Fasit til øvingshefte

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Fasit til øvingshefte"

Transkript

1 Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS

2 Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter røde b) 10 ruter blå c) 6 ruter grønne Svar på disse spørsmålene: d) Hvor stort areal er rødt? Svar: 4 ruter er røde e) Hvor stort areal er grønt? Svar: 6 ruter er grønne f) Hvor stor areal er blått? Svar: 10 ruter er blå. g) Hvor stort er arealet som du har fargelagt til sammen? Svar: Arealet av det jeg har fargelagt er 20 ruter. Oppgave 1.2 Hver av rutene i figuren over er 1 kvadratcentimeter. (Skrives slik: cm 2 ) a) Hvor mange cm 2 er røde? Svar: 4 cm 2 b) Hvor mange cm 2 er grønne? Svar: 6 cm 2 c) Hvor mange cm 2 er blå? Svar: 10 cm 2

3 Kartleggeren fasit Matematikk Mellomtrinn Geometri 2 Geometri Seksjon 1 Oppgave 1.3 Hvor mange cm 2 er hvert av de mørke rutenettene i figuren nedenfor? a) Arealet av dette rutenettet er 9 cm 2 b) Arealet er 18 cm 2 c) Arealet er 2 cm 2 d) Arealet er 6 cm 2 e) Arealet er 12 cm 2 Oppgave 1.4 Hvor stort areal, i cm 2, har en firkant som er: a) 5 cm lang og 3 cm bred Svar: 15 cm 2 b) 4 cm lang og 4 cm bred Svar: 16 cm 2 c) 10 cm lang og 5cm bred Svar: 50 cm 2 Oppgave 1.5 Tegn en firkant som har areal på 24 cm 2

4 Kartleggeren fasit Matematikk Mellomtrinn Geometri 3 Geometri Seksjon 1 Oppgave 1.6 Hvor mange kanter har figurene? a) Figuren har 6 kanter. Den kalles da en sekskant b) Figuren har 4 kanter. Den kalles da en firkant c) Figuren har 4 kanter. Den kalles da en firkant d) Figuren har 3 kanter. Den kalles da en trekant. e) Figuren har 12 kanter. Den kalles da en tolvkant. f) Figuren har 8 kanter. Den kalles da en åttekant. Oppgave 1.7 Skriv navnet på disse figurene: a) b) c) d) trekant rektangel kvadrat sirkel

5 Kartleggeren fasit Matematikk Mellomtrinn Geometri 4 Geometri Seksjon 2 Oppgave 2.1 Finn omkrets (O) og areal (A) av figurene, der hver rute er 1 1 cm: a) Omkrets er 10 cm Areal er 6 cm 2 b) Omkrets er 14 cm Areal er 12 cm 2 c) Omkrets er 4 cm Areal er 4 cm 2 d) Omkrets er 10 cm Areal er 8 cm 2 e) Omkrets er 12 cm Areal er 5 cm 2 f) Omkrets er 20 cm Areal er 24 cm 2 Oppgave 2.2 Bruk linjal og blyant og tegn disse figurene: a) et rektangel med areal på 8 cm 2 b) et kvadrat med areal på 16 cm 2 c) et rektangel med omkrets på 14 cm d) et kvadrat med omkrets på 20 cm

6 Kartleggeren fasit Matematikk Mellomtrinn Geometri 5 Geometri Seksjon 2 Oppgave 2.3 Her ser du en sirkel. Skriv navnene radius, sentrum, diameter og omkrets på riktige steder i sirkelen. sentrum radius diameter omkrets Oppgave 2.4 Finn omkretsen i sirkelen når diameteren er: a) 5 cm Svar: 15,7 cm b) 6,5 dm Svar: 20,4 dm c) 2,75 m Svar: 8,64 m d) 14,2 cm Svar: 44,6 cm Oppgave 2.5 Finn radius i sirkelen når diameteren er: a) 10 cm Svar: 5 cm b) 12 dm Svar: 6 dm c) 4,50 m Svar: 2,25 m d) 14 mm Svar: 7 mm Oppgave 2.6 Finn diameteren i sirkelen når radius er: a) 4 dm Svar: 8 dm b) 44 cm Svar: 88 cm c) 50 m Svar: 100 m d) 5,6 cm Svar: 11,2 cm

