S1 Eksamen våren 2009 Løsning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "S1 Eksamen våren 2009 Løsning"

Transkript

1 S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene 1) x x x 3 x 3 x ) x 3 lg 3lg x 15 0 lg x 3lg x lg x lg x 3 lg x 3 x 1000

2 S1 Eksamen, våren 009 Løsning c) Funksjonen f er gitt ved f x ax bx 5. Grafen til f går gjennom punktene 1, 4 og 1, 8. Bruk disse opplysningene til å bestemme tallene Vi får to likninger med to ukjente f 1 4 a1 b1 5 4 a b 1 f 1 8 a 1 b a b 3 I a b 1 II a b 3 I II a I a 1 1 b 1 b d) Formelen for arealet av et trapes er A Finn en formel for b uttrykt ved A, a og h. a b h A A a b h A b a h Bestem b når A 40, a 7 og h 5. A b a h 40 b 7 5 b 9 a b h a og b. e) Erik fisker med kastesluk. Vi antar at sannsynligheten for å få fisk er 0,1 i hvert kast. 1) Hva er sannsynligheten for at Erik får akkurat én fisk i løpet av de 3 første kastene? Sannsynligheten er 0,11 0,1 3 0,43 ) Hva er sannsynligheten for at han får minst én fisk i løpet av de tre første kastene? Sannsynligheten er 11 0,1 3 0,71

3 S1 Eksamen, våren 009 Løsning Oppgave Funksjonen f er gitt ved 3 f x x 6x 3. a) Finn gjennomsnittlig veksthastighet for f fra x 0 til x f f 0 8 Gjennomsnittlig veksthastighet er 4 0 f x. Hva er den momentane veksthastigheten når x 1? b) Finn 3 f x x 6x 3 f x 6x 1x f Den momentane veksthastigheten når x = 1 er -6. c) Bruk f x til å bestemme koordinatene til eventuelle topp- og bunnpunkter på grafen til f f x x x x x Tegner fortegnslinje for den deriverte. fx f x x verdier f Toppunkt 0, 0 0,3. f Bunnpunkt,, 5. d) Skisser grafen til f for x -verdier mellom 1 og 3. Marker på skissen det du har funnet i a), b) og c).

4 S1 Eksamen, våren 009 Løsning

5 S1 Eksamen, våren 009 Løsning Del Oppgave 3 Ved en stor videregående skole blir det brukt en nettbasert ressursside. Bruk av ressurssiden forutsetter at hver elev har installert et bestemt program på datamaskinen sin. I klasse b fikk 15 av 7 elever hjelp av IKT-seksjonen med installeringen av programmet. Resten av elevene installerte det selv. Det trekkes tilfeldig ut 10 elever i klasse b. a) Finn sannsynligheten for at 6 av de 10 elevene fikk hjelp av IKT-seksjonen. Vi bruker hypergeometrisk fordeling og finner at sannsynligheten blir , Utregning med digitalt hjelpemiddel b) Bestem sannsynligheten for at minst av de 10 elevene installerte programmet selv Sannsynligheten er 10 n 10 n 0,993 n 7 10 Utregning med digitalt hjelpemiddel Ved skolen måtte 30 % av alle elevene få hjelp av IKT-seksjonen for å komme inn på ressurssiden. c) Hva er sannsynligheten for at 9 av 4 tilfeldig valgte elever har fått hjelp av IKT-seksjonen? Forklar hvilke forutsetninger du må legge inn for å kunne regne binomisk. Forutsetningene er at alle trekk har to mulige utfall, enten har eleven fått hjelp, eller ikke fått hjelp. sannsynligheten for å trekke en som har fått hjelp er den samme hele tiden. valget av elever er uavhengige. Det skal ikke bety noe om den forrige eleven hadde fått hjelp eller ikke.

6 S1 Eksamen, våren 009 Løsning 4 0,30 1 0,30 0,1 9 9 Sannsynligheten er 4 9 Utregning med digitalt hjelpemiddel d) Hva er sannsynligheten for at minst 9 av 4 tilfeldig valgte elever har fått hjelp av IKT-seksjonen? 4 4 4n 0,30 1 0,30 0,75 n Sannsynligheten er n9 Utregning med digitalt hjelpemiddel n Oppgave 4 Alternativ 1 En fabrikant ønsker å lage modeller av esker ved å brette rektangulære ark. Vi starter med et ark som er 30 cm langt og 0 cm bredt og klipper ut et lite rektangel i hvert hjørne. Se figuren nedenfor. Vi bretter langs de stiplede linjene to ganger langs kortsidene og én gang langs langsidene. Høyden av esken blir x cm. Den ferdige esken ser ut som på figuren nedenfor.

