Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland"

Transkript

1 Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland multiaden2013 1

2 Matematikkoppgaver kan være Lette Greie Vanskelige Og samme oppgave kan være på alle tre steder samtidig og i samme klasse. 2

3 Matematikkoppgaver kan også være Små Enkle Rutinepreget Lukkede «Uvirkelige» Kjedelige --- Store Sammensatte Problemløsende Åpne «Virkelige» Spennende --- 3

4 Lukkede og åpne oppgaver Regn ut 8 6 Svaret er 48 Hva er spørsmålet? Hva blir arealet av et rektangel der lengden er 15m og bredden er 8m? Tegn tre ulike figurer som alle har areal 120m 2 4

5 I kiosken SJOKOLADE OG BRUS Noen venner er i kiosken. Alle kjøper det samme. Til sammen betaler de 36 kr. Sjokoladen koster 2 kr. Brusen koster 5 kr. Hva bestilte de, og hvor mange var de? Er det flere løsninger? Hvordan tenkte du? 16-Sep

6 Hvorfor lage større utfordringer? Stimulere elevers nysgjerrighet Fra enkeltbegivenheter til det generelle Fra konkret til abstrakt Å se sammenheng innen ulike matematiske emner Fra matematikk til andre fag Fra skolevirkelighet til verden utenfor 6

7 Fra enkle til sammensatte oppgaver enkle sammensatte Regne ut 20 % av 300 Arealet av en trekant og en firkant. Fire regnestykker Forkorting og utviding av brøker Areal og omkrets hver for seg Prisstigning Arealet av et trapes. Sammensatt oppgave Sammentrekking av ulike brøker. Areal og omkretsregning i sammensatte figurer. 7

8 Hvorfor lage forenklinger? Se deler ut fra en helhet, for eksempel hvordan er en figur bygd opp. Knytte nytt (det ukjente) til noe vi kan (det kjente) Fra teori til praksis Skape fleksibilitet i undervisningen Få flere elever til å forstå En pedagogisk utfordring 8

9 Godteri 32 godteribiter koster 10 kr. Hvordan forenkle? Hvor mange biter får du for 25 kr? Hvordan gå i dybden? 9

10 Fra hvorfor til hvordan Hvorfor Alle kan lære matematikk Elever trenger å strekke seg Matematikk er spennende Matematikk er livsnødvendig Matematikk er overalt Hvordan Tilpasning på riktig nivå Still spørsmålet «Hva om?»...bare hvis jeg syns det er spennende Finne gode eksempler på det Bruke omgivelsene 10

11 Hva blir arealet av firkanten? Et tau er 20 meter langt. Lag en firkant med dette tauet. forenkling Tegne et par firkanter på tavlen Gi elevene et tau som er 20 m langt Gjøre om til 20 cm Gi elevene ruteark med 1x1 ruter Oppgi lengden på firkanten fordypning Hvor mange firkanter kan du lage? Hva om alle sidene har ulike lengder? Lag to trekanter med samme omkrets? Lag en figur med hele tauet slik at arealet blir 9 m 2 11

12 Gjennomsnitt 1 Jeg er 176 cm høy og Knut er 180 cm høy. Hva blir gjennomsnittshøyden? Hvordan kan vi løse oppgaven? Hvordan forklare hva gjennomsnitt er? Jeg er 65 år og Knut er 33 år. Hva blir gjennomsnittsalderen? Hva blir gjennomsnittsalderen om fire år? Men hvordan skal vi forklare gjennomsnitt hvis vi blir tre personer? Resultat på matematikkprøve Knut fikk 32 poeng og Hans fikk 24 poeng Kari sin poengsum påvirket ikke gjennomsnittet. Hvor mange poeng fikk Kari? Men hvis vi regner med poengsummen til Astrid vil den gjennomsnittlige poengsummen til alle fire bli 30 poeng. Hvor mange poeng fikk Astrid? 12

13 Gjennomsnitt 2 fra lukket til åpen oppgave Lukket Åpen Finn gjennomsnittet av 6 og 14 3, 5 og 10-7, 0 og 7-5, 9, -6 og 22 30% og 70% 1 3 og 1 4 Gjennomsnittet av tre tall er 6. Finn tre tall som passer. Finn tre partall som passer Finn tre primtall som passer (kun to løsninger) Hva blir summen av fem tall hvis gjennomsnittet er 20? 13

