Geometri. A1A/A1B, vår 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Geometri. A1A/A1B, vår 2009"

Transkript

1 Geometri A1A/A1B, vår mars 2009

2 1. Grunnleggende begreper 2. Areal 3. Kongruens og formlikhet 4. Periferivinkler og Thales setning 5. Pytagoras setning 6. Romfigurer, overflate og volum 7. Undervisning i geometri Sidetallene refererer til Matematikk for Lærere 1 (Breiteig Venheim, 2005), kap. 6.

3 Innledning Geometriske objekter finnes overalt: Former og symmetri i natur Arkitektur og kunst Teknikk og vitenskap Geometri i matematikken er et logisk oppbygd fagområde med aksiomer, setninger og bevis. Samspill mellom ren og anvendt geometri: ingeniørarbeid, informatikk, navigasjon 2

4 1. Grunnleggende begreper i geometri ( 6.2 Punkt: Ingen utstrekning. Merker en posisjon. (Rett) Linje: Utstrekning i én dimensjon. Fortsetter i uendelighet i begge retninger. Inneholder uendelig mange punkter Plan: Flat, med utstrekning i to dimensjoner. To punkter i planet bestemmer ei linje, og to linjer bestemmer et punkt med mindre de er parallelle. Disse begrepene er idealiserte: For eksempel, enhver fysisk fremstilling av et punkt har en viss utstrekning, men et matematisk punkt har ingen lengde, areal eller volum. 3

5 Linjestykke: en sammenhengende bit av ei linje. Linjestykket avgrenset av punktene P og Q kalles P Q eller QP. Stråle: Ei halv linje, avgrenset av ett endepunkt. Vinkel: Dannes av to stråler (vinkelbeinene) med felles endpunkt (vinkelens topppunkt). Området mellom vinkelbeinene kalles for vinkelområdet. Når to linjer skjærer hverandre, danner de to par toppvinkler. Parallelle linjer: To linjer i planet som ikke skjærer hverandre. 4

6 Kurve: Et 1-dimensjonalt geometrisk objekt. Hvis ikke det har endpunkter, er den lukket. Hvis ikke det skjærer seg selv, er det enkel. Mangekant: En enkel, lukket kurve som er satt sammen av linjestykker. Vi kaller en mangekant med n kanter for en n-kant. En mangekant er regulær hvis alle kantene og vinklene er like store. Konvekst område: Et område slik at hvert linjestykke mellom to punkt på omkretsen er inneholdt i figuren. 5

7 Ulike vinkler Rett vinkel: 90, en fjerdedel av en hel sirkel Spissvinkel: mellom 0 og 90 Stump vinkel: større enn 90 Likevinkel: 180. Komplementvinkler: til sammen 90 Supplementvinkler: til sammen 180 Nabovinkler: supplementvinkler med et felles vinkelbein 6

8 Trekanter Setning: Vinkelsummen i en trekant er 180. (Vi gav et bevis for dette, som brukte det at vekselvinkler dannet av ei linje som krysser to parallelle linjer er like store.) Noen spesielle trekanter Likebeint: Minst to sider er like lange. Likesidet: Alle tre sider er like lange. Spiss trekant: Alle vinklene er mindre enn 90. Rettvinklet trekant: Én vinkel er 90. Stump trekant: Én vinkel er større enn 90. 7

9 Noen spesielle firkanter Trapes: Minst to sider er parallelle. Parallelogram: Motstående sider er parvis parallelle. Rektangel: Alle fire vinklene er rette. Rombe: Alle sidene er like lange. Kvadrat: Regulær firkant. Drake: To og to nabosider er like lange. 8

10 Sirkelen Radius: Et linjestykke fra sentrum til et punkt på omkretsen Sektor: Et område avgrenset av to radier og en sirkelbue mellom dem Sekant: Ei linje som skjærer sirkelen i to punkter Korde: Et linjestykke mellom to punkt på omkretsen Diameter: En korde som går gjennom sentrum Segment: Et område avgrenset av en korde og en sirkelbue mellom kordens endpunkter Tangent: Ei linje som berører sirkelen i ett punkt 9