7 Kartleggeren fasit Matematikk Mellomtrinn Geometri 6 Geometri Seksjon 2 Oppgave 2.7 Bruk gradskive og mål vinklene a) Vinkelen er 60 b) Vinkelen er 110 c) Vinkelen er 75 d) Vinkelen er 110 e) Vinkelen er 105 Oppgave 2.8 Bruk gradskive og tegn vinkler som er: a) 60 b) 30 c) 75 d) 125 e) 82 f) 160 g) 25 h) 200 Oppgave 2.9 Skriv navn på disse vinklene: rett vinkel spiss vinkel stump vinkel

8 Kartleggeren fasit Matematikk Mellomtrinn Geometri 7 Geometri Seksjon 3 Oppgave 3.1 Under ser du noen terninger i forskjellig størrelse. S = 1 cm S = 1 dm S = 1 m Finn volumet av de tre terningene. Terning 1 har volum: 1 cm 1 cm 1 cm = 1 cm 3 Terning 2 har volum: 1 dm 1 dm 1 dm = 1 dm 3 Terning 3 har volum: 1 m 1 m 1 m = 1 m 3 Oppgave 3.2 Her ser du et rett firkantet prisme. Finn volumet av rette firkantede prismer når: a) l = 4 cm, b = 3 cm og h = 2 cm Svar: 24 cm 3 b) a) l = 6 dm, b = 1,5 dm og h = 3 dm Svar: 27 dm 3 c) l = 0,6 m, b = 1,5 m og h = 0,75 m Svar: 0,675 m 3 d) l = 5,6 cm, b = 3,2 cm og h = 0,9 cm Svar: 16,1 cm 3 e) l = 0,45 m, b = 0,3 m og h = 0,22 m Svar: 0,03 m 3

9 Kartleggeren fasit Matematikk Mellomtrinn Geometri 8 Geometri Seksjon 3 Oppgave 3.3 Muggen her tar 1 liter. Gjør om i oppgavene nedenfor: Oppgave 3.4 a) 1 l = 10 dl b) 3,5 l = 35 dl c) 12,5 l = 125 dl d) 0,5 l = 5 dl e) 2,45 l = 24,5 dl f) 6,75 l = 67,5 dl Gjør om: a) 10 dl = 1 l b) 25 dl = 2,5 l c) 5 dl = 0,5 l d) 34 dl = 3,4 l e) 0,5 dl = 0,05 l f) 120 dl = 12,0 l Oppgave 3.5 Gjør om: a) 1 dl = 10 cl b) 2,5 dl = 25 cl c) 0,5 dl = 5 cl d) 10 cl = 1 dl e) 50 cl = 5 dl f) 120cl = 12 dl Oppgave 3.6 Gjør om: a) 1 cl = 10 ml b) 4,5 cl = 45 ml c) 20 cl = 200 ml d) 10 ml = 1 cl e) 450 ml = 45 cl f) 120 ml = 12 cl Oppgave 3.7 Hvilken enhet, ml, cl, dl eller l passer best? a) Knut fylte 50 l bensin på bilen. b) En oppvaskkum rommer 15 l vann. c) Mor laget 5 dl saus til kjøttkakene. d) Nille fikk 3 ml vaksine i armen. e) En fingerbøl rommer ca. 2 cl f) En vanndråpe er ca. 1 ml

