Geometri. Mål. for opplæringen er at eleven skal kunne

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Geometri. Mål. for opplæringen er at eleven skal kunne"

Transkript

1 8 1

2 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal

3 1.1 Vinkelsummen i mangekanter På figuren til høyre har vi tegnet to linjer som skjærer hverandre. Vinklene u og v kaller vi toppvinkler. Toppvinkler er alltid like store. ermed er u = v. v u Toppvinkler er like store. På figuren til høyre er det ei linje som krysser to parallelle linjer. Vinklene u og v kaller vi samsvarende vinkler ved parallelle linjer. e er alltid like store, slik at u = v. Videre er v og w toppvinkler. ermed er v = w. Men ettersom u = v, er også u = w. u w v Samsvarende vinkler ved parallelle linjer er like store. Vi skal nå bruke regelen ovenfor til å vise at summen av vinklene i en trekant er 180. Vi tegner en trekant B og trekker ei linje gjennom slik at den er parallell med B. u v l Ettersom B er parallell med l, er vinkelen u på figuren lik og vinkelen v lik B. ermed er + B + = u + v + = u + + v = 180 B Summen av vinklene i en trekant er 180.? Oppgave 1.10 På figuren til høyre har vi tegnet en trekant B. Linjestykket B er parallelt med. Bruk figuren til å vise at vinkelsummen i trekanten B er 180. v B u Sinus 1T > Geometri

4 ? Oppgave 1.11 Nedenfor har vi tegnet to firkanter. el firkantene i to trekanter og finn deretter vinkelsummen i firkantene. Oppgave 1.12 a) Tegn noen ulike femkanter og finn summen av vinklene i dem. b) Hva er summen av vinklene i en sekskant? c) Finn en formel for summen av vinklene i en n-kant. Oppgave 1.13 I en regulær mangekant er alle sidene like lange og alle vinklene like store. a) Finn vinkelen mellom sidekantene i en regulær femkant. b) Finn en formel for vinkelen mellom sidekantene i en regulær n-kant. 1.2 Vinkler i formlike figurer Når vi forstørrer eller forminsker og eventuelt speilvender en figur, får vi en formlik fi gur. e to husgavlene nedenfor er formlike. u v Vinklene u og v kaller vi samsvarende vinkler i de to figurene.? Oppgave 1.20 a) Bruk en vinkelmåler og mål vinklene u og v i de to figurene ovenfor. Hva finner du? b) Mål de andre samsvarende vinklene i de to figurene. Hva finner du? 11

5 I to formlike figurer er samsvarende vinkler like store. Fra grunnskolen vet vi at to trekanter er formlike hvis vinklene er parvis like store. Når vi skal undersøke om to trekanter er formlike, er det nok å vise at to av vinklene er parvis like store. a må de siste vinklene også være like, for summen av vinklene skal være 180. To trekanter er formlike hvis to av vinklene i den ene trekanten er like store som to av vinklene i den andre trekanten. Noe tilsvarende gjelder ikke for figurer med mer enn tre kanter. Vi arbeider derfor oftest med trekanter når vi skal undersøke om figurer er formlike. EKSEMPEL Vis at de to trekantene på figuren er formlike. 82 F B E Løsning: Vi ser at =. I B er summen av vinklene 180. ermed er B = = 45 ermed er B = E. To av vinklene i B er altså lik to av vinklene i EF. Trekantene er derfor formlike.? Oppgave 1.21 B og EF er formlike. I B er = 41,7 og B = 53,3. Finn vinklene i EF Sinus 1T > Geometri

6 EKSEMPEL I firkanten B er sidene B og parallelle. La E være skjæringspunktet mellom diagonalene. Vis at BE er formlik med E. E B Løsning: Ettersom B og er parallelle sider, er BE = E. Vinklene EB og E er toppvinkler. ermed er EB = E. ltså er to av vinklene i BE lik to av vinklene i E. Vi har da vist at BE er formlik med E.? Oppgave 1.22 Firkanten B og firkanten EFGH er formlike. På figurene nedenfor fi nner du noen av vinklene. 63 H B E F G Finn de ukjente vinklene i firkanten B ved blant annet å bruke vinkelsummen i en firkant fra oppgave Oppgave 1.23 Merk av to punkter på den lange siden av et 4-ark. Merk av to punkter på motsatt side av arket. Trekk linjer fra punktene på den ene siden til punktene på den andre siden slik at linjene skjærer hverandre. Forklar hvorfor du får fram to formlike trekanter. 13

