Tallinjen FRA A TIL Å

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Tallinjen FRA A TIL Å"

Transkript

1 Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I KLASSE EMNER Side 1 Innledning til tallinjen T Grunnleggende om tallinjen T Hvordan vi kan bruke en tallinje T Tallinjen som tidslinje T Tallinje i statistikk T Tallinje i koordinatsystemer T Tallinje i kart T Positive og negative tall T Å regne med positive og negative tall T - 16

2 Innledning til tallinjen 1 INNLEDNING TIL TALLINJEN Tallinjen dukker opp overalt. Vi finner den i tabeller og diagrammer, i historiske oversikter og avstandsmålinger. Den er tilstede på termometre og kart. Noen ganger kalles den for tidslinje, men den kan brukes til å fremstille langt mer enn tid. Tallinjen kan brukes til nesten alt. Ved siden av å vise tiden, kan den illustrere avstand, størrelser, mengder og antall. Og så å si alt mulig annet også. De fleste vil forstå en tallinje når de ser den. Men ikke alle. Derfor er det all grunn til å ha med et kapittel om tallinjen og dens ulike egenskaper. Og for mange er tallinjens mange egenskaper nyttig for å forsterke forståelsen av tall, tallmengder og størrelser kort sagt: tallbehandling. Grunnleggende om tallinjen 2 GRUNNLEGGENDE OM TALLINJEN Vi vil alltid bare se et lite utsnitt av tallinjen. På samme måte som vi har uendelig mange tall, har vi en uendelig tallinje. Kort og godt fordi hele denne uendelige rekken med tall skal få plass Fra før kjenner vi tallrekken: Og vi vet at den fortsetter med 11, 12 o.s.v. Hvis vi nå fester den tallrekken til en linje, og lar alle tallene få sin faste plass på linja, får vi: T- 2

3 Sånn! Der er n! Hils på tallinjen!! Denne tallinjen har to viktige forutsetninger. De er så viktige at vi må kunne kalle dem for egenskaper altså kjennetegn på at dette er en tallinje. For det første står tallene etter hverandre i rekkefølge. Denne rekkefølgen må være fast det må være like stor verdi mellom tallene. I tallinjen overfor er verdien 1 mellom hvert tall. For det andre må tallene stå med nøyaktig like lang avstand. Hvis avstanden mellom tallene er forskjellige, kan den ikke lenger brukes som tallinje. Altså: En tallinje er en linje med tall, der det er like langt mellom tallene, og der verdien mellom tallene er den samme. Tallinje: En linje med tall, der tallene har samme avstand og verdien mellom tallene er lik. Vi kan godt tenke oss en tallinje med andre tall. Her er to eksempler: Her ser vi at verdien mellom tallene er lik. I det første eksemplet er verdien 2, og i det andre eksemplet er verdien 5. T- 3

4 Når vi skal lage en tallinje bestemmer vi altså selv hvilke tall vi vil ha med. Vi bestemmer også selv hvor stor avstand det skal være mellom tallene: Når vi skal lage en tallinje er det vanlig å la den være litt lenger enn vi trenger. Det er for å vise at den tallinjen vi lager egentlig fortsetter i begge retninger. Altså at tallinjen er uendelig og at vi bare tegner en liten del av linjen den delen som vi trenger. Hvordan vi kan bruke en tallinje 3 HVORDAN VI KAN BRUKE EN TALLINJE Vi kan med andre ord lage tallinjen akkurat som det passer oss, så lenge vi husker på de to egenskapene som gjelder for tallinjen: Like stor verdi mellom tallene og like stor avstand mellom dem. Så da blir jo spørsmålet: Hva kan vi bruke en slik tallinje til? Vel, det er særlig på fire områder vi bruker tallinjen. Det ene området er når vi skal vise en oversikt over hendelser knyttet til tid, for eksempel historiske perioder. Det andre er i statistikk, der vi vil vise en utvikling over tid. Det tredje området der vi bruker tallinjen er i sammenheng med koordinatsystemer, og det fjerde er når vi skal lage eller bruke kart (skjønt når det gjelder kart er det egentlig ikke en tallinje i ordets egentlig betydning vi bruker). De tre siste av disse bruksområdene er nærmere forklart i kapitlene Statistikk, Koordinatsystemer og kart. T- 4