11 Når vi lager figurer, har vi begrepene om å konstruere, der vi kun får lov å bruke passer og linjal, og å tegne, der vi har lov å bruke andre hjelpemiddel som gradskive. Grunnleggende konstruksjoner Vinkler: å halvere; 60 ; 30 ; 90 ; 45 Normaler: å nedfelle fra et punkt til ei linje; å oppreise fra et punkt på ei linje; midtnormalen til et linjestykke Tangenten til en sirkel fra et punkt Omsirkel og innsirkel til en trekant (s. 248) 10

12 Noen praktiske tips for konstruksjon 1. Det kan være en fordel å lage en arbeidstegning før man setter i gang, hvis figuren er komplisert. 2. Det å skille tydelig mellom hjelpelinjer og figuren har både logiske og didaktiske fordeler. Derfor er det bra om man bruker en hard blyant (2H, 3H eller 4H) til konstruksjonslinjene, og en mykere blyant (H eller HB) til selve figuren. På tavla kan man bruke en annen farge eller en annen stil (f.eks. stiplet) til konstruksjonslinjene. 11

13 Et geometrisk sted (s ) er en samling med punkter som oppfyller ett eller flere bestemte krav. Noen eksempler: Sirkel med radius r og sentrum O: Mengden av alle punkter som ligger et avstand r fra punktet O Midtnormalen til et linjestykke AB: Mengden av alle punkter som ligger like langt fra A og B Halveringslinja til en vinkel: Mengden av alle punkter som ligger like langt fra vinkelbeinene Parallellene i avstand d fra ei linje l: Mengden av alle punkter som ligger et avstand d fra l 12

14 2. Areal Et mål for todimensjonal utstrekning; for en flatestørrelse. Standardenheten er et kvadrat. Et kvadrat med kanter 1 meter lang, har areal 1 kvadratmeter (1m 2 ); et kvadrat med kanter 1km lang har areal 1 kvadratkilometer (1km 2 ) osv. Eksempler Formler for areal av et kvadrat; rektangel; trekant; parallelogram; trapes; sirkel (s ) 13

15 3. Kongruens og formlikhet Definisjon: To figurer er kongruente dersom den ene kan legges oppå den andre og dekke den nøyaktig (evt. etter en speiling). Alle tilsvarende avstander og vinkler er like. To trekanter er kongruente dersom vi har SVS, VSV, SSS eller SsV (s. 261). 14

16 Definisjon: To figurer F og G er formlike dersom det finnes en korrespondanse mellom punktene på F og punktene på G, samt et reelt tall k, slik at alltid om to punkter A og B på F korresponderer henholdsvis til A og B på G, så er A B = k AB. Tallet k kalles for målestokken. Figuren G er en forstørrelse av F hvis k > 1 og en forminskselse hvis k < 1. Hvis k = 1, da er figurene faktisk kongruente. Trekanter: To trekanter er formlike hvis og bare hvis vinklene er parvis like. Da er forholdet mellom korresponderende sider likt. Dette følger fra transversalsetningen (s ). Transversalsetningen kan også brukes til å beregne ukjente lengder i trekanter, og som begrunnelse for en konstruksjon som deler ei linje i et gitt forhold. Se s. 264 og mappeoppgave 4. 15

17 4. Periferivinkler og Thales setning Defn.: En periferivinkel i en sirkel er en vinkel med topppunkt på sirkelens omkrets, og en sentralvinkel er en vinkel med topppunkt i sentrum av sirkelen. Thales setning gir en relasjon mellom en periferivinkel og en sentralvinkel som spenner over den samme buen. Setningen og et bevis kan finnes på s Den har (minst!) to interessante følger: 1. Periferivinkler som spenner over den samme buen er like store. 2. En periferivinkel som spenner over en halv sirkel er en rett vinkel. 16

18 5. Pytagoras setning Definisjon: I en rettvinklet trekant, kalles den lengste siden for hypotenus og hver av de andre sidene kalles katet. Hypotenusen er alltid motstående til den rette vinkelen. Setning (Pytagoras): I en rettvinklet trekant med kateter a opg b og hypotenus c, gjelder c 2 = a 2 + b 2. Det er utrolig mange forskjellige bevis for denne setningen. Vi gir et veldig visuelt bevis, som kan være av indisk opprinnelse (s. 279). Pytagoras setning har mange anvendelser, f.eks. å beregne avstand å konstruere rettvinkler 17

