Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen?
|
|
- Torbjørg Christoffersen
- 8 år siden
- Visninger:
Transkript
1 Omkrets For å finne omkretsen til en mangekant, må alle sidelengdene summeres. Omkrets måles i lengdeenheter. Elever forklarer ofte at omkrets er det er å måle hvor langt det er rundt en figur. Måleredskaper som ofte brukes til å måle omkrets er linjal, meterstokk eller målband. Omkrets kan være lengden rundt en idrettsbane eller når en hage eller en hundegård skal inngjerdes, må man kjenne til omkretsen for å beregne hvor mye materiale som trengs. Kantstein rundt sykkelstativ eller blomsterbed markerer omkretsen til det avgrensede området. Introduksjonsoppgave: Før elevene går i gang med oppgavene på de neste sidene, bør de ha en viss forståelse av hva omkrets er. Det er viktig at elevene har erfaring med å måle omkrets i praktiske sammenhenger for eksempel i uteskolen eller at de har erfaring med å bruke konkretiseringsmateriell for eksempel fyrstikker til å lage figurer med ulik omkrets. Det er en stor fordel at elevene i forkant enten har arbeidet med oppgaven nedenfor eller noe lignende. 1. I et rutenett har hver rute en omkrets på 4 lengdeenheter. Bruk et rutenett og tegn, langs linjene i rutenettet, ulike mangekanter hvor omkretsen til hver figur er 36 lengdeenheter. 2. Hvor mange forskjellige rektangler er det mulig å tegne når lengden på sidene skal være i hele lengdeenheter? Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen? Videre utforsking: Dersom omkretsen i en trekant er 20 cm, kan den lengste sida i trekanten da være 10 cm? Hvorfor? Hvorfor ikke? Hvor lang er de to andre sidene? Kan man lage trekanter med alle mulige mål på sidene eller finnes det noen begrensninger? Vis til eksempel som forklarer hvorfor det blir slik. Arbeid med omkrets: Oppgavene på de neste sidene har ulike innfallsvinkler og spørsmålsformuleringer knyttet til begrepet omkrets. Oppgavene er varierte og er ikke nødvendigvis plassert i en rekkefølge med stigende vanskegrad. Under hver oppgave finnes tips til nøkkelspørsmål som lærer kan stille til elever underveis og eksempler på hvordan oppgaven kan utvides eventuelt forenkles. Fasit finnes på siste side. Alle oppgavene er hentet fra Kengurukonkurransen og er merket med bokstavene E(Ecolier), B(Benjamin) eller C(Cadet) som viser hvilket oppgavesett de er hentet fra. Når det for eksempel står B7-2015, viser 7 til originalnummeret mens de fire siste sifrene står for hvilket år oppgaven var med i Kengurukonkurransen. Flere oppgaver finnes på 1
2 1. (B ) Bildet ved siden av viser to figurer som hver er satt sammen av fem biter. Bitene er helt like i begge figurene. Rektanglet har lengde 10 cm og bredde 5 cm. De andre bitene er kvartsirkler fra to forskjellige sirkler. Hvor stor er forskjellen mellom omkretsen til de to figurene? (A) 2,5 cm (B) 5 cm (C) 10 cm (D) 20 cm 30 cm Nøkkelspørsmål/tips: Er det nødvendig å regne ut omkretsen av hver figur? Hvorfor ikke? Legg like farger på de lengdene som er like lange i omkretsen til de to figurene. Eller gjør det motsatte: Legg farge på de lengdene i omkretsen som ikke finnes i begge figurene Lag og klipp en sirkel med radius 10 cm i papir, en sirkel med radius 5 cm og et rektangel med lengde 10 cm og bredde 5cm. Klipp sirklene i kvartsirkler. La elevene lage andre sammensatte figurer av fem av bitene slik det er gjort i originaloppgaven. Bitene i figuren må henge sammen dvs. de må dele en sidekant eller deler av en sidekant. Se eksempel til høyre. Lag forskjellige figurer med de samme brikkene og tegn rundt brikkene på et papir. Velg ut to figurer, eventuelt lag flere figurer, der differansen mellom omkretsen til figurene er lik 30 cm dvs. svaralternativ E. Er det mulig å lage to figurer hvor differansen mellom omkretsene bare er 2,5 cm dvs. alternativ A? Hvis ja, hvordan kan de to figurene se ut? Hvis nei, hvorfor er ikke det mulig? 2. (B5-2014) Et kvadrat med omkrets 48 cm deles i to like store rektangler. Vi setter disse to sammen til et nytt rektangel slik bildet viser. Hvor stor er omkretsen til det nye rektanglet? (A) 24 cm (B) 30 cm (C) 48 cm (D) 60 cm (E) 72 cm 2
