Familiematematikk MATTEPAKKE. 7. Trinn

Størrelse: px
Begynne med side:

Download "Familiematematikk MATTEPAKKE. 7. Trinn"

Transkript

1 Familiematematikk MATTEPAKKE 7. Trinn

2

3 Tangoes: Tangram er basert på et gammelt kinesiske puslespillet med former som kan settes sammen til et bilde eller et mønster. Tangram ble oppfunnet for mange århundrer siden i det gamle Kina da Keiseren ba en tjener om å hente et stykke jade til ham. Tjeneren mistet det kvadratformede jadestykket i gulvet slik at det gikk i stykker. Han klarte ikke å sette det sammen og var sikker på at Keiseren kom til å bli veldig sint. Men Keiseren ble glad! Han hadde stor glede av å bygge figurer og mønstre med de sju bitene som besto av to store trekanter, en middels stor trekant, to små trekanter, et kvadrat og et parallellogram. Slik ble Tangrammet født. Med disse sju bitene kan du lage mange tusen forskjellige figurer. Bli kjent med Tangrammet - Kan du dekke den mellomste trekanten med noen av de mindre brikkene? Klarer du det på mer enn én måte? Tegn løsningene dine. - Lag kvadrater med 1, 2, 3, 5 og 7 brikker. - Hvis du hadde mange små trekanter, kunne du dekke de andre bitene med dem. Hvor mange små trekanter ville du trenge for hver brikke? Hvor mange små trekanter ville du trenge for å dekke hele tangramsettet til sammen? Utfordringer Sett sammen de sju brikkene til et kvadrat. Spillet Tangoes To og to spiller sammen. Trekk et kort og sett det opp i esken som vist på omslaget. Det er om å gjøre å bli førstemann til å legge figuren med de 7 brikkene. Deltakerne kan avgjøre om dette skal gjøres med tidsbegrensing eller ikke. Løsningen står på baksiden av kortet med oppgaven. Der står det også en ny oppgave. Hermegåsa Det må være minst to lag med to spillere på hvert. Lag nummer 1 begynner. De andre lagene følger med og kontrollerer. Spiller 1 legger en figur med brikkene. Motspilleren sitter med ryggen til og ser ikke figuren. Spiller 1 skal nå forklare hvordan brikkene i figuren er lagt, og spiller 2 skal prøve å legge samme figur. Hvis spiller 2 har klart å legge samme figur som spiller 1, får dette laget et poeng. Kvadratiske tellebrikker: Lag et mønster med kvadratiske brikker i ulike farger. Lag speilbildet til mønstret. Speil både vertikalt og horisontalt. Tegn mønsteret ditt i et rutenett, for eksempel sånn:

4 Kombinatorikk: Sett sammen 2 røde og 3 blå brikker på forskjellige måter, hvor mange ulike kombinasjoner/sammensettinger klarer du å lage? Tegn løsningene dine. Sannsynlighet: Legg 10 røde og 20 blå brikker i en kopp. Hva er sannsynligheten for å trekke en rød? Prøv å trekke noen ganger. Husk at man må trekke MANGE ganger for at virkeligheten skal stemme med den verdien som beregnes! Areal og omkrets: Vi sier at hver brikke har areal 1 og siden i kvadratet er 1. Vi bruker ikke benevning. Du bestemmer selv om kvadratene og rektanglene skal være fylt med brikker eller om dere bare lager ei ramme. - Lag et rektangel med areal 12. Finnes det flere løsninger? - Lag et kvadrat med areal 16. Finnes det flere løsninger? - Lag et rektangel med omkrets Lag et kvadrat med omkrets 24. Hvor stort areal har kvadratet? Brikker med tall og symboler Lag forskjellige regnestykker med tall og symboler, for eksempel = 3