19 Sidebemerkning algebra/tallteori Pytagoreiske tripler: tripler med hele tall a, b og c slik at c 2 = a 2 + b 2. Eksempel: = = = 17 2 Det finnes uendelig mange slike tripler. For hvert par positive hele tall s, t der s t, er en Pytagoreisk triple. s 2 t 2, 2st, s 2 + t 2 Hvilke s og t gir oss eksemplene ovenfor? 18

20 6. Romfigurer Tredimensjonale former: terning, prisme, pyramid, kule, kjegle, sylinder, torus... En polyeder en en romfigur som er avgrenset av flate mangekanter. Hvilke av de ovennevnte romfigurene er polyedre? Der nøyaktig to flater møtes, har vi en kant. Der tre eller flere flater møtes, har vi et hjørne. Et regulært polyeder er et polyeder som er begrenset av regulære mangekanter som alle er kongruente, og der alle hjørnene er like. For eksempel, en tetraeder eller en terning. Det finnes bare fem regulære polyedre, de såkalte Platonske legemene: Tetraeder, terning, oktaeder, dodekaeder og ikosaeder. 19

21 Overflateareal og volum På samme måte som planfigurer har omkrets og areal, har romfigurer overflateareal og volum. I begge tilfelle er disse begrepene henholdsvis utstrekningene til figurens rand og innhold. Eksempler: Terning; prisme; sylinder; kjegle; kule (s ) 20

22 7. Undervisning i geometri I tidligere læreplaner hadde geometri et deduktivt preg. I K06 vektlegges også kreativitet og praktiske anvendelser, samt bruk av digitale midler. Geometri er med helt fra 1. klasse. 21

23 Van Hieles modell En modell for utvikling av elevenes forståelse for geometri (s ; sjekk gjerne et par kilder til hvis du har mulighet) 1. Visualisering Figurer klassifiseres kun etter det visuelle inntrykket de gjør. 2. Analyse Figurer kjennes ut ifra sine egenskaper; f.eks., en rombe har fire sider som er like lange. 3. Abstraksjon og uformell deduksjon Forståelse for klasser med figurer og relasjoner mellom dem; f.eks., et kvadrat er også et rektangel. Logisk resonnement kan forstås, men vedkommende ser ikke alltid behov for det. 22

24 4. Deduksjon Logiske bevis, som produserer setninger fra antagelser, kan gjennomføres. 5. Stringens Forståelse for ulike systemer med aksiomer som fører til forskjellige geometrier. 23

25 Van Hiele-modellen dreier seg om en hierarkisk utvikling. I motsetning til Piagets stadier, er utviklingen avhengig av modenhet, ikke (nødvendigvis) alder. Det hevdes at mange vanskeligheter for elever oppstår fordi at undervisning foregår ett eller flere nivå ovenfor elevenes nivå. Hvert trinn har sitt eget språk, som ikke forstås av elever i tidligere faser. Ulike form for bevis : Ofte bruker vi for eksempel konstruksjoner med passer og linjal som aksiomer, uten bevis. Dette kan være passende for elever på nivå 2 3 som ikke ennå ser behovet for et bevis for slike påstand. 24

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1

Detaljer

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten

Detaljer

ivar richard larsen/geometri, oppsummert/ Side 1 av 25

ivar richard larsen/geometri, oppsummert/ Side 1 av 25 Side 1 av 25 INNHOLDSFORTEGNELSE INNHOLDSFORTEGNELSE... 2 DEFINISJON... 4 LÆREPLAN I MATEMATIKK FELLESFAG... 4 NOEN GUNNLEGGENDE GEOMETRISKE BEGREPER... 4 Punkt... 4 Linje... 4 Linjestykke... 4 Stråle...

Detaljer

Matematisk juleverksted

Matematisk juleverksted GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til

Detaljer

1 Å konstruere en vinkel på 60º

1 Å konstruere en vinkel på 60º 1 Å konstruere en vinkel på 60º Vi skal konstruere en 60º vinkel med toppunkt i A. Høyre vinkelbein skal ligge langs linja l. Slå en passende sirkelbue om A. Sirkelbuen skjærer l i et punkt B. Slå en sirkelbue

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning: Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene

Detaljer

Om former og figurer Mønster

Om former og figurer Mønster Tre grunnleggende geometriske prosesser (Fosse&Munter): - Romforståelse - Formgjenkjenning - Målingsforståelse Om former og figurer Mønster Barn oppdager matematikk kap.g Sogndal 15.02.17 Solbjørg Urnes

Detaljer

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter.