14 Å gjøre lukket åpen Emma tjener 80 kr i timen. Hva har hun tjent om hun arbeider i 5 timer? Hvordan åpne oppgaven? Eks Emma tjente 400 kr. Hvor mange timer arbeidet hun og hva tjente hun per time? 14

15 En utfordring! Bruk alle sifrene fra 1 til 9. Skriv et siffer i hver sirkel slik at summen blir riktig. + = 15

16 Eksperimentere med, gjenkjenne, beskrive og videreføre strukturer i enkle tallmønstre Hvem skal ut? Sep

17 Løs likningen 2 x + 4 = 12 forenkling Forandre teksten til: Hvilket tall må vi bytte ut med x? Bytte ut x med en firkant Gjøre om til en tekstoppgave Bytte ut 2x med x (eller en annen bokstav) Ta bort 4 på begge sider Lage en tegning fordypning Hva om det står 4x + 4 = 12? Vi skriver + 6x i tillegg på begge sider. Hva om det står 2x+4 3 = 12? Og hva om vi bytter ut 2x med 2x 2? Lag en tekstoppgave som kan løses med likningen 17

18 Lønnsutbetaling Maja, Viktor, Erlend, Alice og Noah arbeider på gården til besteforeldrene. Maja tjener 7 kr mer enn Alice. Alice tjener dobbelt så mye som Viktor. Erlend tjener 7 kr færre enn Viktor, men Erlend tjener tre ganger så mye som Noah. Noah tjener minst. En uke tjente han bare 4 kr. Hvor mye tjente hver av de andre den uka? En uke tjente Viktor 280 kr, hva tjente de andre? En måned tjente Alice 800 kr, hva tjente de andre? En måned arbeider barna på gården til naboen. De tjente 4602kr til sammen. Hva tjente hver av de? 18

19 Noah tjener minst. Erlend tjener 7 kr færre enn Viktor, men han tjener tre ganger så mye som Noah. Alice tjener dobbelt så mye som Viktor. Maja tjener 7 kr mer enn Alice. 19

20 Hvordan gjøre lønnsutbetalingen lettere? -eller fra tall til algebra. 20

21 Regning i andre fag; Bronsealderen Eksempel på åpne oppgaver i tilknytning til arbeid med bronsealderen: Familier i bronsealderbyen: I byen bodde det 40 personer. - Hvor mange familier fantes det, og hvor mange personer var det i hver familie? - Hvor mange menn, kvinner og barn fantes i hver familie? - Velg ut en familie der medlemmene til sammen er 100 år. Bestem alderen på hver person i familien. 21

22 Eksempel: Bronsealderen Smeden i byen smeltet kopper og tinn til 15 kg bronse. Hvor mange økser kunne han laga av det? Hver familie bodde i et hus som var 40 m rundt hele (omkretsen). Hvor lang var hver side? De hadde også et mindre hus på gården der alle sidene var like lange. Hvor lang var hver side? Hvor stor var omkretsen? I bronsealderen var det varmere i Norden enn det er nå, kanskje 10 grader varmere. Hvor varmt var det hos menneskene i byen når det var høst, vinter, vår og sommer? 22

23 Eksempel: Bronsealderen Kvinnene i byen hadde vevd 25 m stoff. Hvor mange kjoler, skjorter og kapper kunne de sy av det? Hvor mange kunne de sy om det gikk med 4 m til hver kjole, 2 m til hver skjorte og 3 m til hver kappe? I byen var det geiter, kyr og sauer. En natt kom det tyver til byen. De stjal mange av husdyrene. Om morgen var det bare igjen 3 geiter, 7 kyr og 15 sauer. Hvor mange dyr av hver sort hadde tyvene tatt? Hvor mange var det i byen dagen før? En dag hadde noen av mennene i landsbyen vært ute og fisket. De hadde fått nok fisk slik at alle i landsbyen ble akkurat mette. Hvor mange fisker hadde de fått? Hvor mange kilo fisk ble det? 23

