1P eksamen høsten Løsningsforslag

Størrelse: px
Begynne med side:

Download "1P eksamen høsten Løsningsforslag"

Transkript

1 1P eksamen høsten Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp prisen med 10 % eller 15 %. a) Hvor mye vil varen koste dersom prisen settes opp med 10 %? 10 % er en tiendedel. En tiendedel av 640 kr er 64 kr. Varen vil koste 640 kr + 64 kr = 704 kr. b) Hvor mye vil varen koste dersom prisen settes opp med 15 %? 5 % er halvparten av 10 %. Halvparten av 64 kr er 32 kr. Varen vil koste kr = 736 kr. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 1 av 19

2 Oppgave 2 (2 poeng) Noah skal gå fra Solsletta til Gråvann. Han lurer på om han skal gå den korteste veien, eller om han skal gå veien om Multemyr. Stiene går langs de stiplede linjene. Se figuren ovenfor. Hvor mye lenger må han gå dersom han velger å gå veien om Multemyr? Velger å måle avstanden i antall av 100 meter. Da blir avstanden mellom Solsletta og Multemyr 8 og avstanden mellom Solsletta og Gråvann 10. Bruker Pytagoras på den rettvinkla trekanten, og får at avstanden mellom Multemyr og Gråvann til å bli Avstanden mellom Multemyr og Gråvann er 600 m. Da blir det så mye lenger å gå: 800 m m 1000 m = 400 m Oppgave 3 (2 poeng) Et politisk parti har en oppslutning på 40 %. Partiet øker sin oppslutning med 2 prosentpoeng. Hvor mange prosent øker partiet oppslutningen med? Partiet øker sin oppslutning med % % 5% Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 2 av 19

3 Oppgave 4 (1 poeng) I 2016 kostet en vare 6 % mer enn i basisåret. Hva var prisindeksen for varen i 2016? Det betyr at prisindeksen også har steget med 6% siden basisåret, da den var 100. Prisindeksen i 2016 er derfor på 106. Oppgave 5 (3 poeng) Kari er baker. Hun har en oppskrift på brød hvor det står at forholdet mellom mel og vann skal være 10 : 7. a) Hvor mye vann trenger Kari dersom hun skal bruke 50 L mel? x x x Da trenger hun 35 L vann. Når Kari baker brød hjemme, bruker hun til sammen 3,4 L mel og vann. b) Hvor mye mel og hvor mye vann bruker hun? Setter x lik antall L mel. Da blir antall L vann lik sammen. x 10 7 (3,4 x) 3,4 x 7 x 7 (3,4 x) 3,4 x (3,4 x) 7 x 10 3,4 x 34 10x 7x 10x x x 2 Hun bruker 2 L mel og (3,4 2)L = 1,4 L vann. 3,4 x siden det skal være 3,4 L til Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 3 av 19

4 Oppgave 6 (2 poeng) Ovenfor ser du to parallelle linjer, en sirkel, et parallellogram og en trekant. AB 8 og CD 4. Sirkelen har areal 9. Bestem arealet av parallellogrammet og av trekanten. Må finne avstanden d mellom de to stipla linjene, som er høyden i parallellogrammet når grunnlinja er AB og høyden i trekanten når grunnlinja er CD. Samtidig er radien i sirkelen lik halvparten av d. 2 2 r Radius i sirkelen blir: r 9 9 Da blir avstanden d 2r Arealene blir da: r 2 9 r 9 3 Parallellogrammet: AB d Trekanten: CD d Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 4 av 19

5 Oppgave 7 (6 poeng) Noen venner vil dra på hyttetur. Det koster 3600 kroner å leie hytta en helg. Vennene skal dele utgiftene for leie av hytta likt mellom seg. I tillegg må hver person betale 1300 kroner for mat og transport a) Tegn av tabellen nedenfor i besvarelsen din. Fyll inn tallene som mangler. Antall personer Utgifter per person, kr per person b) Bestem en formel som du kan bruke for å regne ut utgiftene U per person dersom x personer deltar. Utgiftene per person blir hytteleien som må deles på antall personer, pluss 1300 kroner Ux ( ) 1300 x c) Bruk formelen fra oppgave b) til å bestemme hvor mange personer som må delta for at utgiftene per person skal bli 1600 kroner. Vi må løse følgende likning: Ux ( ) x x x 3600 x 300 x x x x De må være 12 personer for at utgiftene per person skal bli 1600 kroner. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 5 av 19