10 Kartleggeren fasit Matematikk Mellomtrinn Geometri 9 Geometri Seksjon 3 Oppgave 3.3 Finn arealet av trekanter når du har oppgitt følgende Grunnlinje og Høyde: a) g = 4,4 dm og h = 2,5 dm Svar: 5,5 dm 3 b) g = 2,5 m og h = 0,85 m Svar: 1,06 m 3 a) g = 15 cm og h = 5,6 cm Svar: 42 cm 3 a) g = 2,55 m og h = 0,8 m Svar: 1,02 m 3 a) g = 0,2 dm og h = 12 cm Svar: 0,12 dm 3 eller 120 cm 3 Oppgave 3.4 Tegn en trekant som har: a) grunnlinje 4,5 cm og høyde 3,8 cm b) grunnlinje 7,1 cm og høyde 2,9 cm c) grunnlinje 5,8 cm og høyde 1,9 cm d) grunnlinje 9,4 cm og høyde 6,6 cm Oppgave 3.5 Finn høyden i trekantene når a) Grunnlinja er 3,4 cm og arealet er 8,67 cm 2 Svar: 5,1 cm b) Grunnlinja er 7,5 cm og arealet er 14,25 cm 2 Svar: 3,8 cm c) Grunnlinja er 6,1 cm og arealet er 18,3 cm 2 Svar: 6,0 cm d) Grunnlinja er 12,6 cm og arealet er 30,87 cm 2 Svar: 4,9 cm

11 Kartleggeren fasit Matematikk Mellomtrinn Geometri 10 Geometri Seksjon 4 Oppgave 4.1 Et firkantet svømmebasseng er 25 m langt, 8 m bredt og er 2 m dypt over alt. a) Hvor mange m 3 vann er det i bassenget. Svar: 400 m 3 b) Hvor mange liter blir dette? Svar: l (eller dm 3 ) Oppgave 4.2 Bunnen i kartongen du ser her er 4,5cm lang og 3,8cm bred. Høyden på kartongen er 17,4cm. a) Hvor mange cm 3 er volumet av kartongen? Svar: 297,5 cm 3 b) Hvor mange dm 3 blir dette? Svar: 0,3 dm 3 (avrundet) c) Og hvor mange liter er det? Svar: 0,3 l Tenk deg at du klipper opp og bretter ut kartongen. Hvor stor blir overflaten av den utbrettede kartongen. Kartongen er åpen på toppen. Svar: 305,9 cm 2 Oppgave 4.3 Finn overflaten av rette firkantede prismer (med både bunn og topp) når lengde (l), bredde (b) og høyde (h) er henholdsvis: a) 12 cm, 4 cm, 8 cm Svar: 352 cm 2 b) 3,5 cm 6,5 cm, 14 cm Svar: 325,5 cm 2 c) 4,5 dm, 3 dm, 1,2 dm Svar: 45 dm 2 d) 4,52 m, 2,2 m 10,5 m Svar: 161,01 m 2

12 Kartleggeren fasit Matematikk Mellomtrinn Geometri 11 Geometri Seksjon 4 Oppgave 4.4 Figuren over er en sylinder. En dorull er eksempel på en sylinder som er åpne i begge endene. Figuren over her er en sylinder som brettet ut. De to sirklene er bunnen og toppen av sylinderen. Finn volumet og overflaten av sylindere (med bunn og topp) når: a) radius er 4 cm og høyden er 8 cm Svar: V = 401,9 cm 3 O = 301,4 cm 2 b) radius er 3,4 dm og høyden er 4,7 cm Svar: V = 170,6 dm 3 O = 173 dm 2 c) diameteren er 2,5 dm og høyden er 6,65 dm Svar: V = 32,6 dm 3 O = 62 dm 2 d) Hvor mange liter tar den siste sylinderen? Svar: 32,6 l