7 S1 Eksamen, våren 009 Løsning Dersom vi for eksempel lager en eske med høyde 3 cm, blir lengden av esken 18 cmog bredden 14 cm. Vi vil undersøke sammenhengen mellom høyden og volumet av esken. a) Skriv av og fyll ut tabellen nedenfor. Høyde i cm Volum i cm Vi ønsker å finne ut hvor stor høyden må være for at volumet skal bli størst mulig. Vi lar høyden av esken være x cm. b) Vis at volumet målt i cm 3 er gitt ved 3 1) ved å bruke regresjon, og V x 8x 140x 600x Bruker regresjon i GeoGebra og finner at 3 V x 8x 140x 600x ) ved å analysere figuren og bruke formelen for volumet av en slik eske. Volumet er 3 l bh 30 4x 0 x x 8x 140x 600x c) Finn ved regning den høyden som gir størst volum. Hvor stort er dette volumet? 3 V x 8x 140x 600x V x 4x 80x 600 Vi løser likningen V x 0 med digitalt hjelpemiddel og får x,83 x 8,84. Den siste løsningen gir ikke noen eske. Vi får størst volum når høyden er,83 cm. Dettte volumet blir V,83 (8,83 140,83 600,83) cm 758 cm d) Undersøk om vi kan få et større volum ved at det er langsiden som brettes to ganger og kortsiden én gang.

8 S1 Eksamen, våren 009 Løsning Volumet blir nå 3 V x 30 x 0 4x x 8x 160x 600x Vi tegner grafen og leser av toppunktet. Vi ser at vi ikke kan få et større volum på denne måten. Oppgave 4 Alternativ I deler av denne oppgaven er det en fordel å bruke digitalt verktøy. Tabellen nedenfor viser sammenhengende verdier av to størrelser x og y. x y 45,3 3, 9,50 3,89 1,59 0,653 0,67 Du får opplyst at y med god tilnærming kan skrives som en eksponentialfunksjon f. a) Bruk regresjon til å finne funksjonsuttrykket f x. Vi bruker regresjon i GeoGebra og finner 0,3 f x 70, En modell for antall insekter i en bestemt populasjon er gitt ved der g x f x gx er antall insekter, og x er antall døgn etter et bestemt tidspunkt. b) Tegn grafen til g. Bestem antall insekter når x 0. e x

9 S1 Eksamen, våren 009 Løsning Vi ser av grafen at antall insekter er 1470 når x=0. c) Finn både grafisk og ved regning hvor lang tid det tar før antall insekter er Vi ser av grafen at antallet er etter døgn. Ved regning ,e g x 0,3x 0,3x 0,3x 0,3x ,e 70,e 4 70,e e 70, 0,3x ln 70, x 0,3 d) Bruk grafen til g til å finne en tilnærmet verdi for den momentane veksthastigheten når x 8. Hva forteller svaret? Vi leser av at veksthastigheten når x 8 er 735. Svaret forteller at etter 8 døgn vokser insektpopulasjonen med 735 insekter per døgn. e) Hva nærmer antall insekter seg ifølge modellen når x blir veldig stor?

10 S1 Eksamen, våren 009 Løsning Grafen viser at antallet nærmer seg Vi kan også se det av funksjonsuttrykkene. 0,3 e lim f x lim 70, 0 x x lim gx lim x x f x x Oppgave 5 Helga har sitt eget tekstilverksted. Hun syr kjoler og skjørt. Hun forbereder seg til en utstilling, hvor hun håper å oppnå godt salg. Hun syr kjolene og skjørtene av stoff som hun selv kjøper inn. Til kjolene bruker hun et silkestoff som koster 00 kroner per meter. I skjørtene bruker hun et bomullsstoff som koster 15 kroner per meter. Hun kan bruke inntil kroner på innkjøp av stoff. Men hun vil ikke satse mer enn kroner på hvert av stoffene. En kjole lages av,5 meter silkestoff. Til et skjørt går det med,0 meter bomullsstoff. Hun trenger 4 timer til å sy en kjole og 1 time til å sy et skjørt. Hun kan bruke inntil 60 timer på å sy før utstillingen. Helga regner med å kunne selge kjolene for 00 kroner stykket og skjørtene for 900 kroner stykket. Hun syr og selger x kjoler og y skjørt. a) Forklar at opplysningene ovenfor gir disse ulikhetene: (1) x 0 og y 0 () x 15 og y 30 (3) y x 40 (4) y 4x 60 Betingelsene i (1) setter grenser for det laveste antallet kjoler og skjørt Helga syr. Det er ikke mulig å sy et negativt antall. Betingelsene i () setter grenser for hvor mye hun vil bruke i penger til hvert av stoffene hun bruker til kjolene og skjørtene. Silkestoffet som hun bruker til kjolene koster 00 kroner per meter, og det går med,5 meter til en kjole. Det betyr at det går for 500 kroner i silkestoff til en kjole. Hun vil maksimalt bruke 7500 kroner til innkjøp av silkestoff. Vi har dermed betingelsen 500 x 7500 x 15