24 Eksempel rik oppgave Foreldremøte (Skott m.fl., 2008) 24

25 Rik oppgave Foreldremøte Hva slags matematikk kan eksempelet inneholde? Er det lett å forstå? Var det en utfordring? Ulike løsningsmåter? Kan vi starte en matematisk diskusjon på grunnlag av det? Nye problemstillinger? 25

26 Og jeg som lærer--- Kan forenkle oppgaver om det er nødvendig Kan sette sammen flere små oppgaver til en stor Kjenner meg trygg på at oppgaver kan forandres og tilpasses ulike elever Kan bruke tips og ideer fra Lærerens bok Har lært meg noen prinsipper for hvordan vi kan veksle mellom lukkede og åpne oppgaver. 26

Hva kjennetegner åpne og rike oppgaver? Hvorfor skal vi bruke tid på slike oppgaver?

Hva kjennetegner åpne og rike oppgaver? Hvorfor skal vi bruke tid på slike oppgaver? Innhold Hva kjennetegner åpne og rike oppgaver? Hvorfor skal vi bruke tid på slike oppgaver? 25-Apr-12 Det er ikke den kunnskapen du fær, men den du sjøl finn, som du kan bruka (A.O. Vinje, 1869) Hva kjennetegner

Detaljer

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven: Areal og omkrets Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene refererer til en lært formel for areal uten at vi vet om de skjønner at areal er et mål

Detaljer

Hva er god matematikk -opplæring?

Hva er god matematikk -opplæring? Hva er god matematikk -opplæring? Oversikt Hva er situasjonen i Norge når det gjelder matematikkkompetanse? Er det nødvendig å gjøre ting på andre måter enn vi har gjort før? Hva gjør land som lykkes med

Detaljer

Terminprøve i matematikk for 8. trinn

Terminprøve i matematikk for 8. trinn Terminprøve i matematikk for 8. trinn Høsten 2005 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: DELPRØVE 1 Maks. poengsum:

Detaljer

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen?

Nøkkelspørsmål: Hvor lang er lengden + bredden i et rektangel sammenlignet med hele omkretsen? Omkrets For å finne omkretsen til en mangekant, må alle sidelengdene summeres. Omkrets måles i lengdeenheter. Elever forklarer ofte at omkrets er det er å måle hvor langt det er rundt en figur. Måleredskaper

Detaljer

Algebra for alle. Gunnar Nordberg

Algebra for alle. Gunnar Nordberg Algebra for alle Gunnar Nordberg 1 Om dette verkstedet Fra konkreter til tall Fra tall til variabler(bokstaver) Kan algebraen bli meningsfull Å undervise i algebraisk forståelse Ideer til gode oppgaver

Detaljer

2 Likningssett og ulikheter

2 Likningssett og ulikheter Likningssett og ulikheter KATEGORI 1.1 Grafisk løsning av lineære likningssett Oppgave.110 Et lineært likningssett består av likningene for to rette linjer. De to rette linjene er tegnet i koordi natsystemet

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Høsten 2015 Navn: Klasse: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer - senest kl. 11.00 Del

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt. Hva kjennertegner den gode lærer?

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt. Hva kjennertegner den gode lærer? Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt Grunnleggende ferdighet regning i de andre fagene: eksempel på p ulike

Detaljer

S1 Eksamen våren 2009 Løsning

S1 Eksamen våren 2009 Løsning S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene

Detaljer

NyGIV Regning som grunnleggende ferdighet

NyGIV Regning som grunnleggende ferdighet NyGIV Regning som grunnleggende ferdighet Yrkesfaglærere Hefte med utdelt materiell Tone Elisabeth Bakken 3.april 2014 På denne og neste fire sider er det kopier fra Tangentens oppgavehefte: MATEMATISKE

Detaljer

Vekst av planteplankton - Skeletonema Costatum

Vekst av planteplankton - Skeletonema Costatum Vekst av planteplankton - Skeletonema Costatum Nivå: 9. klasse Formål: Arbeid med store tall. Bruke matematikk til å beskrive naturfenomen. Program: Regneark Referanse til plan: Tall og algebra Arbeide

Detaljer

Terminprøve i matematikk for 8. trinn

Terminprøve i matematikk for 8. trinn Terminprøve i matematikk for 8. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Når tallene varierer.