5 I det følgende vil du få se alle disse bruksområdene forklart, med mest fokus på det første bruksområdet, nemlig oversikt over hendelser knyttet til tid. 3.1 TALLINJEN SOM TIDSLINJE Det er utallige forhold du kan vise på en tidslinje. Her er ett eksempel: Tallinjen som tidslinje Lille Petter ble født i Han begynte på skolen da han var 6 år, ungdomsskolen da han var 13, videregående da han var 16 og på høyskole da han var 19. Skal du legge dette inn på en tidslinje, trenger du altså en linje som i hvert fall går fra 0 år til 19 år. Du kan selvsagt velge hvilke tall du vil ha med. Her har jeg valgt å merke av hvert annet år. Eksempel 1: Trinn a Men denne tallinjen sier jo ingenting om hva den vil vise. Den bør ha en overskrift en tittel. Jeg kaller denne for Petters skolegang. I tillegg må vi fortelle hva tallene betyr. I dette eksemplet betyr de Petters alder. Eksempel 1: Trinn b PETTERS SKOLEGANG Alder T- 5

6 Og nå må jeg sette inn de opplysningene jeg har om Petters skolegang: Eksempel 1: Trinn c PETTERS SKOLEGANG Alder Barneskolen Ungdomskolen Videregående Høyskolen Her har jeg satt inn de fire skoleslagene. Det vil være vanlig å sette inn en pil mot et bestemt tall. Da kan det bli slik: Eksempel 1: Trinn d PETTERS SKOLEGANG Alder Barneskolen Ungdomskolen Videregående Høyskolen Her ser vi at Ungdomsskolen og Høyskolen ikke peker mot noe tall. Det er fordi tallene 13 og 19 (den alderen Petter hadde da han begynte på ungdomsskolen og Høyskolen) ikke står på tidslinjen. Men de fleste vil forstå at de befinner seg midt mellom to tall. T- 6

7 Det er flere andre måter å vise det samme på. Her ser du to andre modeller: Eksempel 1: Trinn d-2 PETTERS SKOLEGANG Alder Barneskolen Ungdomskolen Videregående Høyskolen I dette eksemplet har jeg trukket forklaringene inn i selve tallinjen i stedet for å ha dem i bokser. Da slipper jeg å bruke piler, og samtidig får jeg vist hvor lenge de går på de forskjellige skolene på en tydeligere måte. I den neste modellen viser ikke tallene Petters alder, men hvilke årstall han går på de ulike skolene. Tidslinjen starter det året han blir født. Eksempel 1: Trinn d-3 PETTERS SKOLEGANG År Barneskolen Ungdomskolen Videregående Høyskolen T- 7

8 Tallinjen i statistikk 3.2 TALLINJEN I STATISTIKK I statistikk hender det ofte at man ønsker å vise en utvikling over tid. Vi fortsetter å bruke Petter også i neste eksempel: Hvert år ble Petters høyde målt, for å se hvordan dette utviklet seg. Målingene ble satt inn i en tabell. Da han ble 15, ville han sette dette inn i et diagram, for lettere å se utviklingen: Om bruk av tabeller og diagrammer kan du se i kapitlet Statistikk. Her er først tabellen: Eksempel 2: Trinn a År H Og her er diagrammet: Eksempel 2: Trinn b T- 8

9 For at søylene skal gi noen mening er det viktig å bruke samme måleenhet på alle søyler. I virkeligheten har vi innført en tallinje til, nemlig en som går loddrett. Den viser høyden. Her er det satt inn hjelpelinjer for hver 50 cm. Da er det lettere å lese diagrammet. Eksempel 2: Trinn c TALLINJEN I KOORDINATSYSTEMER Når vi nå er kommet så langt at vi har to tallinjer en vannrett og en loddrett, er det all grunn til å gå et skritt videre til koordinatsystemet. Tallinjen i koordinatsystemer I koordinatsystemet kalles tallinjene for akser den vannrette kalles førsteakse, og den loddrette for andreakse. Koordinatsystem er nøye forklart i kapitlet om koordinatsystemer. T- 9

10 De to aksene er altså i virkeligheten to tallinjer som står vinkelrett på hverandre. Eksempel 3: Trinn a T- 10

11 Trekker vi opp hjelpelinjer til alle tallene, får vi et rutemønster: Eksempel 3: Trinn b og her er et koordinatsystem, fullt ferdig til bruk, laget av to tallinjer. Når du skal lage et koordinatsystem er det vanlig at rutene er kvadratiske. Det får du til ved å ha samme avstand mellom tallene på begge aksene. T- 11