11 S1 Eksamen, våren 009 Løsning Bomullsstoffet som hun bruker til skjørtene koster 15 kroner per meter, og det går med meter til et skjørt. Det betyr at det går for 50 kroner i bomullsstoff til et skjørt. Hun vil maksimalt bruke 7500 kroner til innkjøp av bomullsstoff. Vi har dermed betingelsen 50 y 7500 y 30 Betingelsen i (3) setter grense på hvor mye Helga totalt vil bruke til innkjøp av stoff. Det betyr at vi har betingelsen 500x 50y y 500x y x 40 Betingelsen i (4) setter grense på tidsbruken til Helga. Hun trenger 4 timer for å sy en kjole og 1 time for å sy et skjørt. Hun kan bruke inntil 60 timer på jobben. Vi har dermed betingelsen 4x y 60 y 4x 60 b) Skraver i et koordinatsystem det området som er definert av ulikhetene. Skriver ulikhetene i GeoGebra slik de står, men med likhetstegn i stedet for ulikhetstegn. c) Finn den største salgsinntekten Helga kan oppnå. Forklar framgangsmåten. Med de betingelsene Helga har satt er det mulige området for antall kjoler og skjørt gitt i det merkede området i oppgave b). Langs linjene som avgrenser området vil vi finne optimal inntekt. Inntekten I til Helga er gitt ved likningen I 00 x 900 y Tegner nivålinjen 00x 900y Ingen punkter på denne linjen ligger i det merkede området. Parallellforskyver linjen til den berører det merkede området i ett punkt. Dette punktet representerer den produksjonen som gir høyest inntekt.

12 S1 Eksamen, våren 009 Løsning Grafisk avlesning gir koordinatene 10, 0. Det gir inntekten I Helga får høyest salgsinntekt ved å sy 10 kjoler og 0 skjørt. Den største inntekten blir kroner. d) Hva blir overskuddet hvis hun oppnår høyest salgsinntekt? Overskuddet blir lønn til Helga. Hva blir timelønna når hun i tillegg til syingen må bruke 30 arbeidstimer på selve utstillingen? Utgiftene til Helga på 10 kjoler og 0 skjørt blir kroner 050 kroner kroner Overskuddet blir dermed kroner kroner kroner Timer som går med til å sy 10 kjoler og 0 skjørt er: 4 timer 10 1 timer 0 60 timer. I tillegg kommer det 30 timer på selve utstillingen. Til sammen 90 timer. Timelønna blir da kroner 333 kroner/time 90 timer

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte. Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Del1. a b h A. e) Erikfiskermedkastesluk.Viantaratsannsynlighetenforåfåfisker0,1ihvertkast.

Del1. a b h A. e) Erikfiskermedkastesluk.Viantaratsannsynlighetenforåfåfisker0,1ihvertkast. Del1 Oppgave 1 a) Skrivsåenkeltsommulig x 1 1) (x 1) x 1 ) ( a) b 3 a b b) Løs likningene x 1) 10 000 ) lg(x ) 3lg x 15 0 c) Funksjonenfergittved f(x) ax bx 5. Grafentilfgårgjennompunktene (1,4)og( 1,8).

Detaljer

Eksamen 22.05.2009. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 22.05.2009. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 22.05.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Eksamen MAT 1011 Matematikk 1P Va ren 2014

Eksamen MAT 1011 Matematikk 1P Va ren 2014 Eksamen MAT 1011 Matematikk 1P Va ren 2014 Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges?

Detaljer

S1 Eksamen høst 2009 Løsning

S1 Eksamen høst 2009 Løsning S1 Eksamen, høsten 009 Løsning S1 Eksamen høst 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig: 1) 5a a a a 1 5a a 4 a 1 6a a 5 ) 1 3 13 3 3 48 3 6 7 8 6 3) 4 a b a 3 a b 13 43 1 a b a b 4 4)

Detaljer

Eksamen 28.05.2008. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 28.05.2008. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 8.05.008 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

Eksamen 27.05.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 27.05.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Eksamen 02.12.2009. REA3026 Matematikk S1

Eksamen 02.12.2009. REA3026 Matematikk S1 Eksamen 02.12.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Eksamen R1 Høsten 2013

Eksamen R1 Høsten 2013 Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x

Detaljer

Del 1. Oppgave 1. a) Løs ulikheten 2x+ 4 4x+ b) Løs ulikheten. 1) Løs likningen f( x ) = 4 grafisk og ved regning.