6 d) Er antall personer og utgiftene per person omvendt proporsjonale størrelser? Begrunn svaret ditt. Vi ser kjapt at dette ikke er omvendt proporsjonale størrelser siden når antall personer dobles fra 2 til 4, blir ikke utgiftene per person halvert, de går fra 3100 kroner til 2200 kroner. Oppgave 8 (3 poeng) Ved en skole er det to Vg2-klasser, 2A og 2B. Det er like mange elever i hver klasse. Alle elevene i 2A har valgt biologi. Halvparten av elevene i 2B har valgt biologi. a) Bestem sannsynligheten for at en tilfeldig valgt elev i Vg2 har valgt biologi. Siden det er like mange elever i de to klassene, vil ¾ av alle elevene ha valgt biologi. Sannsynligheten for at en tilfeldig valgt elev i Vg2 har valgt biologi blir da ¾ = 75 %. b) Bestem sannsynligheten for at en tilfeldig valgt elev i Vg2 som har valgt biologi, går i klasse 2A. Innfører hendelsene: B: Eleven har valgt biologi A: Eleven går i klasse 2A Oppgaven spør derfor etter P( A B ). Vi får videre: 1 P A B P( A B) 2 : 67 % P B Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 6 av 19

7 Oppgave 9 (3 poeng) Noen elever vil selge vafler for å samle inn penger til en skoletur. De kjøper inn litt utstyr og nødvendige ingredienser slik at de kan lage 120 vaffelplater. Den grafiske framstillingen nedenfor viser sammenhengen mellom antall vaffelplater de får solgt, og overskuddet de vil få fra salget. a) Den rette linjen starter i punktet (0, 450) og går gjennom punktet (30, 0). Hvilken praktisk informasjon gir dette? Det første punktet forteller at dersom de selger ingen vaffelplater, blir overskuddet et underskudd på 450 kroner, som må være lik summen av utgiftene elevene har hatt. Det andre punktet sier at dersom de selger 30 vaffelplater, blir overskuddet null, det vil si at da har de like store inntekter som utgifter, altså 450 kroner. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 7 av 19

8 b) Hvor mye vil elevene ta betalt for hver vaffelplate? Fra oppgave a) har vi at inntektene av 30 vaffelplater er 450 kroner. Prisen per vaffelplate blir: 450 kroner per vaffelplate = 15 kroner per vaffelplate 30 c) Vis hvordan du kan regne ut hvor stort overskuddet blir dersom elevene får solgt alle vaffelplatene. Hvor stort blir overskuddet? Inntektene med 120 solgte vaffelplater blir: 15kr kr. Overskuddet blir da: 1800kr 450kr 1350kr Alternativt: Overskuddet er en lineær funksjon/rett linje. Prisen per vaffelplate, 15, blir stigningstallet for den rette linja siden inntektene, og dermed overskuddet, øker med 15 dersom det selges én vaffelplate mer. Konstantleddet er 450. Formelen for linja blir: y 15x 450 Dersom elevene selger alle 120 vaffelplatene, betyr det at x = 120. Overskuddet blir da: y Overskuddet blir 1350 kroner. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 8 av 19

9 Tid: 2 timer Hjelpemidler: Alle hjelpemidler unntatt kommunikasjon Oppgave 1 (4 poeng) Antall tusen artikler i den engelske utgaven av Wikipedia x år etter 1. januar 2002 er tilnærmet gitt ved funksjonen f der 3 2 f( x) 2,34 x 50x 129x 19,7, 0 x 15 a) Bruk graftegner til å tegne grafen til f for 0 x 15. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 9 av 19

10 Skrev inn funksjonen f ved hjelp av kommandoen Funksjon. b) Når passerte antall artikler , ifølge funksjonen? At antall artikler er , betyr at det er tusen artikler. Skrev inn linja y = 4000 og fant skjæringspunktet mellom denne og grafen til f, se punktet A på figuren i oppgave A. Kommando: Skjæring. Antall artikler passerte år etter 1. januar 2002, dvs. i januar Oppgave 2 (2 poeng) På et kart er en avstand 2,4 cm. I virkeligheten er den samme avstanden 4,8 mil. Bestem målestokken til kartet. 4,8mil 48km 48000m cm ,4cm 2,4 cm 2,4 cm 2,4 cm Målestokken er 1 : Oppgave 3 (2 poeng) En hermetikkboks har form som en sylinder med radius 10 cm og høyde 10 cm. En kule har radius 10 cm. Bestem forholdet mellom overflaten av hermetikkboksen og overflaten av kula. Forholdet er: r 2 rh r Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 10 av 19