Når tallene varierer. Når tallene varierer. Innføring i algebra med støtte i konkreter Astrid Bondø Ny GIV, februar/mars 2013 Når tallene varierer Det første variable skritt! Treff 10 Hesteveddeløp Rød og sort (Et Ess i Ermet,

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Høsten 2013 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal

Detaljer

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4 9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere

Detaljer

Eksempeloppgave eksamen 1P-Y våren 2016

Eksempeloppgave eksamen 1P-Y våren 2016 Eksempeloppgave eksamen 1P-Y våren 2016 DEL 1 Uten hjelpemidler Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skriv disse tallene

Detaljer

Mat og livsstil 2. Aktuelle kompetansemål. Beskrivelse av opplegget. Utstyr ARTIKKEL SIST ENDRET: 01.08.2016. Årstrinn: 8-10.

Mat og livsstil 2. Aktuelle kompetansemål. Beskrivelse av opplegget. Utstyr ARTIKKEL SIST ENDRET: 01.08.2016. Årstrinn: 8-10. Mat og livsstil 2 I dette undervisningsopplegget bruker en regning som grunnleggende ferdighet i faget mat og helse. Regning blir brukt for å synliggjøre energiinnholdet i en middagsrett laget på to ulike

Detaljer

REFLEKSJONSPROTOKOLL. for MARS 2011

REFLEKSJONSPROTOKOLL. for MARS 2011 ÅS KOMMUNE REFLEKSJONSPROTOKOLL for MARS 2011 Sagaskogen barnehage Sagalund / Tusenbein Innledning Sagalund er blant barnehagene som satser på det fysiske miljøet. Miljøet som den tredje pedagog er stått

Detaljer

Problemløsing. Fra rike oppgaver til kenguruoppgaver 1. 4. trinn. Otta, 2. april 2013 Anne-Gunn Svorkmo

Problemløsing. Fra rike oppgaver til kenguruoppgaver 1. 4. trinn. Otta, 2. april 2013 Anne-Gunn Svorkmo Problemløsing Fra rike oppgaver til kenguruoppgaver 1. 4. trinn Otta, 2. april 2013 Anne-Gunn Svorkmo Problem (en definisjon) 1) Et problem er en spesiell oppgave som en person ønsker eller har bruk for

Detaljer

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.

er et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke. . Primtall og primtallsfaktorisering Definisjon Et primtall p er et heltall, større enn, som ikke er delelig med andre tall enn og seg selv, altså bare delelig med og p (og egentlig også og p) At et tall

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 7. trinn 2015/16

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 7. trinn 2015/16 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 7. trinn 2015/16 Lekser: Elevene får hver uke et lekseark som skal gjøres i lekseboka. Dette leksearket er trening på de fire regneartene, samt

Detaljer

Kengurukonkurransen 2013

Kengurukonkurransen 2013 Kengurukonkurransen 2013 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2013 Velkommen til Kengurukonkurransen! I år arrangeres den for niende gang i Norge.

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Kengurukonkurransen 2011

Kengurukonkurransen 2011 Kengurukonkurransen 2011 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2011 Velkommen til Kengurukonkurransen! I år arrangeres den for sjuende gang i Norge.

Detaljer

Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag

Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag Vurderingsbidrag Fag: Norsk Tema: Lesing, skriftlige tekster Trinn: 1.trinn Tidsramme: 1 måned ----------------------------------------------------------------------------- Undervisningsplanlegging Konkretisering

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter. Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,

Detaljer

Eksamen MAT 1011 Matematikk 1P Va ren 2014

Eksamen MAT 1011 Matematikk 1P Va ren 2014 Eksamen MAT 1011 Matematikk 1P Va ren 2014 Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges?