Del 1. Oppgave 1. a) Løs ulikheten 2x+ 4 4x+ b) Løs ulikheten. 1) Løs likningen f( x ) = 4 grafisk og ved regning. Del 1 Oppgave 1 a) Løs ulikheten + 4 4+ 8 b) Løs ulikheten + > + + 10 10 5 c) Vi har gitt funksjonen f( ) = lg + 3. Figuren viser grafen til f. 7 6 5 4 3 1-1 1 3 4 5 6 7-1 1) Løs likningen f( ) = 4 grafisk

Detaljer

a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik.

a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Løsningsforslag utsatt eksamen Matematikk 2, 4MX25-10 (GLU2 5-10) 5.desember 2013 Oppgave 1 a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Ved å bruke tangentlinja i punktet

Detaljer

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker.

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. Bestem sannsynligheten for at én gutt og én jente møter

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Eksamen REA3026 S1, Høsten 2010

Eksamen REA3026 S1, Høsten 2010 Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x

Detaljer

Eksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.05.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

2 Likningssett og ulikheter

2 Likningssett og ulikheter Likningssett og ulikheter KATEGORI 1.1 Grafisk løsning av lineære likningssett Oppgave.110 Et lineært likningssett består av likningene for to rette linjer. De to rette linjene er tegnet i koordi natsystemet

Detaljer

DEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig

DEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Vi har funksjonen 3 f( x) = x 5 x+ 1) Deriver funksjonen. ) Bestem f (1). Hva forteller svaret deg om grafen til f? b) Skriv så enkelt som mulig 3 x x+ 4

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Løsningsforslag til eksamen i MAT111 Vår 2013

Løsningsforslag til eksamen i MAT111 Vår 2013 BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )

Detaljer

Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6

Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6 Delprøve 1 OPPGAVE 1 a) Deriver funksjonen ( ) = + 3 f x 3x x 7 b) Bestem den gjennomsnittlige veksthastigheten til funksjonen f( x ) = 3 x fra x = 0 til x = 3. c) Skriv så enkelt som mulig x 3 + x 9 3x

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Eksempeloppgave eksamen 1P-Y våren 2016

Eksempeloppgave eksamen 1P-Y våren 2016 Eksempeloppgave eksamen 1P-Y våren 2016 DEL 1 Uten hjelpemidler Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skriv disse tallene

Detaljer

Eksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål

Eksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål Eksamen 7.11.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4

Detaljer

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1017 Matematikk 2T Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Studieretning: Allmenne, økonomiske og administrative fag

Studieretning: Allmenne, økonomiske og administrative fag Eksamen Fag: AA654 Matematikk 3MX Eksamensdato: 3. juni 005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar / Elever Oppgåva ligg føre på begge

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

5.8 Gjennomsnittlig vekstfart

5.8 Gjennomsnittlig vekstfart 5.8 Gjennomsnittlig vekstfart Grete Grønn kjøper en plante som er 5 cm høy. Hun tror at den kommer til å vokse 2 cm per uke. Vi sier at vekstfarten er 2 cm/uke. Etter x uker er høyden av planten da gitt

Detaljer

Løsning eksamen R1 høsten 2009

Løsning eksamen R1 høsten 2009 Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed

Detaljer

DEL 1. Uten hjelpemidler. a) Sett opp et likningssystem som svarer til opplysningene ovenfor.

DEL 1. Uten hjelpemidler. a) Sett opp et likningssystem som svarer til opplysningene ovenfor. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg7 Oppgave (4 poeng) Skriv uttrykkene så enkelt som mulig a) b) (x 3) 3( x ) ( x 1)( x 1) 3 a b ( a b) 3 Oppgave 3 (3 poeng)

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Eksempeloppgåve / Eksempeloppgave

Eksempeloppgåve / Eksempeloppgave Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre

Detaljer

Eksamen 03.12.2009. REA3024 Matematikk R2

Eksamen 03.12.2009. REA3024 Matematikk R2 Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Eksamen 19.05.2014. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 19.05.2014. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 19.05.2014 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt.