5 Spesielle regnestykker 1. Lag et regnestykke med tallene 1, 2, 3, 4,5 og og = sånn at regnestykket blir riktig. 2. Lag et regnestykke med tallene 1, 2, 3, 4,5, 6 og og = sånn at regnestykket blir riktig. Trekanter: Lag ulike geometriske former med de trekantede brikkene: Romber Kan du forklare hva en rombe er? Lag en rombe ved å bruke færrest mulig brikker. Hvor mange trenger du? Lag en rombe som er større enn den minste, og sånn at det ikke går an å lage noen imellom denne og den minste. Forklar hvorfor det ikke går an å lage noen rombe mellom disse størrelsene. Hvor stort areal har den andre romben du lagde i forhold til den første? Hvor stor omkrets har den andre romben du lagde i forhold til den første? Gjett hvor mange trekanter du må bruke for å lage en enda større rombe. Bygg og sjekk. Dette er spesielle romber satt sammen av to likesida trekanter. Finnes det romber med samme omkrets, men med mindre areal? Finnes det romber med samme omkrets, men med større areal? Tegn dem. Undersøkelse: Tre en hyssing gjennom fire like lange sugerørbiter, og knyt igjen. Nå har du fått en rombe. Trekk i hjørnene og se at arealet kan bli bittelite eller stort selv om rombene har samme omkrets (de fire sugerørbitene). Hvordan ser romben ut når arealet er størst? Trapes Lag det minste trapeset som ikke er et parallellogram. Hvor mange trenger du? Hvor mange brikker trenger du for å lage et trapes som er større enn det første, og som har samme form? Hvor mange brikker trenger du hvis vi ikke krever at trapeset skal ha samme form? Hvor mange brikker trenger du hvis trapeset ikke trenger å ha samme form som det første, men skal være to trekanter høyt. Beregn hvor mye arealet og omkretsen øker.

6 Sekskanter Lag en regulær sekskant ved å bruke færrest mulig brikker. Regulær betyr at alle sidekantene skal være like lange og alle vinklene like store. Hvor mange trenger du? Hvor mange brikker trenger du for å lage en regulær sekskant som er større enn den første? Hva er arealet på sekskantene i forhold til rombene? Gjett hvor mange trekanter du må bruke for å lage en enda større regulær sekskant. Bygg og sjekk. Lag en sekskant ved å bruke færrest mulig brikker. Her er ikke alle sidene like lange. Hvor mange brikker trenger du? Hvor mange brikker trenger du for å lage slik sekskant som er større enn den første? Gjett hvor mange trekanter du må bruke for å lage en enda større sekskant. Bygg og sjekk. Trekanter Lag en likesidet trekant ved å bruke færrest mulig brikker. Likesidet betyr at alle sidekantene skal være like lange og alle vinklene like store. Hvor mange trenger du? Hvor mange brikker trenger du for å lage en likesidet trekant som er større enn den første? Gjett hvor mange trekanter du må bruke for å lage en enda større likesidet trekant. Bygg og sjekk. Terninger: Yatzy: - Spill vanlig yatzy, men bruk 5 oktaeder, 5 dekaeder, 5 dodekaeder, eller 5 ikosaeder. - Bestem reglene litt selv: Hvilke tall skal danne liten og stor straight nå? Skal huset bestå av 2 og 3 like? Midt i Blinken Bestem en blink, dvs et tall mellom 0 og 20. Kast 2 dodekaeder og 2 ikosaeder. Ved hjelp av de fire regningsartene skal tallene kombineres slik at du treffer blinken eller kommer så nærme blinken som mulig. Hver terning skal brukes kun en gang, og alle terningene skal brukes. Eksempel: Blinken er 28. Du kaster 5, 11, 4, 19. Da kan du treffe midt i blinken med regnestykket: = 28 To spillere spiller spiller mot hverandre. Den som kommer nærmest blinken, får 1 poeng. Spill 5 omgange i hvert spill. Terningspillet 100 To eller tre spillere spiller sammen. Kast med dodekaederet. Spilleren som starter kaster terningen og legger sammen tallene han får. Men hvis hun kaster 1 mister hun poengene denne runden. Hvor lenge tør hun kaste og samle poeng? Poengene noteres, og det er om å gjøre å være førstemann til 100. Høyeste tall To spillere. Den ene kaster med ikosaederet, den andre med dodekaederet. Hvis hun som kaster med ikosaederet får 20 får hun poengene, men alle andre verdier på terningen gir poeng