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter. Trekanter GeoGebra er godt egnet til å tegne trekanter og eksperimentere med dem. Vi skal nå se på hvordan vi kan tegne trekanter når vi kjenner en eller flere sider eller vinkler. Vi skal også se på hvordan

Detaljer

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Geometri Noen sentrale begrep Nord-Gudbrandsdalen, 20.-23.10.14 Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Eksempelundervisning Tema på eksempelundervisningen denne gangen var Geometri, men

Detaljer

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern: Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit

Detaljer

Geometriske morsomheter trinn 90 minutter

Geometriske morsomheter trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

3.4 Geometriske steder

3.4 Geometriske steder 3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere

Detaljer

Geometriske morsomheter 8. 10. trinn 90 minutter

Geometriske morsomheter 8. 10. trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,

Detaljer

Forelesning 1, 10.01: Geometri før Euklid

Forelesning 1, 10.01: Geometri før Euklid Forelesning 1, 10.01: Geometri før Euklid Antikk Geometri før Grekerne (Egypt, Kina, Babylonia) 1. er forhold mellom sirkelens omkretsen (den er lengde av sirkelpereferi) og diameteren, SIRKELEN = omkretsen

Detaljer

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008. Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

1.14 Oppgaver. Løsningsforslag

1.14 Oppgaver. Løsningsforslag til oppgaver i avsnitt.4.4 Oppgaver..4. Konstruer tangenten til en sirkel fra et punkt utenfor sirkelen..4. A og B er to punkter i planet. Konstruer det geometriske stedet for toppunktet til en vinkel

Detaljer

Løsningsforslag uke 42

Løsningsforslag uke 42 Løsningsforslag uke 42 Oppgave 2 (Eksamen 2008). La,, være hjørnene i en trekant i planet, og la de motstående sidene ha lengdene a, b, c. Punktet D på linjen er slik at D står normalt på. La være det

Detaljer

Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?

Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9

Detaljer

En presisering av kompetansemålene

En presisering av kompetansemålene En presisering av kompetansemålene - med vekt på aktiviteter Mål for kompetanse, og innhold? M87: Innholdsplan, eks geometri 5.-7. trinn: Geometriske begreper: Punkt, linjestykke, rett linje, kurve, vinkel

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Kul geometri - volum og overflate av kulen

Kul geometri - volum og overflate av kulen Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Eit internasjonalt môlesystem, ogsô kalla det metriske systemet

Eit internasjonalt môlesystem, ogsô kalla det metriske systemet SI-systemet Lengder Masse Volum Eit internasjonalt môlesystem, ogsô kalla det metriske systemet Den grunnleggjande SI-eininga for môling av lengder er meter. Symbolet for meter er m. Den grunnleggjande

Detaljer

GeoGebra U + V (Elevark)

GeoGebra U + V (Elevark) GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

3Geometri. Mål. Grunnkurset K 3

3Geometri. Mål. Grunnkurset K 3 Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,

Detaljer

Lokal læreplan 9 trinn matematikk

Lokal læreplan 9 trinn matematikk Lokal læreplan 9 trinn matematikk Lærebok: Gruntal Antall uker Geometri i planet Gruntall 9 153-198 11 utføre, beskrive og grunngi geometriske konstruksjoner med passer og linjal (og dynamiske geometriprogram)

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr:

Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr: Tema: Juleverksted Aktiviteter: 2 typer julekurv Stjerne Tidsbruk: 4 timer Utstyr: Glanspapir Saks Linjal Passer Blyant Anskaffelse av utstyr: Beskrivelse: 1) Julekurver Lag to eksempler på julekurver

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 1 7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: utvikle, og bruke metodar for hovudrekning, overslagsrekning og skriftleg rekning,

Detaljer

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A.

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. R1 kapittel 5 Geometri Løsninger til oppgavene i boka 5.1 a Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. 5. a Vi bruker GeoGebra

Detaljer

1. π π er forholdet mellom sirkelens omkretsen (den er lengde av sirkelpereferi) og diameteren.