13 Kartleggeren fasit Matematikk Mellomtrinn Geometri 12 Geometri Seksjon 4 Oppgave 4.5 I skolegården på Lunden skolen skal parkeringsplassen for sykler dekkes med firkantet stein. Hver stein er 20 cm lang og 10 cm bred. Området som skal dekkes med stein ser ut som figuren her. Det består av et rektangel med lengde 7,75 m og bredde 4,12 m. I enden er det en halvsirkel. a) Regn ut arealet av en stein Svar: 200 cm 2 eller 2 dm 2 eller 0,02 m 2 b) Finn arealet av hele området som skal dekkes med stein. Svar: 38,59 m 2 c) Hvor mange stein går med til å dekke området. Svar: 1930 stein Oppgave 4.6 Bad Soverom Gang Stue Her ser du en tegning av Lines nye leilighet. Målestokken er 1:100. Dvs. at 1 cm på tegningen er 1 m (100 cm) i virkeligheten. a) Hvor mange m 2 er hele leiligheten? Svar: 34,56 m 2 b) Hvor stort er soverommet? Svar: 6 m 2 c) Hvor stor er stue og gang til sammen? Svar: 21,26 m 2 Line skal legge fliser i gangen. Hun har valgt noen fliser som er 20x20 cm store. Disse flisene koster 375 kr m 2. d) Hva koster flisene til gangen? Svar: 1425 kr

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 2 Geometri Seksjon 1 Oppgåve 1.1 Fargelegg a) 4 ruter

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44 Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

GEOMETRISPILL; former, omkrets og areal.

GEOMETRISPILL; former, omkrets og areal. GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til

Detaljer

Matematikk for ungdomstrinn

Matematikk for ungdomstrinn Randi Løchsen Jan rik Gulbrandsen rve Melhus Matematikk for ungdomstrinn Matematikk for ungdomstrinnet 9 Fasit ngangsbok 9 9 FSIT TIL KPITTL GOMTRI 1 a) b) G F c) d) F a) = 5 b) = 7 c) = 5 d) = 6 a) b)

Detaljer

Øvingshefte. Multiplikasjon og divisjon

Øvingshefte. Multiplikasjon og divisjon Øvingshefte Matematikk Mellomtrinn Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk M.trinn Multiplikasjon og divisjon 1 Multiplikasjon og divisjon

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

Kapittel 3 Geometri Mer øving

Kapittel 3 Geometri Mer øving Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d

Detaljer

Geometri Vi på vindusrekka

Geometri Vi på vindusrekka Geometri Vi på vindusrekka Rektangel og kvadrat... 2 Trekant... 3 Sirkel... 6 Omkrets... 7 Omkrets av sirkel... 9 Pi... 11 Areal... 13 Punkt... 18 Linje... 19 Kurve... 20 Vinkel... 21 Normal... 22 Parallelle

Detaljer

ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 =

ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 = ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn Del 1: 2 timer. Maks 30,5 poeng. Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Bruk sort eller blå penn når du fører inn svar eller

Detaljer

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene 1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km

Detaljer

Etter en lang ferie er det en del regneferdigheter vi må friske opp:

Etter en lang ferie er det en del regneferdigheter vi må friske opp: Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Basisoppgaver til 1P kap. 3 Geometri

Basisoppgaver til 1P kap. 3 Geometri Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate

Detaljer

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten

Detaljer

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2007 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: DELPRØVE 1 Maks. poengsum:

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

Kapittel 6. Volum og overflate

Kapittel 6. Volum og overflate Kapittel 6. Volum og overflate Mål for Kapittel 6, Volum og overflate. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til

Detaljer

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d

Detaljer

Form og mål hva er problemet?

Form og mål hva er problemet? Form og mål hva er problemet? Ny GIV Finnmark våren 2014 Anne-Gunn Svorkmo 12-Feb-14 Måling Måling er å sammenligne en enhet knyttet til et element eller en situasjon mot et lignende element eller situasjon

Detaljer

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000 GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Matematikk. Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL

Matematikk. Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL Matematikk 1P Odd Heir Gunnar Erstad John Engeseth Ørnulf Borgan Per Inge Pedersen BOKMÅL Geometri «Schaukeln» (Svingninger), 195, av den russiske kunstneren Vassily Kandinsky (1866 1944) AKTIVITET: Maksimalt

Detaljer

Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.

Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet. Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider

Detaljer

Foto: Bensinstasjon. Literprisen på bensin og diesel er oppgitt på skiltet nederst til venstre i bildet.

Foto: Bensinstasjon. Literprisen på bensin og diesel er oppgitt på skiltet nederst til venstre i bildet. Foto: Bensinstasjon. Literprisen på bensin og diesel er oppgitt på skiltet nederst til venstre i bildet. 1 I dagliglivet opplever vi at volum spiller en sentral rolle på en rekke områder. Når du går i

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Mellomtrinn Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Fakultet for lærerutdanning og internasjonale studier

Fakultet for lærerutdanning og internasjonale studier Fakultet for lærerutdanning og internasjonale studier Grunnskolelærer 1-7 Matematikk Dato: Tirsdag 27.mai 2014 Tid: 6 timer / kl. 9-15 Antall sider (inkl. forside): 6 Antall oppgavedeler: 2 Tillatte hjelpemidler:

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

Trigonometri og geometri

Trigonometri og geometri 6 Trigonometri og geometri 6.1 Sinus til en vinkel Oppgave 6.110 a) Hvilken av disse påstandene er riktig? 1) sin = 3) sin = 2) sin = b) Hvilken av disse påstandene er riktig? b a Oppgave 6.111 ruk lommeregneren

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng)

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng) Høsten 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr:

Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr: Tema: Juleverksted Aktiviteter: 2 typer julekurv Stjerne Tidsbruk: 4 timer Utstyr: Glanspapir Saks Linjal Passer Blyant Anskaffelse av utstyr: Beskrivelse: 1) Julekurver Lag to eksempler på julekurver

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket.

Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. Tegn speilbildet til hver figur på arbeidsarket. 11 Geometri 2 11.13 1 Tegn speilbildet til hver figur på arbeidsarket. 11.14 2 Tegn speilbildet til hver figur på arbeidsarket. 11.15 3 Tegn speilbildet til hver figur på arbeidsarket. 11.1 4 Parallellforskyv

Detaljer

Geometriske morsomheter 8. 10. trinn 90 minutter

Geometriske morsomheter 8. 10. trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

Vårprøve i matematikk for 8. trinn 2016.

Vårprøve i matematikk for 8. trinn 2016. Vårprøve i matematikk for 8. trinn 2016. Navn: Klasse: Prøveinformasjon Prøvetid: Kl 09.50 13.30 Hjelpemidler på Del 1 og 2: På Del 1 kan du bruke vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Årsprøve i matematikk for 9. trinn

Årsprøve i matematikk for 9. trinn Årsprøve i matematikk for 9. trinn Del 1 fredag 1. juni 2012 Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Kul geometri - volum og overflate av kulen

Kul geometri - volum og overflate av kulen Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Oppgave 1 (2 poeng) Regn ut. a) 24,9 + 20,6 c) 2,5 6,0. b) 29,2 20,6 d) 1,26 : 0,3. Oppgave 2 (2 poeng) Regn ut. a) = c) : 2 =

Oppgave 1 (2 poeng) Regn ut. a) 24,9 + 20,6 c) 2,5 6,0. b) 29,2 20,6 d) 1,26 : 0,3. Oppgave 2 (2 poeng) Regn ut. a) = c) : 2 = Del 1: 2 timer. Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Bruk sort eller blå penn når du fører inn svar eller krysser av. Du kan bruke blyant på figurer, tegninger

Detaljer

Kompetansemål etter 2. trinn

Kompetansemål etter 2. trinn Kompetansemål etter 2. trinn Tall: 1. telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2. bruke tallinjen til beregninger og å angi tallstørrelser 3. gjøre overslag

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon

Detaljer

FAKTOR terminprøve i matematikk for 8. trinn

FAKTOR terminprøve i matematikk for 8. trinn FAKTOR terminprøve i matematikk for 8. trinn Høsten 2007 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks.