Detaljer

Matematisk julekalender for 8. - 10. trinn

Matematisk julekalender for 8. - 10. trinn Matematisk julekalender for 8. - 10. trinn Årets julekalender for 8.-10. trinn består av 12 oppgaver. Opplegget kan passe til en kosetime før jul, eller klassene kan velge å løse noen oppgaver hver dag

Detaljer

4. kurskveld: Brøk og geometri

4. kurskveld: Brøk og geometri 4. kurskveld: Brøk og geometri I dag skal vi se på begrepet brøk, regning med brøk, og hvorfor de ulike regnereglene fungerer. Mange har bedre grep om desimaltall fordi regnereglene er lik regnereglene

Detaljer

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Eksempelundervisning utforsking Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Matematikfaget skal lære eleverne at formulere faglige spørgsmål, fastlægge manglende opplysninger, vende tingene

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

FASIT 1-5, ungdomsskole

FASIT 1-5, ungdomsskole FASIT 1-5, ungdomsskole 1. desember: Ved å bruke 91 små terninger kan du få til å bygge akkurat 2 større terninger. Hvor mange små terninger er det i den største av disse? Svar: 64 Tips: Kan ledsages av

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Hefte med problemløsingsoppgaver. Ukas nøtt 2008/2009. Tallev Omtveit Nordre Modum ungdomsskole

Hefte med problemløsingsoppgaver. Ukas nøtt 2008/2009. Tallev Omtveit Nordre Modum ungdomsskole Hefte med problemløsingsoppgaver Ukas nøtt 2008/2009 Tallev Omtveit Nordre Modum ungdomsskole 1 Ukas nøtt uke 35 Sett hvert av tallene fra 1-9 i trekanten under, slik at summen langs hver av de tre linjene

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

Vedlegg til rapport «Vurdering av eksamen i matematikk, Matematikksenteret 2015»

Vedlegg til rapport «Vurdering av eksamen i matematikk, Matematikksenteret 2015» Utvikling av oppgaver språklig høy kvalitet I forbindelse med presentasjonen av rapporten «Vurdering av eksamen i matematikk» som fant sted 13. januar 2016 i Utdanningsdirektoratet, ble vi bedt om å presisere

Detaljer

Lesevis LÆRERVEILEDNING. GAN Aschehoug

Lesevis LÆRERVEILEDNING. GAN Aschehoug Gjøre Lære Oppleve LÆRERVEILEDNING Hvordan jobbe med? Veiledende samtale mellom lærer og elever. Læreren må hjelpe elevene inn i ulike teksttyper gjennom perspektiv som lesingens hensikt, fagord, høyfrekvente

Detaljer

Klasseledelse, fag og danning hva med klassesamtalen i matematikk?

Klasseledelse, fag og danning hva med klassesamtalen i matematikk? Klasseledelse, fag og danning hva med klassesamtalen i matematikk? Ida Heiberg Solem og Inger Ulleberg Høgskolen i Oslo og Akershus GFU-skolen 21.01.15 L: Hva tenker du når du tenker et sektordiagram?

Detaljer

Kengurukonkurransen 2008 > Et sprang inn i matematikken <

Kengurukonkurransen 2008 > Et sprang inn i matematikken < Kengurukonkurransen 2008 > Et sprang inn i matematikken < Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2008 Velkommen til Kengurukonkurransen! I år arrangeres den for fjerde gang i Norge.

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

REFLEKSJONSBREV MARS TYRIHANS. Fokus: Et læringsmiljø som støtter barnas samarbeidsprosesser

REFLEKSJONSBREV MARS TYRIHANS. Fokus: Et læringsmiljø som støtter barnas samarbeidsprosesser REFLEKSJONSBREV MARS TYRIHANS Fokus: Et læringsmiljø som støtter barnas samarbeidsprosesser INNLEDNING Vi har jobbet videre i smågrupper med fokus på deling av strategier og samarbeid. Vi har også sett

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Hvorfor blir det tull med tall? - grunnleggende tallforståelse Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 5-Nov-13 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Matematisk julekalender for 5. - 7. trinn, 2008

Matematisk julekalender for 5. - 7. trinn, 2008 Matematisk julekalender for 5. - 7. trinn, 2008 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette

Detaljer

God morgen! Alle Teller

God morgen! Alle Teller God morgen! Alle Teller Gerd Åsta Bones & Mike Naylor!!! www.matematikkbølgen.com Dag 1: Operasjoner og posisjonssystemet.!!! 0900-1015! Åpningsaktiviteter.!!!!!!!!!! 1015-1030! Pause!!! 1030-1200! Forståelse

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

Eksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.05.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Kengurukonkurransen 2015

Kengurukonkurransen 2015 Kengurukonkurransen 2015 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren Kengurukonkurransen! I år arrangeres den for 11. gang i Norge. Dette heftet inneholder: Informasjon til