1. π π er forholdet mellom sirkelens omkretsen (den er lengde av sirkelpereferi) og diameteren. Geometri før Euklid og Euklids Elementene Mye av material ned er fra matematikk.no Antikk Geometri før Grekerne (Egypt, Kina, Babylonia) 1. π π er forholdet mellom sirkelens omkretsen (den er lengde av

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Geometri Vi på vindusrekka

Geometri Vi på vindusrekka Geometri Vi på vindusrekka Rektangel og kvadrat... 2 Trekant... 3 Sirkel... 6 Omkrets... 7 Omkrets av sirkel... 9 Pi... 11 Areal... 13 Punkt... 18 Linje... 19 Kurve... 20 Vinkel... 21 Normal... 22 Parallelle

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)

Detaljer

Geometri med GeoGebra Del 2

Geometri med GeoGebra Del 2 Geometri med GeoGebra Del 2 Å endre linjestil eller farge, og vise navn på objekt Vi kan endre farge og stil på hjelpelinjer for å framheve det objektet vi egentlig skal lage. Ved hjelp av ikonene på stilmenyen

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Normaler og vinkler. Å tegne normaler. To verktøy er aktuelle når vi skal tegne normaler: Normal linje og Midtnormal. Aschehoug 1

Normaler og vinkler. Å tegne normaler. To verktøy er aktuelle når vi skal tegne normaler: Normal linje og Midtnormal. Aschehoug 1 Normaler og vinkler I dette opplæringsløpet lærer du ulike metoder for å tegne normaler og vinkler samt å måle vinkler. Det du lærer i dette løpet skal du bruke senere når du skal tegne trekanter og figurer

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Kapittel 1 Tall...

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold Geometriske avbildninger og symmetri A2A/A2B Høgskolen i Vestfold 6. november 2009 Innhold 1. Symmetri 2. Avbildninger 3. Isometrier 4. Egenskaper ved avbildninger 5. Symmetrigrupper Kilde for forelesningen:

Detaljer

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

GEOMETRI I PLANET KRISTIAN RANESTAD

GEOMETRI I PLANET KRISTIAN RANESTAD GEOMETRI I PLANET KRISTIAN RANESTAD Abstract. Dette kompendiet er laget for et etterutdanningskurs i geometri, og det gir bakgrunn for og supplerer forelesningene i kurset samtidig som det inneholder relevante

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Kapittel 1 Tall...

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

Sum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell.

Sum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell. NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ Mal መሕበሪ መስመር Tabell ሰሌዳ ዝርዝራት Vunnet Tapt Uavgjort 3 2 4 Søylediagram ቻርት( ዓንዲ ሓባሪ ሰሌዳ) 100 90 80 70 60 50 40 30 20 10 0 Øst Vest Nord Stolpediagram ቻርት( ዓንዲ

Detaljer

Bildet er fra Colorado i USA og viser et vanningssytem som har flere navn, blant annet circle pivot irrigation.

Bildet er fra Colorado i USA og viser et vanningssytem som har flere navn, blant annet circle pivot irrigation. LÆRERENS D IGITALBOK 3 LDB Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler Kapittel 3 er geometrikapitlet. På 8. trinn har vi valgt å konsentrere oss om konstruk

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Dynamisk geometriprogram... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 Punkt og sirkler... 5 Punkt... 5 Sirkel... 6 Lagre... 6 To nyttige verktøy: «Flytt eller

Detaljer

Basisoppgaver til 1P kap. 3 Geometri

Basisoppgaver til 1P kap. 3 Geometri Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

5 Geometri. Trigonometri

5 Geometri. Trigonometri MTEMTIKK: 5 Geometri. Trigonometri 5 Geometri. Trigonometri Ordet geometri kan deles opp i geo, som betyr jord eller land, og metri, som betyr å måle. Geometri kan oversettes med jordmåling eller landmåling.