3 Hvor lang blir sidene til det nye rektangelet? Forklar hvorfor det blir slik. Hva hvis vi fortsetter prosessen og deler det nye rektanglet slik figuren viser, hva skjer med lengden til den korteste sidekanten? Hva skjer med lengden til den lengste sidekanten i rektanglet? Hvordan øker omkretsen mellom to påfølgende rektangler? Lag en ny oppgave med en spørsmålsstilling slik at svaralternativ B blir riktig løsning. Hvilke mål har det kvadratet man starter med og deler opp da? Hva hvis svaret skal være 72 cm dvs. svaralternativ E? 3. (B ) Idun tegnet forskjellige figurer på seks kvadratiske ark slik bildet viser. Hun farget alle figurer mørk grå. Hvor mange av disse figurene har like stor omkrets som omkretsen til det arket de er tegnet på? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 Kan du finne felles lengder i figur og ark? Fargelegg gjerne. Hvilke av de fem figurene har like stor omkrets som omkretsen til det arket de er tegnet på? Hvordan vet vi det? Hvilke har det ikke og hvorfor har ikke disse figurene like stor omkrets som omkretsen til det arket de er tegnet på? Er omkretsen til figuren større enn omkretsen til arket eller motsatt? Dersom elevene tidligere har arbeidet med oppgave 1 (B ), kan kanskje noen av erfaringene derfra brukes her. Tegn figurer som har mindre omkrets enn omkretsen til det kvadratiske arket de er tegnet på. Tegn andre figurer som har samme omkrets som omkretsen til det arket de er tegnet på. 3
4 Kan noen av figurene med samme omkrets som arket endres litt slik at de fortsatt har samme omkrets? 4. (B ) Linjestykket AB er 24 cm. Den prikkete linja og linjestykket AB danner kvadrater. Hvor mange centimeter lang er den prikkete linja? (A) 48 cm (B) 72 cm (C) 96 cm (D) 106 cm (E) 120 cm Alle ser at den prikkete linja må være lengre enn 24 cm! Men hvor mye lengre er den? For å klare å løse denne oppgaven må elevene kjenne til egenskaper til et kvadrat. Hvilken egenskap til kvadratet er viktigst å vite her? Kjenner vi sidelengden til hvert kvadrat? Hvor lang er sidelengden til sammen i alle kvadratene? Spiller det noen rolle hvor mange kvadrater det er? Hva hvis det var bare hadde vært 1 kvadrat? Hvor lang ville den prikkete da linja ha blitt? 1. Hva hvis det samme linjestykket krysser over ei prikket linje slik at alle figurene som dannes er likesidete trekanter? (Se tegning nedenfor). 2. Hva hvis det dannes rektangler hvor bredden er halvparten så lang som lengden? (Se tegning nedenfor). Hvis man velger å arbeide med disse to problemstillingene, må elevene utfordres på å lage nye svaralternativer. 4
5 5. (C4-2010) Hvor stor er omkretsen til figuren? (A) 3a + 4b (B) 3a + 8b (C) 6a + 4b (D) 6a + 6b (E) 6a + 8 b Kan man finne sidekanter eller lengder som er like lange. Marker like lange sider med samme farge. Hvor lang er sidekanten til venstre? Hvor lang er den nederste sidekanten? Elever som tidligere ikke har arbeidet med algebra, kan prøve å skrive et uttrykk for omkretsen av denne figuren uten å trekke sammen. 1. La elevene lage lignende oppgaver til hverandre med tilhørende svaralternativ. 2. La elevene tegne en figur. Bruk samme spørsmålsstilling som originaloppgaven, men riktig løsning skal være et av de andre svaralternativene. 3. Bruk fyrstikker med to ulike lengder, lengde a og lengde b, lag lignende figurer og finn omkretsen. 6. (B ) Vi har fire pappremser som hver er 10 cm bred. I figur A er hver av pappremsene 25 cm lengre enn den forrige. Hvor mange centimeter større er omkretsen av figur B enn omkretsen av figur A? (A) 0 cm (B) 20 cm (C) 25 cm (D) 40 cm (E) 50 cm 5