7 ? Oppgave 1.24 Tegn en trekant B. La være et punkt på. La E ligge på B slik at E er parallell med B. Forklar hvorfor E er formlik med B. E B 1.3 Lengder i formlike figurer? Oppgave 1.30 e to husgavlene nedenfor er formlike. E J I H B F G a) FG og B er samsvarende sider. Mål lengden av sidene og regn ut forholdet mellom FG og B. b) Finn forholdet mellom de samsvarende sidene GH og B. c) Finn forholdet mellom andre samsvarende sider i de to femkantene. d) Finn forholdet mellom diagonalene FI og. e) Finn forholdet mellom andre diagonaler. f) Hvilken regel har vi? I to formlike figurer er forholdet mellom samsvarende lengder det samme uansett hvilke samsvarende lengder vi velger Sinus 1T > Geometri et er ikke bare forholdet mellom rette linjer som er det samme i formlike figurer. Forholdet mellom samsvarende krumme linjer er også det samme.

8 EKSEMPEL e to firkantene nedenfor er formlike. Finn lengden av EH. 7,0 cm H G 15,0 cm B E 6,0 cm F Løsning: e to figurene er formlike, og da er forholdet mellom samsvarende sider i de to firkantene det samme. et gir denne likningen: EH = EF B EH 7,0 cm EH 7,0 cm EH = 2,8 cm 6,0 cm = 15,0 cm 6,0 cm 7,0 cm = 15,0 cm 7,0 cm EKSEMPEL Grete skal lage et blomsterbed i hagen. vstanden tvers over bedet skal være 250 cm som vist på figuren nedenfor. Hun lager en modell av bedet i papir der avstanden tvers over er 20 cm. På denne modellen er omkretsen 90 cm. a) Finn omkretsen av bedet. b) Langs kanten av bedet vil Grete legge stein. Steinene er kvadratiske med sidekant 15 cm. Hvor mange steiner trenger hun? 250 cm 20 cm 15

9 Løsning: a) La omkretsen av bedet være x. et gir denne likningen: x 90 cm = 250 cm 20 cm x = cm 20 x = 1125 cm Omkretsen er 11,25 m. b) Ettersom omkretsen er 1125 cm og hver stein er 15 cm, blir tallet på steiner 1125 : 15 = 75. Grete trenger 75 steiner.? Oppgave 1.31 B og EF er formlike. Finn lengden av sidene F og EF. 5,6 cm 4,4 cm F 8,0 cm B 6,0 cm E Oppgave 1.32 Bjarne Beck vil lage sin egen ballbinge. en skal være 9,00 m lang. Han lager en modell som er 30 cm lang og 18 cm bred. Bjarne finner ut at det er 75 cm rundt hele modellen. Ballbingen skal være formlik med modellen. 18 cm 30 cm a) Finn bredden av ballbingen. b) Langs kanten av bingen vil Bjarne bruke sponplater med bredde 60 cm. Hvor mange slike plater trenger han? Sinus 1T > Geometri

10 et er ikke alltid de figurene vi arbeider med, er snudd samme veien. a kan det være litt vanskelig å se hvilke sider som er samsvarende sider. Husk at samsvarende sider alltid går mellom like vinkler. EKSEMPEL På figuren til venstre nedenfor er B og parallelle. Trekantene BE og E er dermed formlike. 50 cm 50 cm E E 64 cm 64 cm 80 cm B 80 cm B a) Hvilken side i E samsvarer med E? b) Finn lengden av E. Løsning: a) EB og E er toppvinkler. Vi har på figuren til høyre ovenfor satt én strek over vinkel tegnet i de vinklene for å vise at de er like store. Ettersom B og er parallelle, er =. Her har vi satt to streker over vinkeltegnene. Samsvarende sider går mellom like vinkler, og dermed er E og E samsvarende sider. E og E er samsvarende sider. b) et gir dette forholdet: E E = B E = 50 cm 64 cm 64 cm 80 cm 50 cm E = 64 cm 80 cm E = 40 cm 17

11 ? Oppgave 1.33 I B er B = 12,0 cm, = 8,0 cm og B = 7,2 cm. Punktet ligger på B slik at B = 4,0 cm. Punktet E ligger på B slik at BE =. a) Tegn figur. b) Forklar hvorfor BE er formlik med B. c) Finn de samsvarende sidene i de to trekantene. d) Finn lengden av E og av BE. Vi vet at det er et fast forhold mellom samsvarende sider i to formlike tre kanter. Vi skal nå vise at forholdet mellom to sider i en trekant er lik forholdet mellom de to samsvarende sidene i en formlik trekant. Vi tegner da to formlike trekanter. a c b d Mellom lengdene av samsvarende sider er det da samme forhold. et gir a c = b c d d a c d = b c d c d a d = b c Vi deler med b d på begge sidene av likhetstegnet og forkorter. a d b d = b c b d a b = c d Vi har nå vist at forholdet mellom lengdene a og b av to sider i den ene trekanten er lik forholdet mellom de to samsvarende lengdene c og d i den andre trekanten. et samme gjelder for alle geometriske figurer. I to formlike figurer er forholdet mellom to sider i den ene figuren lik forholdet mellom de samsvarende sidene i den andre figuren Sinus 1T > Geometri

12 EKSEMPEL e to trekantene nedenfor er formlike. Bruk regelen på forrige side til å finne lengden av F. 4,8 cm F 5,4 cm B 2,9 cm E Løsning: Forholdet mellom to sider i EF er lik forholdet mellom de samsvarende sidene i B. ermed er F E = B F 2,9 cm 4,8 cm = 5,4 cm 2,9 cm F 2,9 cm = 4,8 cm 2,9 cm 2,9 cm 5,4 cm 4,8 cm F = 2,9 cm 5,4 cm F = 2,6 cm? Oppgave 1.34 Løs oppgave 1.31 ved hjelp av regelen på forrige side. Oppgave 1.35 På et horisontalt underlag står det to flaggstenger ved siden av hverandre. en ene stanga er 20 m høy, og den andre er 10 m høy. Vi binder hver flagg snor til foten av den andre flaggstanga slik at begge snorene blir stramme. Hvor høyt oppe krysser snorene hverandre? 20 m 10 m 19

13 1.4 Rettvinklede trekanter I trekanten nedenfor er = 90. En slik trekant der en av vinklene er 90, kaller vi en rettvinklet trekant. Katet Katet Hypotenus B I en rettvinklet trekant er hypotenusen den siden som ligger rett overfor den rette vinkelen. Vinkelbeina til den rette vinkelen kaller vi kateter. Vi trekker en normal fra hjørnet med den rette vinkelen og ned på hypotenusen. B B er formlik med B. Grunnen er at de to trekantene har en vinkel på 90, og i tillegg har de B felles. er formlik med B, for begge trekantene har en vinkel på 90 og felles. Normalen fra hjørnet med den rette vinkelen og ned på hypotenusen deler en rettvinklet trekant B i to formlike trekanter. Begge trekantene er formlike med B. EKSEMPEL I den rettvinklede trekanten har vi felt ned en normal fra til hypotenusen B. Hvor langt er det fra til fotpunktet for normalen? 4 cm 3 cm B 5 cm Sinus 1T > Geometri

14 Løsning: er formlik med B. ermed er = B = B = 4 cm 5 cm 4 cm = 3,2 cm? Oppgave 1.40 I B er B = 12 cm, = 13 cm og B = 90. Vi feller ned en normal fra B til hypotenusen. Hvor langt er det fra til fotpunktet for normalen? Oppgave 1.41 Linjestykket B er 13 cm. Et punkt ligger på B slik at = 4 cm. Vi reiser opp en normal i punktet og plasserer et punkt på denne normalen. Hvor høyt oppe på normalen må vi plassere punktet for at B skal bli rettvinklet? Oppgave 1.42 La a og b være lengdene av katetene i en rettvinklet trekant, og la c være lengden av hypotenusen. Vis at høyden h ned på hypotenusen er gitt ved h = ab c Oppgave 1.43 Snekker ndersen skal kontrollere om en vegg står vinkelrett på golvet. Hun tar to tynne bjelker som hun legger oppå hverandre slik at de er samlet i den ene enden. en lengste bjelken er nesten dobbelt så lang som den korte. ndersen borer et hull gjennom begge bjelkene. Hullet er nøyaktig midt på den lange bjelken. Hun skrur de to bjelkene sammen ved hjelp av en bolt gjennom hullet og får dermed redskapet på figuren. Forklar hvorfor snekker ndersen kan bruke dette redskapet til å kontrollere at vinkler er

15 1.5 Pytagorassetningen Fra ungdomsskolen kjenner du pytagorassetningen. en gir sammenhengen mellom lengdene av katetene og hypotenusen i en rettvinklet trekant. Setningen er oppkalt etter Pytagoras, en gresk matematiker og filosof som levde for omtrent 2500 år siden. I en rettvinklet trekant der katetene har lengdene a og b, er lengden c av hypotenusen gitt ved c 2 = a 2 + b 2 enne setningen kjente babylonerne til lenge før Pytagoras levde. Setningen bærer likevel hans navn fordi vi tror det var han som var den første som beviste den. Vi skal nå bruke det vi lærte om rettvinklede trekanter i kapittel 1.4, til å bevise pytagorassetningen. Vi tegner en rettvinklet trekant der = 90. Vi feller ned en normal fra til hypotenusen B og kaller fotpunktet for. b a c x c x B Vi setter B = x. a er = c x. B og B er formlike. et gir B B = B B a x = c a a a = c x a 2 = cx Vi kryssmultipliserer. og B er også formlike. et gir = B b c x = c b b b = c (c x) b 2 = c 2 cx Vi kryssmultipliserer Sinus 1T > Geometri

16 Vi summerer og får a 2 + b 2 = cx + (c 2 cx) = cx + c 2 cx = c 2 ermed har vi bevist pytagorassetningen c 2 = a 2 + b 2 EKSEMPEL En rektangulær parkeringsplass er 39 m lang og 24 m bred. Hvor langt er det fra et hjørne til motsatt hjørne? c 39 m 24 m Løsning: Når vi trekker diagonalen, får vi fram en rettvinklet trekant der katetene har lengdene 39 m og 24 m. Vi bruker pytagorassetningen: c 2 = (39 m) 2 + (24 m) 2 = 1521 m m 2 = 2097 m 2 c = 2097 m 2 = 45,8 m et er ca. 46 m fra et hjørne til motsatt hjørne. Vi kan også bruke pytagorassetningen til å finne en katet når vi kjenner hypotenusen og den andre kateten. a må vi løse en andregradslikning. EKSEMPEL En stige som er 3,00 m lang, står inntil en vegg. Stigen står på et horisontalt underlag. en står 1,20 m fra veggen ved bakken. Hvor høyt opp på veggen når stigen? 23

17 Løsning: La x være avstanden opp langs veggen. Her har hypotenusen lengden 3,00 m. Pytagorassetningen gir denne likningen: x 2 + (1,20 m) 2 = (3,00 m) 2 x 2 + 1,44 m 2 = 9,00 m 2 x 2 = 9,00 m 2 1,44 m 2 x 2 = 7,56 m 2 x = 7,56 m 2 x = 2,75 m Stigen når 2,75 m opp på veggen. x 1,20 m 3,00 m? Oppgave 1.50 I en rettvinklet trekant er lengdene av katetene 5 cm og 12 cm. Hvor lang er hypotenusen? Oppgave 1.51 Ei dør er 0,90 m bred og 2,05 m høy. Hvor lang er diagonalen i døra? Oppgave 1.52 I en rettvinklet trekant er hypotenusen 8,5 cm lang, og den ene kateten er 5,4 cm lang. Hvor lang er den andre kateten? Oppgave m h Ei flaggstang står på et horisontalt underlag. En 20 m lang line er festet til toppen av stanga. Når vi strekker lina, når den 8,72 m ut fra foten av stanga. Hvor høy er flaggstanga? 8,72 m Oppgave 1.54 ette er en kinesisk oppgave som minst er år gammel: Et 10 m høyt bambusrør er knekt uten at de to delene er falt fra hverandre. en nederste delen står fortsatt på den horisontale bakken. Enden av den øverste delen har truffet bakken 3 m fra rota. Hvor høyt over bakken er bruddstedet? Sinus 1T > Geometri