11 Oppgave 4 (3 poeng) Basisåret for konsumprisindeksen er nå Tidligere var basisåret Da 1998 ble brukt som basisår, var konsumprisindeksen 139,8 i 2015 og 144,8 i 2016 a) Vis at konsumprisindeksen i 1998 nå er 71,5. Bruker at forholdet mellom konsumprisindeksene i 1998 og 2015 må være det samme uansett basisår. Setter x lik konsumprisindeksen i 1998 med 2015 som basisår. Dette gir: x ,8 Konsumprisindeksen i 1998 er 71,5 med 2015 som basisår. b) Hva er nå konsumprisindeksen i Bruker samme tankegang som i a). Setter x lik konsumprisindeksen i 2016 med 2015 som basisår. Dette gir: x 144, ,8 Konsumprisindeksen i 2016 er 103,6 med 2015 som basisår. Oppgave 5 (2 poeng) I 2010 var konsumprisindeksen 92,1. I 2014 var konsumprisindeksen 97,9. Helene hadde like stor kjøpekraft i 2014 som i I 2014 hadde hun en nominell lønn på kroner. Hva var den nominelle lønna hennes i 2010? Like stor kjøpekraft i 2014 som i 2010 vil si at reallønna var den samme disse to årene. Setter x lik nominell lønn i Dette gir: x ,1 97,9 Den nominelle lønna i 2010 var kroner. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 11 av 19

12 Oppgave 6 (2 poeng) Prisen for en vare er endret fem ganger. To ganger er den satt ned med 30 %. Tre ganger er den satt opp med 20 %. Nå koster varen 2646 kroner. Hva kostet varen før prisendringene? Regner ut vekstfaktorer først % nedgang: 1 0,7 20 % oppgang: 1 1, Setter x lik prisen før alle disse endringene. Får da følgende likning: x 0, Løser likningen med CAS: Prisen før prisendringene var 3125 kroner. Oppgave 7 (4 poeng) I en eske ligger det tre hvite og ni røde julekuler. Én av de hvite og fire av de røde kulene er ødelagt. Tenk deg at du skal ta to kuler tilfeldig fra esken. a) Bestem sannsynligheten for at du kommer til å ta to kuler som ikke er ødelagt. Definerer følgende hendelser: A: Første kule er ikke ødelagt B: Andre kule er ikke ødelagt Det er totalt 12 julekuler, og 5 av dem er ødelagt. Oppgaven spør etter sannsynligheten for at både A og B inntreffer. Vi får 1 P A B P A P B A ,8% Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 12 av 19

13 b) Bestem sannsynligheten for at minst én av kulene du kommer til å ta, er ødelagt. Dette er den motsatte sannsynligheten av den vi fant i a). Vi får: P A B 1 68,2% Oppgave 8 (5 poeng) Anders hadde en trekloss med form som et rett firkantet prisme. Han fikk skåret bort en del av klossen slik at den ene kanten ble avrundet. Se figuren ovenfor. Buen er en sirkelbue med radius 6,0 cm. a) Bestem volumet av treklossen. Figuren kan ses på som et prisme med grunnflate 12 x 12 cm der det er tatt bort et hjørne med grunnflate 6 x 6 cm og så satt inn en kvart sylinder med radius 6 cm. (Alle høydene er 36 cm). Volumet blir: 12,0cm 12,0cm 36,0cm 6,0cm 6,0cm 36,0cm 1 2 6,0 cm 36,0 cm cm 4,9 dm Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 13 av 19