Detaljer

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1

Detaljer

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 28.05.2008 REA3026 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 041008 REA30 Matematikk R1 Nnorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125. Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister 6. desember 6 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Kapittel 5. Funksjoner

Kapittel 5. Funksjoner Kapittel 5. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. I dette kapitlet skal vi se nærmere på to typer funksjoner, lineære

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten.

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten. DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningene a) 6 4 0 b) lg lg lg(4 ) Oppgave ( poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC og CB. C P 10 A 0

Detaljer

Eksamen REA3026 S1, Våren 2012

Eksamen REA3026 S1, Våren 2012 Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

Eksamen S1, Høsten 2011

Eksamen S1, Høsten 2011 Eksamen S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonen f f f 6 b) Løs likningene 6 4 ) 6

Detaljer

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4 9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere

Detaljer

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1. Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere

Detaljer

Eksamen REA3026 Matematikk S1

Eksamen REA3026 Matematikk S1 Eksamen 02.12.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Eksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

Eksamen REA3028 S2, Høsten 2011

Eksamen REA3028 S2, Høsten 2011 Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Oppgaver om derivasjon

Oppgaver om derivasjon Oppgaver om derivasjon Oppgave 1 Gitt funksjonen g(x) = x 3 6x 48x + 13 a) Finn g (x). b) Bruk den deriverte til å finne x-koordinaten til topp/bunn-punktene til grafen. Finn også de tilhørende y-koordinatene,

Detaljer

Vekst av planteplankton - Skeletonema Costatum

Vekst av planteplankton - Skeletonema Costatum Vekst av planteplankton - Skeletonema Costatum Nivå: 9. klasse Formål: Arbeid med store tall. Bruke matematikk til å beskrive naturfenomen. Program: Regneark Referanse til plan: Tall og algebra Arbeide

Detaljer

Funksjoner 1T, Prøve 2 løsning

Funksjoner 1T, Prøve 2 løsning Funksjoner 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene.

Detaljer

Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra

Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra kompetansemålet: Funksjoner - undersøkje funksjonar som beskriv praktiske situasjonar, ved å fastsetje nullpunkt, ekstremalpunkt og skjeringspunkt og tolke den praktiske verdien av resultata. Oppgave 1

Detaljer

Studieretning: Allmenne, økonomiske og administrative fag

Studieretning: Allmenne, økonomiske og administrative fag Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 3. mai 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar / Privatister Oppgåva ligg føre

Detaljer

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen. 5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Tyngdekraft og luftmotstand

Tyngdekraft og luftmotstand Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 y (kroner) x (antall stoler) a) Grafen ovenfor viser hva det koster for en fabrikk for å produsere x stoler. Hva blir kostnadene per stol dersom bedriften produserer 50

Detaljer

Del1. Oppgave 1. a) Deriver funksjonene: 1) f x x. b) Regn ut grenseverdien hvis den eksisterer. lim. c) Trekk sammen. fx x x x

Del1. Oppgave 1. a) Deriver funksjonene: 1) f x x. b) Regn ut grenseverdien hvis den eksisterer. lim. c) Trekk sammen. fx x x x Del Oppgave a) Deriver funksjonene: 4 ) f x x ) g x x e x b) Regn ut grenseverdien hvis den eksisterer x x lim x x c) Trekk sammen x x 4x x x x x x 4 d) Gitt punktenea,, B 5,4 og C 4,7. ) Bestem AB, AC

Detaljer

Eksamen 31.05.2011. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 31.05.011 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen 25.05.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål

Eksamen 25.05.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål Eksamen 25.05.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

Eksempeloppgåve / Eksempeloppgave

Eksempeloppgåve / Eksempeloppgave Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre

Detaljer

Eksamen 27.11.2013. MAT1010 Matematikk 2T-Y. Nynorsk/Bokmål

Eksamen 27.11.2013. MAT1010 Matematikk 2T-Y. Nynorsk/Bokmål Eksamen 27.11.2013 MAT1010 Matematikk 2T-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning 26.05.2015. http://eksamensarkiv.net/

Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning 26.05.2015. http://eksamensarkiv.net/ Eksamen 6.05.015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale

Detaljer

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland

Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland Hvordan forenkle og hvordan gå i dybden? Gunnar Nordberg Mona Røsseland multiaden2013 1 Matematikkoppgaver kan være Lette Greie Vanskelige Og samme oppgave kan være på alle tre steder samtidig og i samme

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:

Nøkkelspørsmål til eller i etterkant av introduksjonsoppgaven: Areal og omkrets Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene refererer til en lært formel for areal uten at vi vet om de skjønner at areal er et mål

Detaljer

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer