratch Lærerveiledning Straffespark Introduksjon Scratch Lærerveiledning Introduksjon Vi skal lage et enkelt fotballspill, hvor du skal prøve å score på så mange straffespark som mulig. Steg 1: Katten og fotballbanen Vi begynner

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Familiematematikk MATTEPAKKE 6. Trinn

Familiematematikk MATTEPAKKE 6. Trinn Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

ESERO AKTIVITET STORE OG SMÅ PLANETER. Lærerveiledning og elevaktivitet. Klassetrinn 5-6

ESERO AKTIVITET STORE OG SMÅ PLANETER. Lærerveiledning og elevaktivitet. Klassetrinn 5-6 ESERO AKTIVITET Klassetrinn 5-6 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 50 minutter Å: vite at de åtte planetene har forskjellige størrelser lære navnene på planetene

Detaljer

Sommer på Sirkelen. Vi lager hytte

Sommer på Sirkelen. Vi lager hytte Sommer på Sirkelen Vi lager hytte Streiken er over og både store og små er glade for å være tilbake til barnehagen igjen. Gustav forklaret de andre barna slik: "de voksne var ikke enig med sjefen sin"

Detaljer

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre?

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

GEOMETRISPILL; former, omkrets og areal.

GEOMETRISPILL; former, omkrets og areal. GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til

Detaljer

Kul geometri - volum og overflate av kulen

Kul geometri - volum og overflate av kulen Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014

Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Oppgave 1. Vanlig pris for en reise med buss mellom to byer er 80 kr. På bussen er det 14 voksne, 6 barn og 9 studenter. Hvor

Detaljer

Fakultet for lærerutdanning og internasjonale studier

Fakultet for lærerutdanning og internasjonale studier Fakultet for lærerutdanning og internasjonale studier Grunnskolelærer 1-7 Matematikk Dato: Tirsdag 27.mai 2014 Tid: 6 timer / kl. 9-15 Antall sider (inkl. forside): 6 Antall oppgavedeler: 2 Tillatte hjelpemidler:

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

Halvårsplan i matematikk Vår 5. trinn 2011-2012

Halvårsplan i matematikk Vår 5. trinn 2011-2012 Halvårsplan i matematikk Vår 5. trinn 2011-2012 UKE 1 EMNE / PÅ SKOLEN Varmt og kaldt Tallinjen SIDE TALL RØD 12 13 SIDE TALL Gul 22 23 HJEMMELEKSE GRØNN RØD SVART Du skal vite hvordan man setter opp en

Detaljer

Multiplikation och division av bråk

Multiplikation och division av bråk Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Redd verden. Steg 1: Legg til Ronny og søppelet. Sjekkliste. Introduksjon

Redd verden. Steg 1: Legg til Ronny og søppelet. Sjekkliste. Introduksjon Redd verden Nybegynner Scratch Introduksjon Kildesortering er viktig for å begrense hvor mye avfallet vårt påvirker miljøet. I dette spillet skal vi kildesortere og samtidig lære en hel del om meldinger

Detaljer

Matematisk juleverksted

Matematisk juleverksted GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til

Detaljer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Kilde: www.clipart.com 1 Funksjoner. Lærerens ark Hva sier læreplanen? Funksjoner Mål for opplæringen er at eleven skal kunne

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6 Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp

Detaljer

Årsplan i matematikk 6.trinn 2017/2018

Årsplan i matematikk 6.trinn 2017/2018 Årsplan i matematikk 6.trinn 2017/2018 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /36 Statistikk Planleggje og samle inn data i samband med observasjonar,

Detaljer

Gips gir planetene litt tekstur

Gips gir planetene litt tekstur Hei alle sammen Godt nyttår, og velkommen tilbake til vanlig hverdag i barnehagen. Det nye året startet med mye kulde, snø og vind, noe som gjorde at dagene våre ble ganske forskjellige. Det var en del

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 9 dag 1 1. Kjetil og Øystein skal kjøre fra Stavanger til Oslo i hver sin bil. Kjetil starter først og holder en konstant fart på 75 km/t. Øystein starter en

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 4 dag 1 1. Hvor mange av de ett hundre første positive heltallene, 1, 2, 3,, 99, 100, er delelig med 2, 3, 4 og 5? A)0 B) 1 C) 2 D) 3 E) 4 2. Ett tusen terninger

Detaljer