Detaljer

Matematisk samtale og. undersøkelseslandskap i matematikk. Dagsoversikt. Oversikt kursinnhold

Matematisk samtale og. undersøkelseslandskap i matematikk. Dagsoversikt. Oversikt kursinnhold Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter; MULTI Matematisk samtale og undersøkelseslandskap i matematikk 15-Apr-07 Oversikt kursinnhold 1.gang: Generell

Detaljer

STATISTIKK FRA A TIL Å

STATISTIKK FRA A TIL Å STATISTIKK FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til statistikk S - 2 2 Grunnleggende om statistikk S - 3 3 Statistisk analyse S - 3 3.1 Gjennomsnitt S - 4 3.1.1

Detaljer

Prosent. Det går likare no! Svein H. Torkildsen, NSMO

Prosent. Det går likare no! Svein H. Torkildsen, NSMO Prosent Det går likare no! Svein H. Torkildsen, NSMO Enkelt opplegg Gjennomført med ei gruppe svakt presterende elever etter en test som var satt sammen av alle prosentoppgavene i Alle Teller uansett nivå.

Detaljer

5 TIPS - FÅ RÅD TIL DET DU ØNSKER DEG

5 TIPS - FÅ RÅD TIL DET DU ØNSKER DEG 5 TIPS - FÅ RÅD TIL DET DU ØNSKER DEG Du vil lære... Hvorfor du skal ta kontroll på økonomien De 5 stegene til hvordan du får råd til det du drømmer om Hvorfor det er så smart å begynne før sommeren, dette

Detaljer

Modellering i barnehagen

Modellering i barnehagen Modellering i barnehagen begrepsinnhold begrepsuttrykk ting, kontekst Marit J. Høines på hus, to sider, én spiss øverst, takras tak trekant 3 tre 3 mengde med 3 elementer, 1 + 2, mellom 2 og 4, halvparten

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

Tyngdekraft og luftmotstand

Tyngdekraft og luftmotstand Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget

Detaljer

PP-presentasjon 1. Jorda. Nivå 1. Illustrasjoner: Ingrid Brennhagen

PP-presentasjon 1. Jorda. Nivå 1. Illustrasjoner: Ingrid Brennhagen PP-presentasjon 1 Jorda. Nivå 1. Illustrasjoner: Ingrid Brennhagen Basiskunnskap 2013 1 jorda Basiskunnskap 2013 2 sola Basiskunnskap 2013 3 Jorda får varme fra sola Det er varmest rundt ekvator Rundt

Detaljer

Månedsevaluering fra Perlå januar 2011

Månedsevaluering fra Perlå januar 2011 Månedsevaluering fra Perlå januar 2011 Det var en gang tre bjørner som bodde i et koselig lite hus langt inne i skogen Hei hei alle sammen! Nytt år og nye spennende ting som skjer på Perlå Vi vil først

Detaljer

Hva har vi lært av SUN? Hellseminaret 2013 Majken Korsager & Peter van Marion

Hva har vi lært av SUN? Hellseminaret 2013 Majken Korsager & Peter van Marion Hva har vi lært av SUN? Hellseminaret 2013 Majken Korsager & Peter van Marion Kort om SUN Skoleutvikling i naturfag Oppstart 2010 Bergen, Oslo, Trondheim, Tromsø 34 skoler (?) Berge n Målsettning Hovedmålet

Detaljer

PEDAGOGISK TILBAKEBLIKK

PEDAGOGISK TILBAKEBLIKK PEDAGOGISK TILBAKEBLIKK SKJOLDET AUGUST 2015 Hei alle sammen! Da er vi i gang med nytt barnehageår og vi har fått syv nye barn hos oss. Tilvenningen har gått bra men vi har enda noen morgener som er litt

Detaljer

Gårdsliv midt i byen

Gårdsliv midt i byen De store hornene har gitt geiten Valentin høy status selv om han er en av de yngste i flokken. Gårdsliv midt i byen I storbyer som Oslo er det ikke alltid like lett å få kontakt med andre dyr enn hund

Detaljer

Eksamen 19.05.2014. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 19.05.2014. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 19.05.2014 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt.