12 Tallinjen i kart 3.3 TALLINJEN I KART På en måte er kart bygget opp akkurat på samme måte som et koordinatsystem, men i kart er det ofte rutene som har navn, og ikke linjene. Vi skal se på dette, men først må vi ha et kart: Eksempel 4: Trinn a Dette er kart over Småøy. Vi ser at det er et hus på øya, og en vei fra huset til brygga. Siden det ikke ligger noen båt ved brygga kan vi regne med at det akkurat nå ikke er folk på øya. Vi ser et lite vann og en bekk som renner fra vannet og ut i havet. Dessuten ser vi at det bare er to trær på øya, og tre kjempestore steiner. T- 12

13 Men å angi akkurat hvor de ulike tingene befinner seg på øya er litt vanskelig. Derfor tegner vi inn et rutenett på kartet. Eksempel 4: Trinn b Nå kan vi f.eks si at de tre steinene ligger 6 ruter til venstre for huset, og at øya er 12 ruter bred. Selv om vi ikke vet hvor lang eller stor en rute er, er det litt lettere å orientere seg. Enda lettere blir det hvis vi gir rutene navn: T- 13

14 Eksempel 4: Trinn c Nå kan vi lett se at brygga ligger i den ruta som heter (13,7), og veien går fra (11,4) til (12,7). Du kan finne ut mer om å tegne og lese kart i kapitlet Kart. Det som er viktig i denne sammenhengen er at vi også her bruker to tallinjer for å gjøre det enkelt å lese kart. Ofte vil du i kart se at den ene tallinjen er byttet ut med bokstaver, men poenget vil være det samme. T- 14

15 4 POSITIVE OG NEGATIVE TALL Tallrekken fortsetter i det uendelige. Men ikke bare med større og større tall. Her er tallrekken, slik du så den i avsnitt 2: Positive og negative tall Som du ser fortsetter den etter 10. Men den fortsetter den andre veien også! Fra null og mot venstre. Hvis du teller mot venstre fra 10, ser du at tallene blir mindre og mindre: Men hva skjer hvis vi fortsetter å telle mot venstre fra null? Da blir tallene fortsatt mindre og mindre Vi kaller tallene som er mindre enn null for negative tall, og viser det ved å sette (minus) foran. Som du kan se er -1 og 1 like langt fra 0, men de er ikke like mye verdt. -1 har en verdi på 1 mindre enn null. T- 15

16 Mange kjenner dette fra gradestokken: Her er tallinjen reist opp i loddrett stilling, i stedet for slik vi har blitt vant til at den ligger i vannrett stilling. På en gradestokk er ofte kuldegradene (minusgradene) markert med blått og varmegradene (plussgradene) med rødt. Den røde stolpen som viser gradene er kvikksølv, som utvider seg ved varme og trekker seg sammen ved kulde. Slike gradestokker var vanlige i de fleste hjem tidligere. Etter hvert ble de avløst av andre typer uten kvikksølv. I moderne tid er det mer og mer vanlig med digitale temperaturmålere. Men uansett om man tenker seg tallinjen vannrett eller loddrett, er det slik at den er uendelig i begge retninger. Tallene som er større enn 0 kalles positive tall, og tallene som er mindre enn 0 kalles negative tall. Positive tall: Tall som er større enn 0. Negative tall: Tall som er mindre enn 0. Å regne med positive og negative tall 4.1 Å REGNE MED POSITIVE OG NEGATIVE TALL I de voksnes verden kjenner vi til negative tall i en annen sammenheng, nemlig når det er snakk om gjeld. Gjeld oppstår når du kjøper noe du i grunnen ikke har penger til. Hvis du kjøper noe som koster 10 kroner, selv om du bare har 5 kroner, skylder du kjøpmannen de siste fem kronene. T- 16

17 Rent tallmessig vil det se slik ut: Varen koster 10 kroner Du har 5 kroner Gjeld: 5 kroner Setter vi det opp på en tallinje kan det se slik ut: Varen koster 10 kroner Gjeld: 5 kroner Du har 5 kroner Når du skal bruke tallinjen til å regne en slik oppgave tar vi utgangspunkt i det du har: Så setter vi inn det varen koster: T- 17

18 Og da vil du se at pilen stopper på -5: Skriver vi det som et regnestykke, vil det se slik ut: 5 10 = -5 Tallinjen kan brukes til å forklare både pluss- og minusstykker, med både positive og negative tall. Dette er nøye forklart i kapitlet om addisjon og subtraksjon. Til slutt: Det er viktig å skille mellom tegnet minus (-) som operatør og som fortegn. Minus som operatør i subtraksjonsoppgaver forteller at du skal trekke et tall fra et annet, mens minus som fortegn viser til tallets verdi (for eksempel tallets plass på tallinjen). Dette er også nærmere forklart i kapitlet om addisjon og subtraksjon. T- 18