7 til motspilleren. Hun som kaster med dodekaederet får på samme måte kun poeng hvis terningen viser 12. Hvem vinner? Hvorfor? Er dette et rettferdig spill? Størst mulig tall To spillere. Kast terning (velg hvilken type dere skal bruke) etter tur. Plasser tallene i den boksen du selv velger. Skriv av regnestykket på et eget ark. Mål: Den som får størst tall til svar, vinner. Variasjon: Om å gjøre å få minst mulig tall. 1. ( + - ) : = 2. ( + - ) : = Terninger med brøk, prosent og desimal Par eller trippel To spiller sammen. Kast 6 terninger, 2 av hver type. Førstemann som ser to terninger med 1 samme verdi, roper PAR! og peker på de to terningene (for eksempel og 5%). Hvis 20 det er riktig, får denne spilleren 2 poeng. Hvis det er feil, får motspilleren 1 poeng. Den som ser tre terninger med samme verdi, roper TRIPPEL! og peker på de tre terningene 1 (for eksempel, 5% og 0,05). Hvis det er riktig, får denne spilleren 4 poeng. Hvis det 20 er feil, får motspilleren 2 poeng. Når ingen av spillerne ser flere par eller tripler, kastes alle terningene på nytt. Spill for eksempel førstemann til 20 poeng. 1 NB! Vær oppmerksom på at det er lett å gjøre feil. Mange tror at og 0,20 er det 20 samme, men 0,20 er det samme som 20 1 = Nærmest mulig 2, eller 200%. To spiller sammen. Kast 6 terninger, 2 av hver type. Bruk verdiene terningene viser og addisjon og subtraksjon til å komme nærmest mulig 2 hele. Man må ikke bruke alle terningene. (For eksempel 20% + 0,50 + 1, % = 2,00 = 200%)

8 Trepinner: Bygg trekanter: Bygg likesidete trekanter med pinnene. - Hvor mange pinner trengs for å lage en likesidet trekant med sidekant = 1 pinne? - Lag en likesidet trekant med sidekant = 2 pinner? Hvor mange pinner trengs? Hvor mange små likesida trekanter fikk du da? Lag en tabell og før inn resultatene dine. - Fortsett med flere etasjer på figuren. Gjett først hvor mange pinner du trenger. Bygg og sjekk om det stemmer. Før inn i tabellen. Gjør samme oppgaven, men denne gangen skal alle de større trekantene bygges opp av små-trekanter, slik: Bygg kvadrater: - Hvor mange pinner trengs for å lage et kvadrat? - Lag et kvadrat som består av 4 små kvadrater. Hvor mange pinner trengs til det? Lag en tabell og før inn resultatene dine, slik: Kvadrat nr Antall små kvadrater Antall pinner Fortsett med flere etasjer på figuren. Gjett først hvor mange pinner du trenger. Bygg og sjekk om det stemmer. Før inn i tabellen. Figurtall Lag din egen figur, for eksempel stjerne, rektangel, sekskant eller liknende. La den vokse, og sett opp tabell.

9 Live Cube Bruk klossene til å bygge et rektangel med areal 12. Det kan være tett i midten, men det kan også være tomrom i midten. Lag et kvadrat med areal 25. Puslespill Trekk et kort og bygg figuren etter bruksanvisningen. Da skal du bare ta hensyn til form, ikke farge på brikkene. Kortet viser de første 4 stegene (tre små bilder og ett stort), etter at du har lagt til side de brikkene som er fargeløse på kortet. Når du har puslet til og med det store bildet, skal du plassere de siste brikkene slik at det blir enn hel kloss med grunnflate 4 5 og høyde 3. De svarte stjernene viser hvilken vanskelighetsgrad det er ( fra 1 til 5).

10 Løsning pinneoppgaver Fra romber til trekanter Flytt de 4 pinnene som var i midten ut slik pilene viser. Fire kvadrater Se på pilene hvordan 2 pinner er flytta for å lage 4 kvadrater med samme størrelse, Skjulte kvadrater Flytt de 3 pinnene slik pilene viser. Da har du laget 6 kvadrater, 1 stort og 5 små.