6 Er det mulig å finne lengder som er like lange? Bruk gjerne farger. Er det nødvendig å regne ut omkretsen av hver figur? Lag nye figurer ved å sette sammen papirremsene på andre måter. Finn forskjellen mellom omkretsen til to og to figurer. Hvordan ser figuren ut med den korteste omkretsen? Hvordan lage en figur med lengste mulig omkrets? Hva er forskjellen mellom omkretsene til de to figurene? 7. (B ) Rektanglet ABCD er delt i fire mindre rektangler slik figuren viser. Omkretsen til tre av rektanglene er 11 cm, 16 cm og 19 cm. Det fjerde rektanglet har verken den største eller den minste omkretsen av de fire. Hvor stor omkrets har rektanglet ABCD? (A) 28 cm (B) 30 cm (C) 32 cm (D) 38 cm (E) 40 cm Tips/nøkkelspørsmål: Tegne hjelpefigur. Hvilke mål kjenner vi ut fra opplysningene i oppgaven? Skriv de målene som er kjent på hjelpefiguren, dvs. omkretsen til det minste og til det største rektanglet. Dersom elevene ikke kommer videre, kan omkretsen til det minste rektanglet splittes opp og skrives for eksempel som 2 + 3, ,5 hvor det enkelte målet kobles til en sidekant. Det samme gjøres med det største rektanglet som for eksempel kan ha målene 4 + 5, ,5. Noen elever vil kanskje da oppdage at sidelengdene i disse to rektanglene tilsvarer deler av sidelengden i rektanglet ABCD. Når omkretsen av det lille rektanglet og det største rektanglet er kjent, er summen av disse to omkretsene lik omkretsen av rektanglet ABCD. Ville vi på samme måte kunne klare å finne omkretsen til rektanglet ABCD dersom vi kjente omkretsen til det nest minste og det nest største rektanglet? Bruk ideen fra original oppgaven: Omkretsen til rektanglet PQRS er 38 cm. PQRS er også delt i fire mindre rektangler. Hva kan omkretsen til hvert av de fire mindre rektanglene være? 6
7 8. (C ) Rakel summerte lengden til tre sider i et rektangel. Summen ble 44 cm. Beate summerte også lengden til tre sider i det samme rektanglet. Hun fikk 40 cm. Hvor lang er omkretsen til rektanglet? (A) 42 cm (B) 56 cm (C) 64 cm (D) 84 cm (E) 112 cm Hvilke tre sider i rektanglet har Rakel summert når hun fikk 44 cm? Hvilke tre sider i rektanglet har Rakel summert når hun fikk 40 cm? Vet vi noe om lengden til den korteste og den lengste sida i rektanglet? Hva vet vi om forskjellen mellom de to? Hva hvis omkretsen til rektanglet hadde vært 112 cm lang (alternativ E)? Hva kan summen til tre sider i rektanglet da være? 7
8 Løsning på oppgaver med kort forklaring: Oppgave nr. Kenguru nr. Fasit Kort forklaring 1 B D Forskjellen mellom omkretsen til de to figurene er 20 cm. 2 B D Omkretsen til det nye rektanglet er 60 cm. 3 B C 4 figurer har samme omkrets som det kvadratiske papiret. 4 B B 72 cm 5 C E 6a + 8 b 6 B E 50 cm. Bredden og lengden på pappremsene betyr ingenting her. Det er kun de innbyrdes forskjellene mellom remsene en trenger å regne med for å finne ut at omkretsen av figur B blir 50 cm større enn figur A. 7 B B 30 cm. Når vi kjenner omkretsen av det største og det minste rektanglet, vil omkretsen av hele rektanglet ABCD være det samme som summen av omkretsen av de to. Dette kan illustreres slik: 8 C B 56 cm. Forskjellen mellom den lange side i rektanglet og den korte sida, er 4 cm. 8
Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:
Areal og omkrets Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene refererer til en lært formel for areal uten at vi vet om de skjønner at areal er et mål
Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.
Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm
Areal. Arbeidshefte for lærer
Arbeidshefte for lærer Areal Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene gjengir formelen for hvordan man finner arealet av et rektangel i stedet for
Resonnerende oppgaver
Resonnerende oppgaver Oppgavene på de påfølgende sidene inneholder flere påstander eller opplysninger. Opplysningene bygger på eller utfyller hverandre, og de stiller visse krav eller betingelser. Når
Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?
Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store
Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
Multiplikasjon 1. Introduksjonsoppgave:
Multiplikasjon 1 Multiplikasjon er en av de fire regneartene som i mange tilfeller er en effektiv måte å skrive og regne ut gjentatt addisjon på. Svaret i et multiplikasjonsstykke kalles produkt, og tallene
Kapittel 3 Geometri Mer øving
Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d
Kengurukonkurransen 2012
Kengurukonkurransen 2012 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren BENJAMIN 3 poeng 1. Basil skrev HEIA KENGURU på en plakat. Bare like bokstaver ble skrevet med samme farge.
Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.
Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider
H. Aschehoug & Co www.lokus.no Side 1
1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss
Kengurukonkurransen 2009
Kengurukonkurransen 2009 «Et sprang inn i matematikken» Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2009 Velkommen til Kengurukonkurransen! I år arrangeres den for femte gang i Norge.
Geometri. Mål. for opplæringen er at eleven skal kunne
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen
Kengurukonkurransen 2015
Kengurukonkurransen 2015 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren Kengurukonkurransen! I år arrangeres den for 11. gang i Norge. Dette heftet inneholder: Informasjon til
Kengurukonkurransen 2013
Kengurukonkurransen 2013 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2013 Velkommen til Kengurukonkurransen! I år arrangeres den for niende gang i Norge.
Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn
Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U
1.8 Digital tegning av vinkler
1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket
Kengurukonkurransen 2012
Kengurukonkurransen 2012 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) FASIT Fasit med korte kommentarer Mange matematiske problem kan løses på ulike måter. Følgende forslag gir ingen fullstendig
Hefte med problemløsingsoppgaver. Ukas nøtt 2008/2009. Tallev Omtveit Nordre Modum ungdomsskole
Hefte med problemløsingsoppgaver Ukas nøtt 2008/2009 Tallev Omtveit Nordre Modum ungdomsskole 1 Ukas nøtt uke 35 Sett hvert av tallene fra 1-9 i trekanten under, slik at summen langs hver av de tre linjene
Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren:
Oppgave ABCD og EFGH er like store kvadrater. AB EF og AD EH. Det fargelagte området har areal. Hvor stort er arealet til kvadratet ABCD? A B C ½ D 3/ E Det kommer an på hvordan man plasserer kvadratene
FASIT 1-5, ungdomsskole
FASIT 1-5, ungdomsskole 1. desember: Ved å bruke 91 små terninger kan du få til å bygge akkurat 2 større terninger. Hvor mange små terninger er det i den største av disse? Svar: 64 Tips: Kan ledsages av
Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland
Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland multiaden2013 1 Matematikkoppgaver kan være Lette Greie Vanskelige Og samme oppgave kan være på alle tre steder samtidig og i samme
Form og mål hva er problemet?