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

SUBTRAKSJON FRA A TIL Å

SUBTRAKSJON FRA A TIL Å SUBTRAKSJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til subtraksjon S - 2 2 Grunnleggende om subtraksjon S - 2 3 Ulike fremgangsmåter S - 2 3.1 Tallene under hverandre

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal Veiledning og oppgaver til OpenOffice Calc Regneark 1 Grunnskolen i Nittedal Regneark 1 Når du er ferdig med heftet skal du kunne: Vite hva et regneark er. Oppstart og avslutning av OpenOffice Calc. Flytting

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

Telle i kor steg på 120 frå 120

Telle i kor steg på 120 frå 120 Telle i kor steg på 120 frå 120 Erfaringer fra utprøving Erfaringene som er beskrevet i det følgende er gjort med lærere og elever som gjennomfører denne typen aktivitet for første gang. Det var fire erfarne

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Vet du hva vi kan bruke et regneark på pc-en til?

Vet du hva vi kan bruke et regneark på pc-en til? Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger

Detaljer

STATISTIKK FRA A TIL Å

STATISTIKK FRA A TIL Å STATISTIKK FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til statistikk S - 2 2 Grunnleggende om statistikk S - 3 3 Statistisk analyse S - 3 3.1 Gjennomsnitt S - 4 3.1.1

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Matematisk julekalender for 5.-7. trinn, 2012

Matematisk julekalender for 5.-7. trinn, 2012 Matematisk julekalender for 5.-7. trinn, 2012 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Oppgavene 2, 4, 5, 6, 7 og 8 er delt i to nivåer

Detaljer

PRIMTALL FRA A TIL Å

PRIMTALL FRA A TIL Å PRIMTALL FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til primtall P - 2 2 Grunnleggende om primtall P - 2 3 Hvordan finne et primtall P - 5 Innledning til primtall

Detaljer

Tall og mengder. Per G. Østerlie. 30. september 2013

Tall og mengder. Per G. Østerlie. 30. september 2013 Tall og mengder Per G. Østerlie 30. september 2013 1 Introduksjon Nå skal vi se på hva mengder og intervaller er og hvilke symboler vi benytter. Vi starter med å se på tall og hvordan vi kan dele opp i

Detaljer

http://www.nelostuote.fi/norja/discoveryregler.html

http://www.nelostuote.fi/norja/discoveryregler.html Sivu 1/6 Innhold 2 kart (spillebrett), 2 gjennomsiktige plastark (som legges oppå spillebrettene), Sjekkometer, 28 sjekkometerkort, 18 utstyrskort, 210 terrengbrikker, 2 tusjpenner. Hvem vinner? I Discovery

Detaljer

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014 Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet

Detaljer

Perlesnor og tom tallinje

Perlesnor og tom tallinje Hanne Hafnor Dahl, May Else Nohr Perlesnor og tom tallinje En perlesnor er en konkret representasjon av tallrekka. Den kan bestå av 10, 20 eller 100 perler, alt etter hvilket tallområdet elevene arbeider

Detaljer

Tradisjonene varierer når det gjelder bruk av farger for høytidsdager og liturgiske tider, endog innenfor samme kirkesamfunn.

Tradisjonene varierer når det gjelder bruk av farger for høytidsdager og liturgiske tider, endog innenfor samme kirkesamfunn. KIRKEÅRSSIRKELEN TIL DENNE LEKSJONEN Tyngdepunkt: Kirkens form for tidsregning Liturgisk handling Kjernepresentasjon Materiellet: Plassering: Fokusreol Elementer: Veggteppe/plakat med kirkeårssirkelen,

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen

Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Elevene på 7. trinn sitter i lyttekroken. Olaug er lærer. 1 Olaug I dag skal vi telle i kor med 0, 3 i gangen. Før vi begynner å telle så har jeg

Detaljer

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Ordenes makt. Første kapittel

Ordenes makt. Første kapittel Første kapittel Ordenes makt De sier et ord i fjernsynet, et ord jeg ikke forstår. Det er en kvinne som sier det, langsomt og tydelig, sånn at alle skal være med. Det gjør det bare verre, for det hun sier,

Detaljer

Hefte med problemløsningsoppgaver. Ukas nøtt 2009/2010

Hefte med problemløsningsoppgaver. Ukas nøtt 2009/2010 Hefte med problemløsningsoppgaver Ukas nøtt 2009/2010 1 Tallev Omtveit Nordre Modum ungdomsskole 1 Bilde: http://images2.fanpop.com/images/photos/2900000/illusions-puzzles-and-brain-teasers-2936387-305-