11 Minus en rombe Flytt pinnene som er stipla dit pilene viser. Forstå trekanter Flytt de 5 pinnene som pilene viser. Da får du 5 likesida trekanter, 1 stor og 4 små.

12 To hustak Ta bort de 2 pinnene tegna med stipla linje. Da vil du få 1 stor og 1 liten likesida trekant. Stolen Flytt pinnene som er tegna med stipla linje dit pilene viser. Stolen som velter Flytt pinnene som er tegna med stipla linje dit pilene viser.

13

14

15

16

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?

Detaljer

Tangram. Astrid Bondø NSMO

Tangram. Astrid Bondø NSMO Tangram Astrid Bondø NSMO T A N G R A M L E G E N D E N For lenge, lenge siden i det gamle Kina ville keiseren at tjeneren hans skulle bringe ham et kvadratisk stykke jade (bergart) Den uheldige tjeneren

Detaljer

Familiematematikk MATTEPAKKE 2. Trinn

Familiematematikk MATTEPAKKE 2. Trinn Familiematematikk MATTEPAKKE 2. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Sauen Erik Du trenger 50 tellebrikker som skal være sauene foran Erik i køen. Oppgave: Sauen Erik skulle få klippet

Detaljer

Familiematematikk MATTEPAKKE 6. Trinn

Familiematematikk MATTEPAKKE 6. Trinn Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges

Detaljer

Familiematematikk MATTEPAKKE 3. Trinn

Familiematematikk MATTEPAKKE 3. Trinn Familiematematikk MATTEPAKKE 3. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Geobrett Hvor mange forskjellige kvadrater kan du finne? Hvor mange kvadrater av ulik størrelse kan du

Detaljer

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO

Geometri Noen sentrale begrep. Nord-Gudbrandsdalen, Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Geometri Noen sentrale begrep Nord-Gudbrandsdalen, 20.-23.10.14 Anne-Gunn Svorkmo Astrid Bondø Svein H Torkildsen NSMO Eksempelundervisning Tema på eksempelundervisningen denne gangen var Geometri, men

Detaljer

Familiematematikk MATTEPAKKE 4. Trinn

Familiematematikk MATTEPAKKE 4. Trinn Familiematematikk MATTEPAKKE 4. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Penta-blokker Bygg noe fint med penta-blokkene. Se om du klarer å bygge noen av de store klossene ved å

Detaljer

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13 TERNINGER - variasjon i matematikkundervisningen Astrid Bondø NSMO 18-Aug-13 Siffer blir tall Lamis skriftserie: Et ess i ermet Bruk en vanlig 6-er terning eller en 0-9 terning. Kast terningene. Du får

Detaljer

Aktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning

Aktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning Tema: Juleverksted Aktiviteter: Bretting (stjerneforma oktaeder, stjerne, eske) Spill (Speilspill, Set, Geomag, Domino, Speilograf) Problemløsning Tidsbruk: 4 timer Utstyr: Origamipapir A4- ark Speilspill,

Detaljer

Tall og form 1 UTFORDRINGER UTFORDRINGER GENIER UTFORDRINGER UTFORDRINGER

Tall og form 1 UTFORDRINGER UTFORDRINGER GENIER UTFORDRINGER UTFORDRINGER Hvorfor er de vridd? Undersøk og sammenlikn de blå, gule og røde pinnene. Legg merke til at de blå pinnene er rette mens de gule og røde er vridd på midten. Hvorfor? Lag formen på pinnene Legg merke til

Detaljer

Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet.

Lærerveiledning. Oppgave 1. Det norske flagget har dimensjoner som vist på bildet. Oppgave 1 Det norske flagget har dimensjoner som vist på bildet. Hva er forholdet mellom arealet av det røde området og arealet av det blå korset? 54 7 18 A 3 B C D E 4 17 2 5 Skriv mål på flere sider

Detaljer

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng.

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng. REGNING DE FIRE REGNINGSARTENE: Når tallbegrepet er godt innarbeidet, og elevene forstår posisjonssystemet, begynner arbeidet med de fire regningsartene: sum (+), differens (-), multiplikasjon ( ) og divisjon(:).