Form og mål hva er problemet? Ny GIV Finnmark våren 2014 Anne-Gunn Svorkmo 12-Feb-14 Måling Måling er å sammenligne en enhet knyttet til et element eller en situasjon mot et lignende element eller situasjon
Kapittel 5. Lengder og areal
Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
Fasit og løsningsforslag til Julekalenderen for mellomtrinnet
Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens
Kenguru - konkurransen
Kenguru - konkurransen > Et sprang inn i matematikken < Ecolier (4. 5. trinn) 2005 Hefte for læreren Arrangert av: Nasjonalt senter for Matematikk i Opplæringen i samarbeid med: Nationellt Centrum för
Kenguru - konkurransen
Kenguru - konkurransen > Et sprang inn i matematikken < Benjamin (6. 7. trinn) 006 Hefte for læreren Arrangert av: Nasjonalt senter for Matematikk i Opplæringen Velkommen til Kengurukonkurransen 006 Et
GeoGebra på mellomtrinnet
GeoGebra på mellomtrinnet innføring + UTFORSKING + problemløsing Mattelyst Vågå, 16. sept. 2015 Anne-Gunn Svorkmo og Susanne Stengrundet I LK06 for matematikk fellesfag står det følgende om digitale ferdigheter:
Lag figur med gitt areal
Areal Nr. Lag figur til arealet: Lag to figurer med areal: 6 ruter Lag figur med gitt areal Eleven skal lag en figur med oppgitt areal her i form av ruter på prikkeark. Eleven står her fritt til å velge
Areal av polygoner med GeoGebra
1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer
Matematisk julekalender for trinn, 2009
Matematisk julekalender for 8. - 10. trinn, 2009 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver med tilsammen 14 svar. Oppgavene kan løses uavhengig av hverandre, og alle svar tilsvarer
INNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
Lag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger
Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................
GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.
GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg
OVERFLATE FRA A TIL Å
OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c
1.7 Digitale hjelpemidler i geometri
1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene
LGU51005 A, Matematikk
Skriftlig eksamen i LGU51005 A, Matematikk 1 5-10 15 studiepoeng ORDINÆR EKSAMEN 10. desember 2013. BOKMÅL Sensur faller innen torsdag 9. januar 2014. Resultatet blir tilgjengelig på studentweb første
4. kurskveld: Brøk og geometri
4. kurskveld: Brøk og geometri I dag skal vi se på begrepet brøk, regning med brøk, og hvorfor de ulike regnereglene fungerer. Mange har bedre grep om desimaltall fordi regnereglene er lik regnereglene
Niels Henrik Abels matematikkonkurranse 2011 2012
Bokmål Niels Henrik Abels matematikkonkurranse 011 01 Første runde. november 011 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 0 flervalgsoppgaver som skal løses i løpet av
Matematisk julekalender for 5. - 7. trinn, 2009
Matematisk julekalender for 5. - 7. trinn, 2009 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette
GEOMETRISPILL; former, omkrets og areal.
GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til
03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS
03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...
Kapittel 7. Lengder og areal
Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,
Samme matematikkoppgave på 2./3. trinn og 10. trinn?
Samme matematikkoppgave på 2./3. trinn og 10. trinn? Anne-Gunn Svorkmo 27. april 2015 4-May-15 Sammenhenger i matematikk Valg av oppgaver Fagfokus i oppgaven Oppbygging av elevers forståelse Oppgave 3
Årsprøve i matematikk for 9. trinn Kannik skole
Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men
Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4
9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere
Del 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler)
Del 1 Skal leveres etter senest 2 timer. Maks: 51 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) 2 p Oppgave 1.1 Regn ut. a) 2,88 + 0,12 = c) 4,8 : 1,2 = b) 3,4 2,7 = d) 16
Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.
Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser
Mangekanter og figurtall
Mangekanter og figurtall ra papirbretting til algebra og funksjoner eskrivelse Opplegget starter med bretting av noen regulære mangekanter og en analyse av dem Her er vinkelberegning, kongruente og formlike
Matematikk på vitensenter-vis. Anne Bruvold Foreningen norske vitensenter/nordnorsk vitensenter anne@nordnorsk.vitensenter.no
Matematikk på vitensenter-vis Anne Bruvold Foreningen norske vitensenter/nordnorsk vitensenter anne@nordnorsk.vitensenter.no Litt om regionale vitensentre i Norge 1b 1. Nordnorsk vitensenter 1b. Nordnorsk
Fasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
Matematisk julekalender for 5. - 7. trinn, 2008
Matematisk julekalender for 5. - 7. trinn, 2008 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette
Når tallene varierer.