18 Noen ganger bruker vi pytagorassetningen til å kontrollere om en trekant er rettvinklet. La a, b og c være lengden av sidene i en trekant. La c være den lengste siden. Vi kan bevise at hvis sidene passer i a 2 + b 2 = c 2, så er tre kanten rettvinklet. Hvis sidene ikke passer, er trekanten ikke rettvinklet. EKSEMPEL En bilderamme er 34,4 cm lang og 21,2 cm høy. iagonalen er 41,0 cm. Er ramma rettvinklet? 41,0 cm 21,2 cm Løsning: 34,4 cm Vi undersøker hvor lang diagonalen må være hvis ramma skal være rett. a må diagonalen være hypotenusen i en rettvinklet trekant. Vi bruker pytagorassetningen: c 2 = (34,4 cm) 2 + (21,2 cm) 2 = 1632,8 cm 2 c = 1632,8 cm 2 = 40,4 cm iagonalen skal være 40,4 cm. Ettersom den er 41,0 cm, er ikke ramma rettvinklet. Ramma er ikke rettvinklet.? Oppgave 1.55 Sidene i en trekant har lengdene 4,2 cm, 5,6 cm og 7,0 cm. Er trekanten rettvinklet? 1,50 m Oppgave 1.56 En tømrer skal sette opp to vegger som skal stå vinkelrett på hverandre. Han merker av et punkt på den ene veggen 2,00 m i avstanden 1,50 m fra hjørnet. Han merker også av et punkt på den andre veggen i avstanden 2,00 m fra hjørnet. Hvis avstanden mellom de to punktene er 2,50 m, er vinkelen 90. Forklar hvorfor dette er riktig. 2,50 m? 25

19 1.6 real I et parallellogram er grunnlinja g = 8,4 cm og høyden h = 4,3 cm. realet er = g h = 8,4 cm 4,3 cm = 36,12 cm 2 4,3 cm Hvor mange siffer bør vi ha med i svaret? 8,4 cm Hvis grunnlinja og høyden er målte verdier, kan vi regne med at grunnlinja g er mellom 8,35 cm og 8,45 cm. Høyden h er mellom 4,25 cm og 4,35 cm. en minste verdien av arealet er dermed 8,35 cm 4,25 cm = 35,5 cm 2. en største verdien er 8,45 cm 4,35 cm = 36,8 cm 2. realet er altså et sted mellom 35,5 cm 2 og 36,8 cm 2. lt vi kan si, er derfor at arealet er omtrent 36 cm 2. Når vi regner ut arealet, bør vi altså runde av slik: = g h = 8,4 cm 4,3 cm = 36,12 cm 2 36 cm 2 Her var både lengden og bredden oppgitt med to siffer. a tar vi med to siffer i svaret også. Vi runder av til 36 cm 2. Når vi multipliserer tall som er målte verdier, tar vi med omtrent like mange siffer i svaret som det er siffer i de tallene som er oppgitt. Legg merke til at vi teller sifrene og ikke desimalene. Bruk regelen ovenfor når du regner disse oppgavene.? Oppgave 1.60 En trekant har grunnlinje g = 7,8 cm og høyde h = 5,2 cm. a) Finn arealet av trekanten. b) Hvor mange siffer bør du ha i svaret i oppgave a? Oppgave 1.61 Finn lengden av sidene i et kvadrat som har samme areal som en sirkel der radien er 2,4 cm. Oppgave 1.62 I et rektangel er det 3,8 cm forskjell på lengden og bredden. Omkretsen er 36,4 cm. Finn arealet av rektangelet Sinus 1T > Geometri

20 Noen ganger må vi bruke pytagorassetningen til å finne lengder når vi skal regne ut et areal. EKSEMPEL B er et trapes der B og er de parallelle sidene. B er lengre enn. Videre er B = 90, B = 3,0 cm, = 5,4 cm og = 4,0 cm. a) Finn lengden av B. b) Finn arealet av trapeset B. Løsning: a) Først tegner vi en figur og setter på målene. 5,4 cm 4,0 cm 3,0 cm E B eretter feller vi ned en normal E fra på B. EB blir et rektangel, derfor er EB = 5,4 cm og E = 3,0 cm. Vi kan bruke pytagorassetningen til å finne E. E 2 + E 2 = 2 E 2 + (3,0 cm) 2 = (4,0 cm) 2 E 2 + 9,0 cm 2 = 16,0 cm 2 E 2 = 16,0 cm 2 9,0 cm 2 = 7,0 cm 2 E = 7,0 cm = 2,6 cm Nå kan vi finne B. B = E + EB = 2,6 cm + 5,4 cm = 8,0 cm b) realet av trapeset blir = (B + ) E 2 13,4 cm 3,0 cm = 20 cm 2 2 = (8,0 cm + 5,4 cm) 3,0 cm 2 27