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

Lengdemål, areal og volum

Lengdemål, areal og volum Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om

Detaljer

Matematisk juleverksted

Matematisk juleverksted GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til

Detaljer

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1

Detaljer

Spilleregler og spillvarianter for alle tre serier med Match-spill. Spilleregler og spillvarianter for Match Former og Farger, Tall og Mengder

Spilleregler og spillvarianter for alle tre serier med Match-spill. Spilleregler og spillvarianter for Match Former og Farger, Tall og Mengder Spilleregler og spillvarianter for alle tre serier med Match-spill Spilleregler og spillvarianter for Match Former og Farger, Tall og Mengder 1. Match brikkene i grupper på to, tre eller fire: Brikkene

Detaljer

Trekanter på geobrettet. - oppgavene er hentet fra ressurspermen til Ingvill M. Stedøys Matematiske koffert

Trekanter på geobrettet. - oppgavene er hentet fra ressurspermen til Ingvill M. Stedøys Matematiske koffert G E O B R E T T Innledende tips- differensiering Når dere jobber med geobrettet kan det være fint å bruke bare en liten del av brettet, for at det ikke skal bli for vanskelig til å begynne med. Sett på

Detaljer

Match Learner. Lek og lær

Match Learner. Lek og lær Match Learner Lek og lær Fax Sparebanken Pluss, Post-box 200 Account No: 3000.19.54756 2 Match Learner Lek og Lær Match er kvalitetsspill for alle barn fra to år og oppover. Spillene kan brukes hver for

Detaljer

GEOMETRISPILL; former, omkrets og areal.

GEOMETRISPILL; former, omkrets og areal. GEOMETRISPILL; former, omkrets og areal. Utstyr: 1 spillbrett 1 terning 3-5 spillbrikker fyrstikker, eller småpinner med lik tykkelse og lengde geobrett og gummistrikker spørre- og gjørekort rød boks til

Detaljer

Moro med former trinn 90 minutter

Moro med former trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med former 5. - 7. trinn 90 minutter Moro med former er et skoleprogram hvor elevene får utforske og leke seg med geometrien. Vi vil arbeide med geometriske figurer

Detaljer

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet . kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.

Detaljer

Oppgave 1.20 Hvordan kan man stimulere til matematisk tenkning ved å lese om Pippi og/eller Ole Aleksander?

Oppgave 1.20 Hvordan kan man stimulere til matematisk tenkning ved å lese om Pippi og/eller Ole Aleksander? Ekstraoppgaver Kapittel 1 Oppgave 1.18 Finn andre eksempler på regler og sanger som egner seg i arbeidet med tall og telling i barnehagen. Drøft hvilke matematiske erfaringer barn får ved å delta i disse

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Inviter foreldrene på matematisk aften (forslag til invitasjon nederst i dette dokumentet).

Detaljer

Geometriske morsomheter 8. 10. trinn 90 minutter

Geometriske morsomheter 8. 10. trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm.

Lærerveiledning. Oppgave 1. Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Oppgave 1 Et rektangel har sidelengder 15 cm og 9 cm. Tina klipper bort et kvadrat i hvert hjørne. Hvert kvadrat har omkrets 8 cm. Hva er omkretsen til den nye figuren? A 32 cm B 40 cm C 48 cm D 56 cm

Detaljer

Geometriske morsomheter trinn 90 minutter

Geometriske morsomheter trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

Kommentarer til animasjonen Firkant Quiz

Kommentarer til animasjonen Firkant Quiz Kommentarer til animasjonen Firkant Quiz Lenke til denne animasjonen finner du på Galleri DigiVitalis, på undersiden Geometri. Animasjonens hjem: http://home.hia.no/~cornelib/animasjon/matematikk/firkant-quiz.html

Detaljer

TRINN 1: HVA ER ET SET?