Detaljer

Modul nr. 1095 Gjør matte! 5-7 trinn

Modul nr. 1095 Gjør matte! 5-7 trinn Modul nr. 1095 Gjør matte! 5-7 trinn Tilknyttet rom: Ikke tilknyttet til et rom 1095 Newton håndbok - Gjør matte! 5-7 trinn Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse

Detaljer

Om former og figurer Mønster

Om former og figurer Mønster Tre grunnleggende geometriske prosesser (Fosse&Munter): - Romforståelse - Formgjenkjenning - Målingsforståelse Om former og figurer Mønster Barn oppdager matematikk kap.g Sogndal 15.02.17 Solbjørg Urnes

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Juleprøve i matematikk for 8. trinn 2015

Juleprøve i matematikk for 8. trinn 2015 Juleprøve i matematikk for 8. trinn 2015 Navn: Klasse: Prøveinformasjon Prøvetid: Kl 08.15 11.20 Hjelpemidler på Del 1 og 2: På Del 1 kan du bruke vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Høsten 2015 Navn: Klasse: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer - senest kl. 11.00 Del

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15

Detaljer

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1

Detaljer

Geometri. A1A/A1B, vår 2009

Geometri. A1A/A1B, vår 2009 Geometri A1A/A1B, vår 2009 27. mars 2009 1. Grunnleggende begreper 2. Areal 3. Kongruens og formlikhet 4. Periferivinkler og Thales setning 5. Pytagoras setning 6. Romfigurer, overflate og volum 7. Undervisning

Detaljer

Basisoppgaver til Tall i arbeid P

Basisoppgaver til Tall i arbeid P Basisoppgaver til Tall i arbeid P 1 Tall og algebra Økonomi Geometri Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra 1.1 Regning med hele tall 1. Brøk 1. Store og små tall 1.4 Bokstavuttrykk

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 38 dag 1 1. På en hylle står det tre bøker. Den første boken er like tykk som de to andre til sammen. Den andre boken er på 150 sider, mens den tredje boken er

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

GeoGebra U + V (Elevark)

GeoGebra U + V (Elevark) GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:

Detaljer

Forarbeid sammen med elevene.

Forarbeid sammen med elevene. Forarbeid sammen med elevene. Hvilken tentamensform skal vi ha? Individuell, gruppe? Muntlig, skriftlig? Differensierte opplegg? Pensum: L-97 fra 8. klasse, 9.klasse og det vi har hatt fram til nå i 10.klasse.

Detaljer

Øvingshefte. Addisjon og subtraksjon

Øvingshefte. Addisjon og subtraksjon Øvingshefte Matematikk Mellomtrinn Addisjon og subtraksjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Addisjon og subtraksjon 1 Addisjon og subtraksjon

Detaljer

Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng

Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) 1 p Oppgave 1.1 Regn ut. a) = b) 5 + 5 + 5 + 5 = 2 p Oppgave 1.2 Regn ut. Skriv

Detaljer

Øvingshefte. Multiplikasjon og divisjon

Øvingshefte. Multiplikasjon og divisjon Øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon og

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?

Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9

Detaljer

Kopp, spiseskje, teskje... Regneark kan brukes til mye

Kopp, spiseskje, teskje... Regneark kan brukes til mye Kopp, spiseskje, teskje... Regneark kan brukes til mye Susanne Stengrundet 1.12.2014 1 Utfordring for matematikklæreren Vi må lære elevene noe som de "har hatt"! Alt som vi skal lære dem i tallforståelsen

Detaljer

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen?

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen? Omkrets For å finne omkretsen til en mangekant, må alle sidelengdene summeres. Omkrets måles i lengdeenheter. Elever forklarer ofte at omkrets er det er å måle hvor langt det er rundt en figur. Måleredskaper

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2007 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: DELPRØVE 1 Maks. poengsum:

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høst 007 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks.

Detaljer