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Besøk 1, 7. klasse Ungdom med MOT November/desember/januar

Besøk 1, 7. klasse Ungdom med MOT November/desember/januar Kan ikke kopieres Besøk 1, 7. klasse Ungdom med MOT November/desember/januar VÆR GODT FORBEREDT, ha en lek eller to i bakhånd Lær manus Tenk ut egne eksempler Sjekk at utstyr er på plass Ta dere en tur

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Kilde: www.clipart.com 1 Funksjoner. Lærerens ark Hva sier læreplanen? Funksjoner Mål for opplæringen er at eleven skal kunne

Detaljer

Etterarbeid til forestillingen «stor og LITEN»

Etterarbeid til forestillingen «stor og LITEN» Etterarbeid til forestillingen «stor og LITEN» Beate Børresen har laget dette opplegget til filosofisk samtale og aktivitet i klasserommet i samarbeid med utøverne. Det er en fordel at klassen arbeider

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

1. I denne tekstboksen kan du søke etter venner, grupper eller sider.

1. I denne tekstboksen kan du søke etter venner, grupper eller sider. Generelt om Facebook Slik ser profilen din ut når du går ut på Facebook. Selvsagt med ditt navn og bilder. Under skal vi vise de viktigste funksjonene og bruken av Facebook. 1 2 3 4 5 6 7 8 1. I denne

Detaljer

Vurderingskriterier kjennetegn på måloppnåelse

Vurderingskriterier kjennetegn på måloppnåelse Kompetansemål 1.trinn Mål for opplæringen er at Eleven skal kunne: 1. Telle til 50, dele og sette sammen mengder opp til 10 2. Gjøre overslag over mengder, telle opp, sammenligne tall og tallstørrelser

Detaljer

Brukerveiledning Windows Movie Maker

Brukerveiledning Windows Movie Maker Brukerveiledning Windows Movie Maker Dette er en enkel veiledning i hvordan man kan bruke Windows Movie Maker.Det er et program som følger med Windows XP, og som er veldig enkelt å bruke. Det egner seg

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir

Detaljer

18.07.2013 Manual til Excel. For mellomtrinnet. Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

18.07.2013 Manual til Excel. For mellomtrinnet. Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 18.07.2013 Manual til Excel 2010 For mellomtrinnet Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Husk... 2 1. Det kan bare være tall i cellene som skal brukes i formelen.... 2 2. En

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

dyst Nærstrid er våpenøvelser mot målskiver. Øvelsene settes sammen til en bane som består av varierende våpen og teknikker.

dyst Nærstrid er våpenøvelser mot målskiver. Øvelsene settes sammen til en bane som består av varierende våpen og teknikker. Hva er riddersport? Riddersport er middelalderens våpenbruk til hest gjeninnført som en moderne sport. Grener og momenter er historisk basert, og i størst mulig grad hentet fra manuskripter fra høy- og

Detaljer

Fagplan, 4. trinn, Matematikk

Fagplan, 4. trinn, Matematikk Fagplan, 4. trinn, Matematikk Måned Kompetansemål - K06 Læringsmål / delmål Kjennetegn på måloppnåelse / kriterier Mål for opplæringen er at eleven skal kunne: August UKE 33, 34 OG 35. September UKE 36-39

Detaljer

Bruk av oppgaver og grupper i

Bruk av oppgaver og grupper i Bruk av oppgaver og grupper i Versjon 02.07.2007 Ansvarlig for dokumentet Multimedisenteret/NTNU Innhold Innhold...1 Komme i gang med oppgaver...2 Legge til en oppgave...2 En oppgaves egenskaper...2 For

Detaljer

En eksplosjon av følelser Del 3 Av Ole Johannes Ferkingstad

En eksplosjon av følelser Del 3 Av Ole Johannes Ferkingstad En eksplosjon av følelser Del 3 Av Ole Johannes Ferkingstad MAIL: ole_johannes123@hotmail.com TLF: 90695609 INT. SOVEROM EVEN MORGEN Even sitter å gråter. Han har mye på tankene sine. Han har mye å tenke

Detaljer

mange tilbake til Sørigarden og de smakte veldig deilig til lunsj. Bilder fra turen til ungdomskolen henger inne på avdelingen.

mange tilbake til Sørigarden og de smakte veldig deilig til lunsj. Bilder fra turen til ungdomskolen henger inne på avdelingen. MÅNEDSBREV FOR MAI I april har vi gjort mange forskjellige og morsomme ting. Nå skal jeg fortelle dere om litt av alt det vi har drevet. Vi startet april med å gjøre ferdig Munch utstillingen vår. Alle