TRINN 1: HVA ER ET SET? ALDER: 8 år til voksen ANTALL SPILLERE: 2 til 4 FORMÅL MED SPILLET: Å skåre flest poeng. Skår poeng ved å lage SET med din terning og de som allerede er på brettet. Jo flere SET du lager, jo flere poeng

Detaljer

Om former og figurer Mønster

Om former og figurer Mønster Tre grunnleggende geometriske prosesser (Fosse&Munter): - Romforståelse - Formgjenkjenning - Målingsforståelse Om former og figurer Mønster Barn oppdager matematikk kap.g Sogndal 15.02.17 Solbjørg Urnes

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

Snu rundt. Snu rundt og gjenta stegene 1-6.

Snu rundt. Snu rundt og gjenta stegene 1-6. 1 av 5 Tetraederet Tetraederet har fire trekantede flater og er det minste platonske legemet. Det har 7 symmetriakser. Platon trodde det representerte elementet ild. Mange molekyler har atomene sine ordnet

Detaljer

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter? Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken

Detaljer

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver 3 x 3 ruter Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver som kan brukes i matematikktimene. Magisk kvadrat Du har

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt. Hva kjennertegner den gode lærer?

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt. Hva kjennertegner den gode lærer? Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt Grunnleggende ferdighet regning i de andre fagene: eksempel på p ulike

Detaljer

GeoGebra U + V (Elevark)

GeoGebra U + V (Elevark) GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:

Detaljer

En presisering av kompetansemålene

En presisering av kompetansemålene En presisering av kompetansemålene - med vekt på aktiviteter Mål for kompetanse, og innhold? M87: Innholdsplan, eks geometri 5.-7. trinn: Geometriske begreper: Punkt, linjestykke, rett linje, kurve, vinkel

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

Mangekanter og figurtall

Mangekanter og figurtall Mangekanter og figurtall ra papirbretting til algebra og funksjoner eskrivelse Opplegget starter med bretting av noen regulære mangekanter og en analyse av dem Her er vinkelberegning, kongruente og formlike

Detaljer

Et artig spill med smarte koblinger (A Curious Game of Clever Connections )

Et artig spill med smarte koblinger (A Curious Game of Clever Connections ) SET CUBED Et artig spill med smarte koblinger (A Curious Game of Clever Connections ) Instruksjoner Para instrucciones en Español por favor visiten www.setgame.com Pour des instructions en Français veuillez

Detaljer

GRUNNLEGGENDE TALLFORSTÅELSE OG GRUNNLEGGENDE GEOMETRI. Elevene skal møte begrepene på mange ulike måter, og få innblikk i

GRUNNLEGGENDE TALLFORSTÅELSE OG GRUNNLEGGENDE GEOMETRI. Elevene skal møte begrepene på mange ulike måter, og få innblikk i GRUNNLEGGENDE TALLFORSTÅELSE OG GRUNNLEGGENDE GEOMETRI TALL PÅ MANGE MÅTER Elevene skal møte begrepene på mange ulike måter, og få innblikk i - Tall som antall/mengde (kardinaltall) Mange barn vi tror

Detaljer

Årsplan: Uke Tema

Årsplan: Uke Tema Årsplan: Uke 33 34 35 36 37 38 39 epetisjon av pluss og minus Ulike terningsspill Yatzy Konkretisere med klosser og brikker Kap 1 Data og statistikk Undersøkelse Statistikk: Samle, sortere, notere og illustrere

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

Algebra trinn. Nord-Gudbrandsdalen Januar 2015

Algebra trinn. Nord-Gudbrandsdalen Januar 2015 Algebra 8.-10. trinn Nord-Gudbrandsdalen Januar 2015 Hva er algebra? Diskuter i grupper. Finn en enkel forklaring. Algebra i skolen Når bør vi starte algebraundervisningen? Bli enige om et synspunkt. Argumenter

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:

Detaljer

Form og mål hva er problemet?