Når tallene varierer. Innføring i algebra med støtte i konkreter Astrid Bondø Ny GIV, februar/mars 2013 Når tallene varierer Det første variable skritt! Treff 10 Hesteveddeløp Rød og sort (Et Ess i Ermet,
Faktor terminprøve i matematikk for 9. trinn
Faktor terminprøve i matematikk for 9. trinn Høsten 2013 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal
Kapittel 5. Areal, omkrets, volum og overflate
Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at
Kengurukonkurransen 2010
Kengurukonkurransen 2010 «Et sprang inn i matematikken» CADET (9. 10. trinn) Hefte for læreren Kengurukonkurransen 2010 Velkommen til Kengurukonkurransen! I år arrangeres den for sjette gang i Norge. Dette
Øvingshefte. Geometri
Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter
Kengurukonkurransen 2012
Kengurukonkurransen 2012 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2012 Velkommen til Kengurukonkurransen! I år arrangeres den for åttende gang i Norge.
Årsplan i matematikk 5.klasse 2015/16
Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp
Faktor terminprøve i matematikk for 9. trinn
Faktor terminprøve i matematikk for 9. trinn Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men del
Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44
Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5
Problemløsing. Fra rike oppgaver til kenguruoppgaver 1. 4. trinn. Otta, 2. april 2013 Anne-Gunn Svorkmo
Problemløsing Fra rike oppgaver til kenguruoppgaver 1. 4. trinn Otta, 2. april 2013 Anne-Gunn Svorkmo Problem (en definisjon) 1) Et problem er en spesiell oppgave som en person ønsker eller har bruk for
Kengurukonkurransen 2018
2018 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange matematiske
Klasseledelse, fag og danning hva med klassesamtalen i matematikk?
Klasseledelse, fag og danning hva med klassesamtalen i matematikk? Ida Heiberg Solem og Inger Ulleberg Høgskolen i Oslo og Akershus GFU-skolen 21.01.15 L: Hva tenker du når du tenker et sektordiagram?
Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.
GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,
Eksamen REA3022 R1, Våren 2013
Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet
Terminprøve i matematikk for 8. trinn
Terminprøve i matematikk for 8. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:
NyGIV Regning som grunnleggende ferdighet
NyGIV Regning som grunnleggende ferdighet Yrkesfaglærere Hefte med utdelt materiell Tone Elisabeth Bakken 3.april 2014 På denne og neste fire sider er det kopier fra Tangentens oppgavehefte: MATEMATISKE
Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø
Eksempelundervisning utforsking Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Matematikfaget skal lære eleverne at formulere faglige spørgsmål, fastlægge manglende opplysninger, vende tingene
Kengurukonkurransen 2008 > Et sprang inn i matematikken <
Kengurukonkurransen 2008 > Et sprang inn i matematikken < Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2008 Velkommen til Kengurukonkurransen! I år arrangeres den for fjerde gang i Norge.
Kengurukonkurransen 2013
Kengurukonkurransen 2013 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2013 Velkommen til Kengurukonkurransen! I år arrangeres den for niende gang i Norge.
Matematisk julekalender for 8. - 10. trinn, 2008
Matematisk julekalender for. - 0. trinn, 200 Årets julekalender for.-0. trinn består av 0 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle svar tilsvarer en bokstav, og bokstavene finner
Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets
2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...
Kengurukonkurransen 2018
2018 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Hefte for læreren Oppgaver på bokmål Velkommen til Kengurukonkurransen! I år arrangeres den for 14. gang i Norge. Dette heftet inneholder: Informasjon
Sensorveiledning Oppgave 1
Sensorveiledning Oppgave 1 Figuren er riktig, og kandidaten skisserer en måte å jobbe med dette på som kan fungere for en elev. Figuren eller forklaringen er riktig. Unøyaktigheter ved håndtegning godtas.
GeoGebra U + V (Elevark)
GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:
ESERO AKTIVITET STORE OG SMÅ PLANETER. Lærerveiledning og elevaktivitet. Klassetrinn 5-6
ESERO AKTIVITET Klassetrinn 5-6 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 50 minutter Å: vite at de åtte planetene har forskjellige størrelser lære navnene på planetene
Kengurukonkurransen 2011
Kengurukonkurransen 2011 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2011 Velkommen til Kengurukonkurransen! I år arrangeres den for sjuende gang i Norge.