Detaljer

Platonske legemer i klasserommet

Platonske legemer i klasserommet Platonske legemer i klasserommet Kristian Ranestad 13. mai 2005 2 Innhold Forord iii 1 Innledning 1 2 Regulære mangekanter 3 3 Platonske legemer 7 3.1 Dualitet eller søskenforhold................... 12

Detaljer

Kul geometri - overflateareal og volum av kuler

Kul geometri - overflateareal og volum av kuler Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Tessellering og mangekanter:

Tessellering og mangekanter: Tessellering og mangekanter: 1. Hva menes med et tessellering? 2. Hva mener vi når vi sier at en figur tessellerer? 3. Hva er en mangekant? 4. Hva menes en regulær mangekant? 5. Regulære mangekanter kan

Detaljer

Kul geometri - overflateareal og volum av kuler

Kul geometri - overflateareal og volum av kuler Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2017-2018 Side 1 av 8 Periode 1: UKE 33-39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere faste

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

GeoGebra. Kurshefte for mellom- og ungdomstrinnet. Bjørn Ove Thue

GeoGebra. Kurshefte for mellom- og ungdomstrinnet. Bjørn Ove Thue GeoGebra Kurshefte for mellom- og ungdomstrinnet Bjørn Ove Thue 1 Om GeoGebra GeoGebra er et dynamisk verktøy som forener geometri, algebra og numeriske utregninger. Programmet er gratis og kan lastes

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

Kurshefte GeoGebra. Barnetrinnet

Kurshefte GeoGebra. Barnetrinnet Kurshefte GeoGebra Barnetrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes ned

Detaljer

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

1 Euklidsk geometri. 1.1 Grunnbegreper og notasjoner

1 Euklidsk geometri. 1.1 Grunnbegreper og notasjoner 1 Euklidsk geometri Geometri er et gammelt fag med røtter tilbake til den egyptiske og mesopotamiske oldtida. Euklid forsøkte å bygge opp geometri som en aksiomatisk teori i sitt verk Elementer, dvs. han

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Geometri

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Geometri QED 1 7 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Kapittel.3 3. For eksempel: a) b) c) d) 1 e) Kapittel.4 6. 7. Denne oppgaven kan det være greit å vente med til etter

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men del

Detaljer

Heldagsprøve i R1-8.mai 2009 DEL 1

Heldagsprøve i R1-8.mai 2009 DEL 1 Oppgave 1 Heldagsprøve i R1-8.mai 2009 Løsningsskisser DEL 1 I et koordinatsystem med origo O 0,0 har vi gitt punktene A 1,3, B 3,2 og C t,5. 1. Bestem t slik at AB AC. 2. Bestem t slik at AB AC. 3. Bestem

Detaljer

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse R1-6.1-6.4 Geometri Løsningsskisse I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30 a) Hvilke kongruente trekanter finner du her? b) Hvilke formlike trekanter finner du her? c) Finn alle vinklene

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Universell Matematikk Ungdom etter læreplanmål

Universell Matematikk Ungdom etter læreplanmål Universell Matematikk Ungdom etter læreplanmål Læreplanmål Kapittel Innhold Tall og algebra Sammenligne og regne med hele tall, desimaltall, brøk, prosent, promille, tall på standardform og uttrykke slike

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Løsningsforslag, eksamen MAT104 våren 2013

Løsningsforslag, eksamen MAT104 våren 2013 Løsningsforslag, eksamen MAT104 våren 2013 Oppgave 1 (35%) La ( ) a) Bruk definisjonen på den deriverte til å finne ( ). Løsning: ( ) ( ) ( ) ( ) ( ) ( ) ( ). b) Hva er stigningstallet til ( ) når? Løsning:

Detaljer

Løsningsforslag til eksamen i MAT101 høsten 2015

Løsningsforslag til eksamen i MAT101 høsten 2015 sforslag til eksamen i MAT101 høsten 2015 Oppgave 1 (vekt 30 %) a) Gjør om tallene til det angitte tallsystemet i) 632 syv = ti ii) 346 ti = åtte : i) 632 syv = 6 7 2 + 3 7 + 2 = 317 ii) 346 ti = 5 8 2

Detaljer

OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD

OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD OPPGAVER I GEOMETRI REDIGERT AV KRISTIAN RANESTAD Oppgaver merket med * er vanskeligere enn de andre. OPPGAVE 1 a) Bevis at en firkant har en omskrevet sirkel hvis og bare hvis motstående vinkler er supplementære

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 20. september v e + f = 2

Oppgaver MAT2500. Fredrik Meyer. 20. september v e + f = 2 Oppgaver MAT2500 Fredrik Meyer 20. september 2014 Oppgave 1. Beskriv et polyeder med 5 hjørner og 6 sider der alle sidene er trekanter. Beskriv to polyedre med 6 hjørner og 8 sider der alle sidene er trekanter.

Detaljer