Form og mål hva er problemet? Form og mål hva er problemet? Ny GIV Finnmark våren 2014 Anne-Gunn Svorkmo 12-Feb-14 Måling Måling er å sammenligne en enhet knyttet til et element eller en situasjon mot et lignende element eller situasjon

Detaljer

Årsplan i matematikk 6.trinn 2016/2017

Årsplan i matematikk 6.trinn 2016/2017 Årsplan i matematikk 6.trinn 2016/2017 Faglærere: Anne Kristin Helland og Marte Hegg Hellebø Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /37 Tall og tallforståelse

Detaljer

Geobrett - Tøyelige geometriske utfordringer Geometri for 4. 10- trinn Idebok og veiledning

Geobrett - Tøyelige geometriske utfordringer Geometri for 4. 10- trinn Idebok og veiledning Geobrett - Tøyelige geometriske utfordringer Geometri for 4. 10- trinn Idebok og veiledning Forfatter: Carolyn o Donnell Oversatt av: Pål Erik Ekholm Lauritzen Original: Just for Geoboards, ISBN 1-56107-904-9,

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Platonske legemer i klasserommet

Platonske legemer i klasserommet Platonske legemer i klasserommet Kristian Ranestad 13. mai 2005 2 Innhold Forord iii 1 Innledning 1 2 Regulære mangekanter 3 3 Platonske legemer 7 3.1 Dualitet eller søskenforhold................... 12

Detaljer

Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK

Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Fakultet for lærer- og tolkeutdanning Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Faglig kontakt under eksamen: Siri-Malén Høynes Tlf.: 73412621 Eksamensdato: 30. november 2016 2. desember

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! -6 Regler for: getsmart Grønn Hele tall 3 4 Hele tall 8-6 -6 3-6 3 8 Hele tall Hele tall 3 4 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

AKTIVITETER. knyttet til grunnleggende tallforståelse. Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen.

AKTIVITETER. knyttet til grunnleggende tallforståelse. Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen. AKTIVITETER knyttet til grunnleggende tallforståelse Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen 20-Dec-12 3 3 Kast en terning Skriv tallet i en av rutene. Fortsett

Detaljer

Kompetansemål etter 2. trinn

Kompetansemål etter 2. trinn Kompetansemål etter 2. trinn Tall: 1. telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2. bruke tallinjen til beregninger og å angi tallstørrelser 3. gjøre overslag

Detaljer

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016/2017 Læreverk: Multi 5a og b Lærer: Ruben Elias Austnes Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING - Finne verdien av et siffer HELE TALL Titallsystemet Tallinjer

Detaljer

Terningspill. Terningspillet 100

Terningspill. Terningspillet 100 Terningspill Terningspillet 100 Posisjonssystemet, Dere trenger en eller to terninger. Mål for aktiviteten: Oppnå poengsum mindre enn eller lik 100, og så nær som mulig 100. Kommentar: Her har Ida vunnet,

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

MÅLING. Mattelyst, mars 2014 Eksempelundervisning. 4-Apr-14

MÅLING. Mattelyst, mars 2014 Eksempelundervisning. 4-Apr-14 MÅLING Mattelyst, mars 2014 Eksempelundervisning 4-Apr-14 Matematikk formål med faget Måling vil seie å samanlikne og oftast knyte ein talstorleik til eit objekt eller ei mengd. Denne prosessen krev at

Detaljer

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene 1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km

Detaljer

Ny GIV 12. april 2012

Ny GIV 12. april 2012 Ny GIV 12. april 2012 1 «NY GIV I HEL KLASSE.» Den matematiske samtalen God matematikkundervisning skjer i møtet mellom læreren, elevene og det matematiske fagstoffet. 2 Aktivt språkbruk Grunnleggende

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Hvordan bidra til at dine elever får større ferdigheter i matematikk?

Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

LGU51005 A, Matematikk

LGU51005 A, Matematikk Skriftlig eksamen i LGU51005 A, Matematikk 1 5-10 15 studiepoeng ORDINÆR EKSAMEN 10. desember 2013. BOKMÅL Sensur faller innen torsdag 9. januar 2014. Resultatet blir tilgjengelig på studentweb første

Detaljer

Våre favorittspill for matematikktimene

Våre favorittspill for matematikktimene Realfagskonferansen 2014 et verksted for barnetrinnet Våre favorittspill for matematikktimene Gerd Åsta Bones og Mike Naylor Matematikksenteret Trondheim, Norway 9 2 4 6 7 8013 5 Najonalt Senter for Matematikk

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Slik bygger vi opp Maximum Grunnbok Oppgavebok Lærerens bok Papirkomponenter Lærerrom Vurderingsmateriell