Detaljer

Årsplan matematikk for 5. trinn Multi

Årsplan matematikk for 5. trinn Multi Årsplan matematikk for 5. trinn Multi Ukenr. Antall uker Kapittel Faktorer som faller på dager / timer med matematikk 34 40 7 1 Hele tall 42 44 3 2 Statistikk 45 49 5 3 Desimaltall 50 3 5 4 Geometri 5

Detaljer

23.10.2011. Mona Røsseland www.fiboline.no www.gyldendal.no/multi

23.10.2011. Mona Røsseland www.fiboline.no www.gyldendal.no/multi Dersom elevene skal utvikle en bred matematisk kompetanse, må de gjennom undervisningen få muligheter til å å oppdage, resonnere og kommunisere matematikk gjennom ulike typer oppgaver, aktiviteter og diskusjoner.

Detaljer

Månedsplan for Trekanten, Mai 2016

Månedsplan for Trekanten, Mai 2016 Månedsplan for Trekanten, Mai 2016 Mandag 02.05 Tirsdag 03.05 Onsdag 04.05 Torsdag 05.05 Fredag 06.05 Kristihimmelart sdag barnehagen er Planleggnings dag Barnehagen er Mandag 09.05 Tirsdag 10.05 Onsdag

Detaljer

Sensorveiledning Oppgave 1

Sensorveiledning Oppgave 1 Sensorveiledning Oppgave 1 Figuren er riktig, og kandidaten skisserer en måte å jobbe med dette på som kan fungere for en elev. Figuren eller forklaringen er riktig. Unøyaktigheter ved håndtegning godtas.

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund. Tekst: Joh. 15, 13-17

Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund. Tekst: Joh. 15, 13-17 Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund Tekst: Joh. 15, 13-17 I dag har vi fått høre en prekentekst som handler om kjærlighet, om å bli kalt venner og om å bære frukt. Den er

Detaljer

GEOMETRISPILL; former, omkrets og areal.

GEOMETRISPILL; former, omkrets og areal. GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til

Detaljer

Terminprøve i matematikk for 8. trinn

Terminprøve i matematikk for 8. trinn Terminprøve i matematikk for 8. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Matematikk og naturfag. To eksempler fra mellomtrinn/ungdomstrinn

Matematikk og naturfag. To eksempler fra mellomtrinn/ungdomstrinn Matematikk og naturfag To eksempler fra mellomtrinn/ungdomstrinn Tanken bak to tverrfaglige opplegg Fra den generelle delen Det skapende menneske Kreative evner Kritisk sans og skjønn Vitenskapelig arbeidsmåte

Detaljer

Nasjonale prøver. Matematikk 10. trinn Oppgave 2

Nasjonale prøver. Matematikk 10. trinn Oppgave 2 Nasjonale prøver 2005 Matematikk 10. trinn Oppgave 2 Skolenr.... Elevnr.... Gutt Omslag_skriv_mate_10.indd 1 Jente Bokmål 15. mars 2005 03-02-05 12:54:02 Alt du gjør, skal skrives i dette heftet. Når

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 8 dag 1 1. Tidlig en morgen starter en snegle på bakken og klatrer oppover en 12 meter høy stolpe. Hver dag kryper den 2 meter oppover, men om natten sklir den

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte:

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

Kengurukonkurransen 2009

Kengurukonkurransen 2009 Kengurukonkurransen 2009 «Et sprang inn i matematikken» Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2009 Velkommen til Kengurukonkurransen! I år arrangeres den for femte gang i Norge.

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Labyrint Introduksjon Scratch Lærerveiledning. Steg 1: Hvordan styre figurer med piltastene

Labyrint Introduksjon Scratch Lærerveiledning. Steg 1: Hvordan styre figurer med piltastene Labyrint Introduksjon Scratch Lærerveiledning Introduksjon I dette spillet vil vi kontrollere en liten utforsker mens hun leter etter skatten gjemt inne i labyrinten. Dessverre er skatten beskyttet av

Detaljer

MÅNEDSRAPPORT FOR FEBRUAR PÅ MÅNEKROKEN.