Kenguru - konkurransen
Kenguru - konkurransen > Et sprang inn i matematikken < Benjamin (6. 7. trinn) 2007 Hefte for læreren Arrangert av: Nasjonalt senter for Matematikk i Opplæringen Kengurukonkurransen 2007 Velkommen til
Matematisk julekalender for 1. - 4. trinn
Matematisk julekalender for 1. - 4. trinn Årets julekalender for 1. 4. trinn består av ni oppgaver. Alle oppgavene er laget i tre utgaver; lett, middels og vanskelig (merket med hhv. L, M og V). Alle tre
Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr:
Tema: Juleverksted Aktiviteter: 2 typer julekurv Stjerne Tidsbruk: 4 timer Utstyr: Glanspapir Saks Linjal Passer Blyant Anskaffelse av utstyr: Beskrivelse: 1) Julekurver Lag to eksempler på julekurver
Kengurukonkurransen 2015
Kengurukonkurransen 2015 «Et sprang inn i matematikken» Ecolier (4. 5. trinn) Hefte for læreren Kengurukonkurransen! I år arrangeres den for 11. gang i Norge. Dette heftet inneholder: Informasjon til læreren
Test, Geometri (1P) 2.1 Lengde og vinkler. 1) Hvor mange grader er en rett vinkel?
Test, Geometri (1P) 2.1 Lengde og vinkler 1) Hvor mange grader er en rett vinkel? 90 120 180 2) Hva menes med en spiss vinkel? En vinkel som er større enn 90 En vinkel som er større enn 180 En vinkel som
LOKAL LÆREPLAN Matte Trinn 5
LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal
Test, 2 Geometri. 2.1 Grunnleggende begreper og sammenhenger. 1T, Geometri Quiz løsning. Grete Larsen
Test, Geometri Innhold.1 Grunnleggende begreper og sammenhenger... 1. Mangekanter og sirkler... 6.3 Formlikhet... 10.4 Pytagoras setning... 16.5 Areal... 1.6 Trigonometri 1... 7.7 Trigonometri... 35 Grete
5.A Digitale hjelpemidler i geometri
5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene
Tangram. Astrid Bondø NSMO
Tangram Astrid Bondø NSMO T A N G R A M L E G E N D E N For lenge, lenge siden i det gamle Kina ville keiseren at tjeneren hans skulle bringe ham et kvadratisk stykke jade (bergart) Den uheldige tjeneren
Grunnleggende geometri
Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det
JULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
Adventskalender. Regning i kunst og håndverk
Adventskalender Regning i kunst og håndverk Laget av Eskil Braseth (Matematikksenteret) og Ingunn Thorland (Sunnland ungdomsskole) Dette undervisningsopplegget er inspirert av en oppgave hentet fra en
Modul nr. 1095 Gjør matte! 5-7 trinn
Modul nr. 1095 Gjør matte! 5-7 trinn Tilknyttet rom: Ikke tilknyttet til et rom 1095 Newton håndbok - Gjør matte! 5-7 trinn Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse
Terminprøve i matematikk for 9. trinn
Terminprøve i matematikk for 9. trinn Høsten 2015 Navn: Klasse: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer - senest kl. 11.00 Del
Kengurukonkurransen 2012
Kengurukonkurransen 2012 «Et sprang inn i matematikken» Ecolier (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2012 Velkommen til Kengurukonkurransen! I år arrangeres den for åttende gang i Norge.
Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai 2008
Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL. mai 008 EKSAMEN I MATEMATIKK 1. semester 10 studiepoeng Skolebasert lærerutdanning Tid 5 timer Tillatte hjelpemidler:
Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket.
11 Geometri 2 11.13 1 Tegn speilbildet til hver figur på arbeidsarket. 11.14 2 Tegn speilbildet til hver figur på arbeidsarket. 11.15 3 Tegn speilbildet til hver figur på arbeidsarket. 11.1 4 Parallellforskyv
.ASJONALE -ATEMATIKK 1M 3KOLENR
Delprøve 1M Du skal prøve så godt du kan å svare på alle oppgavene i dette heftet, selv om noen kan være vanskeligere eller annerledes enn du er vant til. Noen svar skal du regne ut, noen ganger skal du
Modellering i barnehagen
Modellering i barnehagen begrepsinnhold begrepsuttrykk ting, kontekst Marit J. Høines på hus, to sider, én spiss øverst, takras tak trekant 3 tre 3 mengde med 3 elementer, 1 + 2, mellom 2 og 4, halvparten
3Geometri. Mål. Grunnkurset K 3
Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,