21 ? Oppgave 1.63 I parallellogrammet B er B = 12,3 cm, og = 7,2 cm. Normalen fra til B treffer B 2,2 cm fra. 12,3 cm 7,2 cm h 2,2 cm E B a) Finn avstanden h mellom B og. b) Regn ut arealet av parallellogrammet. Oppgave 1.64 Regn ut arealet av trapeset. 4,8 cm 5,2 cm 6,8 cm B Oppgave 1.65 Figuren viser et vertikalt snitt gjennom loftsetasjen i et hus som er 8,00 m bredt og 12,00 m langt. Loftsstua går midt gjennom hele huset. vstandene og B er 5,00 m. Skilleveggene E og FG er 1,80 m høye. F 5,00 m 1,80 m 1,80 m G N E B 8,00 m a) Finn bredden av loftsstua. b) Finn arealet av loftsstua Sinus 1T > Geometri

22 SMMENRG Formlike figurer I to formlike figurer er alle samsvarende vinkler like store, og forholdet mellom alle samsvarende lengder er det samme. Forholdet mellom to sider i en figur er også lik forholdet mellom de to samsvarende sidene i en formlik figur. Formlike trekanter To trekanter er formlike hvis to av vinklene er parvis like. Rettvinklet trekant I en rettvinklet trekant er en av vinklene 90. Normalen fra hjørnet med den rette vinkelen og ned på hypotenusen deler en rettvinklet trekant B i to formlike trekanter. Begge trekantene er formlike med B. Pytagorassetningen I en rettvinklet trekant der hypotenusen har lengden c og katetene har lengdene a og b, er c 2 = a 2 + b 2 Formler for arealet av noen figurer Rektangel med lengde a og bredde b: = ab Kvadrat med sidelengde s: = s 2 Trekant med grunnlinje g og høyde h: Parallellogram der to parallelle sider har lengden g og avstanden mellom sidene er h: Trapes der de to parallelle sidene har lengdene a og b, og der avstanden mellom sidene er h: = gh 2 = gh = Sirkel med radius r: = r 2 (a + b) h 2 29

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid

Geometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid løse praktiske problemer knyttet til lengde, vinkel, areal og volum

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning: Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene 1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km

Detaljer

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4. Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

3Geometri. Mål. Grunnkurset K 3

3Geometri. Mål. Grunnkurset K 3 Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,

Detaljer

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

Areal av polygoner med GeoGebra

Areal av polygoner med GeoGebra 1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer

Detaljer

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store

Detaljer

1 Å konstruere en vinkel på 60º

1 Å konstruere en vinkel på 60º 1 Å konstruere en vinkel på 60º Vi skal konstruere en 60º vinkel med toppunkt i A. Høyre vinkelbein skal ligge langs linja l. Slå en passende sirkelbue om A. Sirkelbuen skjærer l i et punkt B. Slå en sirkelbue

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

Matematikk. Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL

Matematikk. Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL Matematikk 1P Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL Geometri «Schaukeln» (Svingninger), 195, av den russiske kunstneren Vassily Kandinsky (1866 1944) AKTIVITET: Maksimalt

Detaljer

GeoGebra U + V (Elevark)

GeoGebra U + V (Elevark) GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

Trigonometri og geometri

Trigonometri og geometri 6 Trigonometri og geometri 6.1 Sinus til en vinkel Oppgave 6.110 a) Hvilken av disse påstandene er riktig? 1) sin = 3) sin = 2) sin = b) Hvilken av disse påstandene er riktig? b a Oppgave 6.111 ruk lommeregneren

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Basisoppgaver til 1P kap. 3 Geometri

Basisoppgaver til 1P kap. 3 Geometri Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate

Detaljer

5 Geometri. Trigonometri

5 Geometri. Trigonometri MTEMTIKK: 5 Geometri. Trigonometri 5 Geometri. Trigonometri Ordet geometri kan deles opp i geo, som betyr jord eller land, og metri, som betyr å måle. Geometri kan oversettes med jordmåling eller landmåling.