MÅNEDSRAPPORT FOR FEBRUAR PÅ MÅNEKROKEN. MÅNEDSRAPPORT FOR FEBRUAR PÅ MÅNEKROKEN. Februar er den store karnevals tiden, og det er det også på Soltun. En morsom dag for store og små. Vi er imponert over alle de flotte kostymene. Vi tilbragte dagen

Detaljer

FORSLAG TIL ÅRSPLANER

FORSLAG TIL ÅRSPLANER Harald Skottene: FORSLAG TIL ÅRSPLANER Fordi undervisningen blir organisert på forskjellig måte på ulike skoler, vil også årsplanene se forskjellige ut. Noen skoler driver periodeundervisning, andre har

Detaljer

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi Lokal læreplan Lærebok: Gruntall Antall uker 34-37 Tall -lære de fire regneartene i hele tall, desimaltall og negative tall og i hoderegning og overslagsregning. -lære å bruke lommeregner og regneark -kjenne

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

Adventskalender. Regning i kunst og håndverk

Adventskalender. Regning i kunst og håndverk Adventskalender Regning i kunst og håndverk Laget av Eskil Braseth (Matematikksenteret) og Ingunn Thorland (Sunnland ungdomsskole) Dette undervisningsopplegget er inspirert av en oppgave hentet fra en

Detaljer

NASJONALE PRØVER 2015. En presentasjon av resultatene til 5.trinn ved Jåtten skole, skoleåret 2015-16

NASJONALE PRØVER 2015. En presentasjon av resultatene til 5.trinn ved Jåtten skole, skoleåret 2015-16 NASJONALE PRØVER 2015 En presentasjon av resultatene til 5.trinn ved Jåtten skole, skoleåret 2015-16 Gjennomføring av nasjonale prøver 2015 Nasjonale prøver for 5.trinn ble gjennomført i oktober 2015.

Detaljer

Kengurukonkurransen 2010

Kengurukonkurransen 2010 Kengurukonkurransen 2010 «Et sprang inn i matematikken» CADET (9. 10. trinn) Hefte for læreren Kengurukonkurransen 2010 Velkommen til Kengurukonkurransen! I år arrangeres den for sjette gang i Norge. Dette

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34 Tall Her inngår: Hele tall, titallssystemet.

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34 Tall Her inngår: Hele tall, titallssystemet. ÅRSPLAN I MATEMATIKK FOR 7 TRINN 2014/2015 Utarbeidet av: Elise HG Skulerud Læreverk: Multi 7a, 7b, Oppgavebok, Parallellbok og Multi kopiperm UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING

Detaljer

Resonnerende oppgaver

Resonnerende oppgaver Resonnerende oppgaver Oppgavene på de påfølgende sidene inneholder flere påstander eller opplysninger. Opplysningene bygger på eller utfyller hverandre, og de stiller visse krav eller betingelser. Når

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 5.-7.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

07.05.2013. Elev får. tilfredsstillende utbytte av undervisningen. Elev får ikke. tilfredsstillende utbytte av undervisningen

07.05.2013. Elev får. tilfredsstillende utbytte av undervisningen. Elev får ikke. tilfredsstillende utbytte av undervisningen 1 Sentrale prinsipper i Likeverdsprinsippet Likeverdig opplæring er ikke en opplæring som er lik, men Lærer, en opplæring eleven selv som tar hensyn til at elevene er ulike. Inkluderende opplæring En konsekvens

Detaljer

Evaluering av kollokviegrupper i matematikk og programmering høsten 2014 28 jenter har svart på evalueringen

Evaluering av kollokviegrupper i matematikk og programmering høsten 2014 28 jenter har svart på evalueringen Evaluering av kollokviegrupper i matematikk og programmering høsten 2014 28 jenter har svart på evalueringen 1. Hvorfor meldte du deg på dette tilbudet? Tenkte det ville være lurt med litt ekstra hjelp

Detaljer

Matematisk julekalender for 5.-7. trinn, 2014

Matematisk julekalender for 5.-7. trinn, 2014 Matematisk julekalender for 5.-7. trinn, 2014 Årets julekalender for 5.-7. trinn består av enten de første 9 eller alle 12 oppgavene som kan løses uavhengig av hverandre. Oppgavene 6 til 12 er delt i to

Detaljer

Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo

Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo Tall og tallregning Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo Å telle -Hovedideer Elementary & middle school mathematics av John Van De Walle (2010) Å telle forteller hvor

Detaljer