Detaljer

Tiervenner erteposegjemsel

Tiervenner erteposegjemsel Telle til 10 Mål: Elevene skal kunne rekketelle til 10, i stigende og synkende rekkefølge. Antall elever: minst 10 elever. Kjegler med tallene 1 til 10. (Bruk kjegleovertrekk på 0-kjeglen og skriv lapp

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

Matematisk julekalender for 5.-7. trinn, 2011

Matematisk julekalender for 5.-7. trinn, 2011 Matematisk julekalender for 5.-7. trinn, 2011 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Oppgavene 4, 6, 8 og 9 er delt i to nivåer slik

Detaljer

Soloball. Steg 1: En roterende katt. Sjekkliste. Test prosjektet. Introduksjon. Vi begynner med å se på hvordan vi kan få kattefiguren til å rotere.

Soloball. Steg 1: En roterende katt. Sjekkliste. Test prosjektet. Introduksjon. Vi begynner med å se på hvordan vi kan få kattefiguren til å rotere. Soloball Introduksjon Scratch Introduksjon Vi skal nå lære hvordan vi kan lage et enkelt ballspill med Scratch. I soloball skal du styre katten som kontrollerer ballen, slik at ballen ikke går i nettet.

Detaljer

5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri

5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri 5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri Målinger finnes naturlig i hverdagen vår. Denne kurskvelden skal vi forsøke å møte de ulike begrepene slik som ungene møter dem og

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

Norsk etnologisk gransking Bygdøy i september 1955 HESJER

Norsk etnologisk gransking Bygdøy i september 1955 HESJER Norsk etnologisk gransking Bygdøy i september 1955 Emne nr. 51 HESJER Det kan være tvil om det er riktig å sende ut en spørreliste om hesja og ikke samtidig ta med hele kornskurden og høyonna. Men vi har

Detaljer

Matematisk julekalender for 5. - 7. trinn, 2009

Matematisk julekalender for 5. - 7. trinn, 2009 Matematisk julekalender for 5. - 7. trinn, 2009 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette

Detaljer

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på?

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på? 3. kurskveld Gjennomgang av hjemmeleksa Hvilke tall tenker jeg på? Læreren tenker på to etterfølgende tall mellom 1 og 10. To elever får en lapp med hvert sitt av de to tallene. Elev A: Jeg vet ikke hvilket

Detaljer

Aktiviteter elevrådet kan bruke

Aktiviteter elevrådet kan bruke Aktiviteter elevrådet kan bruke For å hente ideer Ekspertene kommer! Utstyr: Skoesker eller poser, lapper, penn Tid: ca 5-10 minutter på hver stasjon Med denne aktiviteten kan dere raskt få inn informasjon

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller Excel Hva er et regneark? Vi bruker regneark til å sortere data, gjøre beregninger og lage diagrammer. I denne manualen finner du veiledning til hvordan du kan bruke regneark. Et regneark består av celler

Detaljer

Lærebok. Opplæring i CuraGuard. CuraGuard Opplæringsbok, - utviklet av SeniorSaken -

Lærebok. Opplæring i CuraGuard. CuraGuard Opplæringsbok, - utviklet av SeniorSaken - Lærebok Opplæring i CuraGuard 1 Med dette heftet gis en innføring i hvordan bruke CuraGuard og andre sosiale medieplattformer med fokus på Facebook. Heftet er utviklet til fri bruk for alle som ønsker

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Argumentasjon og regnestrategier

Argumentasjon og regnestrategier Ole Enge, Anita Valenta Argumentasjon og regnestrategier Undersøkelser (se for eksempel Boaler, 2008) viser at det er en stor forskjell på hvilke oppfatninger matematikere og folk flest har om matematikk.

Detaljer

Nødrop fra israel februar 2012

Nødrop fra israel februar 2012 Stiftelsen HJELP til Russland www.helprussia.no Nødrop fra israel februar 2012 Barnehjemmet Neve Michael, Israel trenger vår hjelp: Her er ca. 300 barn. Hit kommer de som har det aller vanskeligst i Israel

Detaljer

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre?