Detaljer

E.1: Kunne regne ut areal av formlike figurer når målestokken er oppgitt, med omgjøring av enheter E.2: Kunne anvende regelen om samsvarende

E.1: Kunne regne ut areal av formlike figurer når målestokken er oppgitt, med omgjøring av enheter E.2: Kunne anvende regelen om samsvarende 11. mai 2014 INNHOLD INNHOLD... 2 INNLEDNING... 4 STEGARK... 5 GJENNOMGANG AV HVERT STEG... 11 NIVÅ A: FINNE LENGDER I FORMLIKE FIGURER NÅR MÅLESTOKKEN ER OPPGITT13 A.1: En figur, hvor minst en lengde

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

Løsning eksamen 2P våren 2010

Løsning eksamen 2P våren 2010 Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Løsning del 1 utrinn Høst 13

Løsning del 1 utrinn Høst 13 //06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Tessellering og mangekanter:

Tessellering og mangekanter: Tessellering og mangekanter: 1. Hva menes med et tessellering? 2. Hva mener vi når vi sier at en figur tessellerer? 3. Hva er en mangekant? 4. Hva menes en regulær mangekant? 5. Regulære mangekanter kan

Detaljer

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen?

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen? Omkrets For å finne omkretsen til en mangekant, må alle sidelengdene summeres. Omkrets måles i lengdeenheter. Elever forklarer ofte at omkrets er det er å måle hvor langt det er rundt en figur. Måleredskaper

Detaljer

Kul geometri - volum og overflate av kulen

Kul geometri - volum og overflate av kulen Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008. Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at

Detaljer

Forelesning 1, 10.01: Geometri før Euklid

Forelesning 1, 10.01: Geometri før Euklid Forelesning 1, 10.01: Geometri før Euklid Antikk Geometri før Grekerne (Egypt, Kina, Babylonia) 1. er forhold mellom sirkelens omkretsen (den er lengde av sirkelpereferi) og diameteren, SIRKELEN = omkretsen

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.

Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet. Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

3.4 Geometriske steder

3.4 Geometriske steder 3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere

Detaljer

Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren:

Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren: Oppgave ABCD og EFGH er like store kvadrater. AB EF og AD EH. Det fargelagte området har areal. Hvor stort er arealet til kvadratet ABCD? A B C ½ D 3/ E Det kommer an på hvordan man plasserer kvadratene

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

Mangekanter og figurtall

Mangekanter og figurtall Mangekanter og figurtall ra papirbretting til algebra og funksjoner eskrivelse Opplegget starter med bretting av noen regulære mangekanter og en analyse av dem Her er vinkelberegning, kongruente og formlike

Detaljer

Kapittel 3 Geometri Mer øving

Kapittel 3 Geometri Mer øving Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Helge Jellestad, Laksevåg videregående skole Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Kart er en grei tilnærming til trigonometri. Avstanden mellom koordinatene

Detaljer

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern: Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

4 Funksjoner og andregradsuttrykk

4 Funksjoner og andregradsuttrykk 4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A.

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. R1 kapittel 5 Geometri Løsninger til oppgavene i boka 5.1 a Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. 5. a Vi bruker GeoGebra

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)

Detaljer

Etter en lang ferie er det en del regneferdigheter vi må friske opp:

Etter en lang ferie er det en del regneferdigheter vi må friske opp: Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44 Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng)

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng) Høsten 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

Geometri Vi på vindusrekka

Geometri Vi på vindusrekka Geometri Vi på vindusrekka Rektangel og kvadrat... 2 Trekant... 3 Sirkel... 6 Omkrets... 7 Omkrets av sirkel... 9 Pi... 11 Areal... 13 Punkt... 18 Linje... 19 Kurve... 20 Vinkel... 21 Normal... 22 Parallelle

Detaljer

Løsningsforslag til prøveeksamen i MAT101 høsten 2016

Løsningsforslag til prøveeksamen i MAT101 høsten 2016 Løsningsforslag til prøveeksamen i MAT101 høsten 2016 Oppgave 1 (vekt 30 %) a) Gjør om tallene til det angitte tallsystemet i) 754 ni = ti ii) 255 ti = syv i) 754 ni = 7 9 2 + 5 9 + 4 = 616 ii) 255 ti

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Matematisk julekalender for 8.-10. trinn, 2015

Matematisk julekalender for 8.-10. trinn, 2015 Matematisk julekalender for 8.-10. trinn, 2015 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 38 dag 1 1. På en hylle står det tre bøker. Den første boken er like tykk som de to andre til sammen. Den andre boken er på 150 sider, mens den tredje boken er