Detaljer

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

Spikerbrettet oppdaget på nytt

Spikerbrettet oppdaget på nytt 22 TANGENTEN 1 1995 Christoph Kirfel Spikerbrettet oppdaget på nytt Spikerbrettet eller pluggbrettet er et hjelpemiddel som for mange av oss kanskje virker en smule barnslig. Men det viser seg faktisk

Detaljer

GeoGebra på mellomtrinnet

GeoGebra på mellomtrinnet GeoGebra på mellomtrinnet innføring + UTFORSKING + problemløsing Mattelyst Vågå, 16. sept. 2015 Anne-Gunn Svorkmo og Susanne Stengrundet I LK06 for matematikk fellesfag står det følgende om digitale ferdigheter:

Detaljer

Regelhefte for: Terninger (-9 til 10)

Regelhefte for: Terninger (-9 til 10) Regelhefte for: Terninger (-9 til 10) Trening i tallinje I Vanskelighetsnivå: 3. klasse og oppover. Utstyr:En hvit og en rød spesialterning (-9 til 10). Aktivitet: Spillerne kaster terningene annenhver

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men del

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

Hovedområde: Tall. Kompetansemål etter 2. trinn 1. trinn 2. trinn Forslag til metoder / materiell

Hovedområde: Tall. Kompetansemål etter 2. trinn 1. trinn 2. trinn Forslag til metoder / materiell Hovedområde: Tall. Kompetansemål etter 2. trinn MÅL: telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper Forstå hva en en-mengde, to- mengde, tre-mengde, fire-mengde,

Detaljer

Arbeid med geometriske figurer på 1. trinn

Arbeid med geometriske figurer på 1. trinn Bjørg Skråmestø Arbeid med geometriske figurer på 1. trinn På 1. trinn har vi jobbet med geometriske figurer på forskjellige måter. Vi har lagt vekt på at barna skulle få bli kjent med figurene gjennom

Detaljer

Kengurukonkurransen 2010

Kengurukonkurransen 2010 Kengurukonkurransen 2010 «Et sprang inn i matematikken» CADET (9. 10. trinn) Hefte for læreren Kengurukonkurransen 2010 Velkommen til Kengurukonkurransen! I år arrangeres den for sjette gang i Norge. Dette

Detaljer

4. kurskveld: Brøk og geometri

4. kurskveld: Brøk og geometri 4. kurskveld: Brøk og geometri I dag skal vi se på begrepet brøk, regning med brøk, og hvorfor de ulike regnereglene fungerer. Mange har bedre grep om desimaltall fordi regnereglene er lik regnereglene

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgaver i matematikk, 13-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 1 7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: utvikle, og bruke metodar for hovudrekning, overslagsrekning og skriftleg rekning,

Detaljer

Moro med matematikk 5. - 7. trinn 90 minutter

Moro med matematikk 5. - 7. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med matematikk 5. - 7. trinn 90 minutter Moro med matematikk er et skoleprogram i matematikk hvor elevene får jobbe variert med problemløsingsoppgaver, spill

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Dynamisk geometriprogram... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 Punkt og sirkler... 5 Punkt... 5 Sirkel... 6 Lagre... 6 To nyttige verktøy: «Flytt eller

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Høsten 2013 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal

Detaljer

Areal av polygoner med GeoGebra

Areal av polygoner med GeoGebra 1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer

Detaljer

Trenerveiledning del 2 Mattelek

Trenerveiledning del 2 Mattelek Trenerveiledning del 2 Mattelek 1 ANTALLSOPPFATNING - MINST/STØRST ANTALL FORKLARING Øvelser i dette området trener elevenes forståelse av antall. Et antall figurer presenteres i to separate bokser. Fra

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

Løsningsforslag MATEMATIKK 1, MX130

Løsningsforslag MATEMATIKK 1, MX130 Løsningsforslag ATEATIKK 1, X130 UTSATT EKSAEN 8. januar 2010 Oppgave 1 a) Alle flisene forutsettes å være like store. Vi tenker oss at sidekantene på flisene er 1 enhet lang og at arealet av hver flis

Detaljer