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI

Detaljer

Årsplan: Uke Tema

Årsplan: Uke Tema Årsplan: Uke 33 34 35 36 37 38 39 epetisjon av pluss og minus Ulike terningsspill Yatzy Konkretisere med klosser og brikker Kap 1 Data og statistikk Undersøkelse Statistikk: Samle, sortere, notere og illustrere

Detaljer

Årsplan i matematikk for 2. trinn

Årsplan i matematikk for 2. trinn Årsplan i matematikk for 2. trinn Uke Tema Kompetansemål Læringsmål Aktivitet, metoder og læringsressurser Hele Jeg kan bruke tallinja til å vise året: ulike tallstørrelser. Tallinje Dager, måneder, år,

Detaljer

Årsplan Matematikk 2013 2014 Årstrinn: 5. årstrinn

Årsplan Matematikk 2013 2014 Årstrinn: 5. årstrinn Årsplan Matematikk 2013 2014 Årstrinn: 5. årstrinn Måns Bodemar, Anlaug Laugerud, Karianne Flagstad Moen Akersveien 4, 0177 OSLO oppdatert 25.08. 14 Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold

Detaljer

KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK

KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere

Detaljer

Matematisk julekalender for 8.-10. trinn, 2012

Matematisk julekalender for 8.-10. trinn, 2012 Matematisk julekalender for 8.-10. trinn, 2012 Årets julekalender for 8.-10 trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav

Detaljer

Data, tabeller og diagrammer FRA A TIL Å

Data, tabeller og diagrammer FRA A TIL Å Data, tabler og diagrammer FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til data D - 2 2 Grunnleggende om data D - 2 3 Innsamling av data D - 4 3. Observasjon D - 4 3.2

Detaljer

Matematisk julekalender for 1. - 4. trinn

Matematisk julekalender for 1. - 4. trinn Matematisk julekalender for 1. - 4. trinn Årets julekalender for 1.-4. trinn består av 9 oppgaver. Hver oppgave er laget i tre utgaver; lett, middels og vanskelig (merket med hhv. L, M og V). Alle tre

Detaljer

Oppbygging av ei bile fra Aust Agder:

Oppbygging av ei bile fra Aust Agder: Oppbygging av ei bile fra Aust Agder: Utgangspunktet for denne analysen er at jeg kom over ei Agder bile og kjøpte denne for bruk som referansemateriell og samling. Den var i ganske dårlig forfatning når

Detaljer

Kvadrattall og KVADRATROT FRA A TIL Å

Kvadrattall og KVADRATROT FRA A TIL Å Kvadrattall og KVADRATROT FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til kvadrattall og kvadratrot K - 2 2 Grunnleggende om kvadrattall og kvadratrot K - 2 3 Kvadrattall

Detaljer

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

Innføring i OOcalc Side 1. OOcalc

Innføring i OOcalc Side 1. OOcalc Innføring i OOcalc Side 1 OOcalc Hva er et regneark? Et regneark kan sammenlignes med et vanlig ruteark, hvor tall skrives inn og beregninger utføres. På et vanlig ruteark må man selv utføre beregningen.

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Krødsherad kommune. Plan for. Læringsstrategier handler om å lære seg å lære! Læringsstrategier er ikke målet, men et middel for å lære.

Krødsherad kommune. Plan for. Læringsstrategier handler om å lære seg å lære! Læringsstrategier er ikke målet, men et middel for å lære. Krødsherad kommune Plan for Læringsstrategier handler om å lære seg å lære! Læringsstrategier er ikke målet, men et middel for å lære. Plan for læringsstrategier for skolene i Krødsherad kommune Pisa undersøkelsen

Detaljer

Mål med oppgaven: Vise ulike måter for å redigere geometri og bli kjent med kartverktøy som finnes i matrikkelklienten til Kartverket.

Mål med oppgaven: Vise ulike måter for å redigere geometri og bli kjent med kartverktøy som finnes i matrikkelklienten til Kartverket. 9/4/2015 Matrikkelenhet Oppgave M0 Gjennomgang av kartverktøy Mål med oppgaven: Vise ulike måter for å redigere geometri og bli kjent med kartverktøy som finnes i matrikkelklienten til Kartverket. Kontroller

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte:

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

Redd verden. Steg 1: Legg til Ronny og søppelet. Sjekkliste. Introduksjon

Redd verden. Steg 1: Legg til Ronny og søppelet. Sjekkliste. Introduksjon Redd verden Nybegynner Scratch Introduksjon Kildesortering er viktig for å begrense hvor mye avfallet vårt påvirker miljøet. I dette spillet skal vi kildesortere og samtidig lære en hel del om meldinger

Detaljer

Matematisk julekalender for 1. - 4. trinn

Matematisk julekalender for 1. - 4. trinn Matematisk julekalender for 1. - 4. trinn Nytt av året er en kalender for elever på 1. til 4. trinn. Dette er en aldersgruppe som spriker veldig i kunnskap, og derfor har vi valgt å lage et stort utvalg

Detaljer

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

En eksplosjon av følelser Del 2 Av Ole Johannes Ferkingstad

En eksplosjon av følelser Del 2 Av Ole Johannes Ferkingstad En eksplosjon av følelser Del 2 Av Ole Johannes Ferkingstad MAIL: ole_johannes123@hotmail.com TLF: 90695609 INT. BADREOM MORGEN Line er morgenkvalm. Noe hun har vært mye den siste uken. Hun kaster opp,

Detaljer

3. Introduksjon til prosjektet Hringr. Scratch fra scratch Enkel programmering for nybegynnere

3. Introduksjon til prosjektet Hringr. Scratch fra scratch Enkel programmering for nybegynnere 3. Introduksjon til prosjektet Hringr 29 Sammenlikninger hvis og hvis-ellers Vi mennesker bruker sammenlikninger hundrevis av ganger hver eneste dag. Når vi utfører oppgaver, når vi tenker og når vi jobber.

Detaljer

Matematikk 5., 6. og 7. klasse.

Matematikk 5., 6. og 7. klasse. Matematikk 5., 6. og 7. klasse. Kompetansemål 5. 6. 7. Tall og algebra (regnemåter) Beskrive og bruke plassverdisystemet for, regne med positive og negative hele tall,, brøker og prosent, og plassere de

Detaljer

Klasse 1. 106. Høyre sving Dette er en 90-graders høyresving under marsj. Fører har lov til å kommandere hunden når de begynner på øvelsen.

Klasse 1. 106. Høyre sving Dette er en 90-graders høyresving under marsj. Fører har lov til å kommandere hunden når de begynner på øvelsen. Klasse 1 Skilt Rallylydighet Beskrivelse 101. Sitt Fører går inntil øvelsesskiltet. Fører gjør holdt og hunden setter seg i utgangsstilling. Når dette er utført kommanderer fører hunden til å følge med

Detaljer

Veiviser til vilbli.no for rådgivere

Veiviser til vilbli.no for rådgivere Veiviser til vilbli.no for rådgivere Hva inneholder vilbli.no? en innholdsfortegnelse til denne veiviseren Hva er vilbli.no? vilbli.no er søkernes hovedkilde til informasjon om videregående opplæring.

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

Modul nr. 1094 Gjør Matte! 1-4 trinn.

Modul nr. 1094 Gjør Matte! 1-4 trinn. Modul nr. 1094 Gjør Matte! 1-4 trinn. Tilknyttet rom: Ikke tilknyttet til et rom 1094 Newton håndbok - Gjør Matte! 1-4 trinn. Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse

Detaljer

Overslag FRA A TIL Å

Overslag FRA A TIL Å Overslag FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overslag 2 2 Grunnleggende om overslag 2 3 Å gjøre overslag 6 4 Forsiktighetsregler 7 4.1 Når overslaget ikke

Detaljer

HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK

HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK FAG: TRINN: Engelsk 1 og 2.trinn KOMPETANSEMÅL: - Finne ord og uttrykk som er felles for engelsk og eget morsmål. MÅL FOR AKTIVITET: Elevene skal repetere

Detaljer

Skogens røtter og menneskets føtter

Skogens røtter og menneskets føtter Elevhefte Skogens røtter og menneskets føtter Del 1 Frøspiring og vekst NAVN: Skogens røtter og menneskets føtter Frøspiring og vekst Innhold Del 1 Frøspiring og vekst... 1 1. Alle trær har vært et lite

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Hvor mye er 1341 kr delt på 2?

Hvor mye er 1341 kr delt på 2? Hvor mye er 1341 kr delt på 2? 10 1 4 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall

Detaljer

Vurdering FOR læring. Fra mål og kriterier til refleksjon og læring. Line Tyrdal. 24.september

Vurdering FOR læring. Fra mål og kriterier til refleksjon og læring. Line Tyrdal. 24.september Vurdering FOR læring Fra mål og kriterier til refleksjon og læring Line Tyrdal 24.september Sarah Hva gjør Sarah i stand til å snakke slik hun gjør? Hvordan? Når? Hvem? VURDERINGS- KULTUR Hvorfor? Hvordan

Detaljer

S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2.

S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2. /14/016 S1 014 høst LØSNING matematikk.net S1 014 høst LØSNING Contents DEL EN Oppgave 1 x 10 = x(x 5) x + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7± x = x = 5 lg( ) + = 5 x lg( ) = x = 10 lg( x ) 10 x =

Detaljer