Detaljer

Del 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler)

Del 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) Del 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) 2 p Oppgave 1.1 Regn ut. a) 2,88 + 0,12 = c) 4,8 : 1,2 = b) 3,4 2,7 = d) 16

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 9 dag 1 1. Kjetil og Øystein skal kjøre fra Stavanger til Oslo i hver sin bil. Kjetil starter først og holder en konstant fart på 75 km/t. Øystein starter en

Detaljer

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co. MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 3 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag

Detaljer

Eit internasjonalt môlesystem, ogsô kalla det metriske systemet

Eit internasjonalt môlesystem, ogsô kalla det metriske systemet SI-systemet Lengder Masse Volum Eit internasjonalt môlesystem, ogsô kalla det metriske systemet Den grunnleggjande SI-eininga for môling av lengder er meter. Symbolet for meter er m. Den grunnleggjande

Detaljer

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det? Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som

Detaljer

Geometri. A1A/A1B, vår 2009

Geometri. A1A/A1B, vår 2009 Geometri A1A/A1B, vår 2009 27. mars 2009 1. Grunnleggende begreper 2. Areal 3. Kongruens og formlikhet 4. Periferivinkler og Thales setning 5. Pytagoras setning 6. Romfigurer, overflate og volum 7. Undervisning

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer MTMTIKK: Nye geometriske figurer Nye geometriske figurer. Høydeling. et gylne snitt Vi tar for oss linjestykket og avmerker et punkt P. Vi sier at P høydeler linjestykket hvis forholdet mellom det lengste

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

Løsning del 1 utrinn Vår 10

Løsning del 1 utrinn Vår 10 /15/016 Løsning del 1 utrinn Vår 10 - matematikk.net Løsning del 1 utrinn Vår 10 Contents Oppgave 1 4 + 465 = 799 854 8 = 56 c) d) 64 :4 = 66 Oppgave c) d)650 g = 650 : 1000 kg = 6,50kg Oppgave 4, 7 =

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 1 7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: utvikle, og bruke metodar for hovudrekning, overslagsrekning og skriftleg rekning,

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Niels Henrik Abels matematikkonkurranse 2012 2013

Niels Henrik Abels matematikkonkurranse 2012 2013 okmål Niels Henrik bels matematikkonkurranse 2012 201 Første runde 8. november 2012 Ikke bla om før læreren sier fra! belkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet

Detaljer

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

Areal. Arbeidshefte for lærer

Areal. Arbeidshefte for lærer Arbeidshefte for lærer Areal Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene gjengir formelen for hvordan man finner arealet av et rektangel i stedet for

Detaljer

5.4 Den estetiske dimensjonen

5.4 Den estetiske dimensjonen 5.4 Den estetiske dimensjonen I et brev til sin elskerinne, Sophie Volland, skriver redaktøren av Encyclopedi, Denis Diderot (1713 1774): «Michelangelo søker etter hvilken form han skal gi kuppelen i St.

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

Løsning eksamen 1P våren 2010

Løsning eksamen 1P våren 2010 Løsning eksamen 1P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylt diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509, 62

Detaljer

Hvor i all verden? Helge Jellestad

Hvor i all verden? Helge Jellestad Helge Jellestad Hvor i all verden? Vi presenterer her deler av et et undervisningsopplegg for ungdomstrinnet og videregående skole. Hele opplegget kan du lese mer om på www.caspar.no/tangenten/2009/hvor-i-all-verden.pdf.

Detaljer

ivar richard larsen/geometri, oppsummert/ Side 1 av 25

ivar richard larsen/geometri, oppsummert/ Side 1 av 25 Side 1 av 25 INNHOLDSFORTEGNELSE INNHOLDSFORTEGNELSE... 2 DEFINISJON... 4 LÆREPLAN I MATEMATIKK FELLESFAG... 4 NOEN GUNNLEGGENDE GEOMETRISKE BEGREPER... 4 Punkt... 4 Linje... 4 Linjestykke... 4 Stråle...

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Eneeth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkefa BOKMÅL 6 Pytaoraetninen I en rettvinklet trekant er den ene vinkelen 90. katet hypotenu Den lente iden kaller vi hypotenu. De

Detaljer