14 b) Bestem overflaten av treklossen. Regner ut endeflatene på den første linja, de 4 rektangulære sideflatene på den andre linja og den buede sideflaten (som er en fjerdedel av sideflaten til en sylinder). Overflaten blir: ,0cm 12,0cm 2 6,0cm 6,0cm 2 6,0cm ,0cm 36,0cm 2 6,0cm 36,0cm 1 2 6,0cm 36,0cm cm 19,1 dm 2 Oppgave 9 (6 poeng) Per har deltidsjobb i en matvarebutikk. Han er ikke sikker på hvor mye han kommer til å tjene i løpet av Han kan velge mellom to alternative skattetrekk. Alternativ 1 Frikort Han kan tjene inntil kroner uten skattetrekk. Dersom han tjener mer enn kroner, får han et skattetrekk på 50 % av den delen av lønna som er over kroner. Alternativ 2 Prosentkort Han får et skattetrekk på 10 % av alt han tjener. Anta at Per kommer til å tjene kr i a) Bestem Pers nettolønn med hvert av alternativene ovenfor. Nettolønn med alternativ 1: 55000kr ( )kr 0, kr % skattetrekk gir en vekstfaktor på 1 0,9 100 Nettolønn med alternativ 2: 60000kr 0, kr Per ønsker å lage en oversikt i et regneark for å finne ut hvor mye han vil få i nettolønn ved ulike inntekter etter de to alternativene ovenfor. I regnearket nedenfor har vi lagt inn ulike mulige inntekter for Per i Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 14 av 19

15 Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 15 av 19

16 b) Lag et regneark som vist ovenfor. Du skal sette inn formler i de blå cellene og beregne skattetrekk og nettolønn. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 16 av 19

17 c) Hvor mye må Per tjene for at de to alternativene skal gi nøyaktig like stort skattetrekk? Setter opp en likning med x lik bruttolønna som skal gi samme skattetrekk med de to alternativene: x ,5 x 0,1 Løser denne med CAS: Han må tjene kroner for at skattetrekket skal bli like stort med begge alternativene. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 17 av 19

18 Oppgave 10 (6 poeng) Gitt figuren ovenfor.. Den blå linjen er grafen til funksjonen f, og den røde linjen er grafen til funksjonen g. Linjene skjærer hverandre i punktet A. Punktet B ligger på grafen til g, og punktet C ligger på grafen til f. Punktet D ligger på BC, og BC er parallell med y - aksen. a) Forklar at ADC og ABD er formlike. Begge trekantene har en rett vinkel i punktet D. Vinkel BAD = vinkel ACD fordi: CD står vinkelrett på AD og AC står vinkelrett på AB. Da er to av vinklene i trekantene parvis like, og da må den tredje være det også. Trekantene er derfor formlike. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 18 av 19

19 Funksjonen f er gitt ved f( x) 2x 4 og AD 1 b) Vis at BD 0,5. Når vi går én enhet bortover i positiv retning langs x-aksen fra punktet A, ser vi at vi må gå lengden CD for å komme inn på funksjonen fx ( ) igjen. Da må CD være lik stigningstallet, som er 2. Siden de to trekantene i oppgave a) er formlike, må forholdet mellom de to lengste katetene, CD og AD, være det samme som forholdet mellom de to korteste, AD og BD. Dette gir: BD AD AD CD BD BD 2 Funksjonen g er gitt ved g( x) ax b og g (0) 3,5 c) Bestem a og b. Når vi går én enhet bortover i positiv retning langs x-aksen fra punktet A, ser vi at vi må gå lengden BD for å komme inn på funksjonen gx ( ) igjen. Da må BD være lik minus stigningstallet, som blir 0,5. Da har vi at a 0,5 og g( x) 0,5 x b Bruker deretter at g (0) 3,5. Det gir: g( x) 0,5x b 3,5 0,5 0 b b b 3,5 (Vi kan også si at g(0) 3,5 viser at skjæringspunktet med y-aksen skjer når y = 3,5 og da må konstantleddet være 3,5.) Da har vi at a 0,5 og b 3,5 Kilder Oppgavetekst med grafiske framstillinger og bilder: Utdanningsdirektoratet. Eksamen MAT1011 Matematikk 1P Hausten / Høsten 2017 Side 19 av 19

1P eksamen høsten 2017

1P eksamen høsten 2017 1P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp prisen med 10 % eller 15 %. a) Hvor mye vil varen koste dersom prisen settes opp med 10 %? b) Hvor

Detaljer

1P eksamen hausten Løysingsforslag

1P eksamen hausten Løysingsforslag 1P eksamen hausten 2017 - Løysingsforslag Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Ei vare kostar 640 kroner. Butikkeigaren

Detaljer

1P eksamen hausten 2017

1P eksamen hausten 2017 1P eksamen hausten 2017 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Ei vare kostar 640 kroner. Butikkeigaren vurderer å setje

Detaljer

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 20.11.2017 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:

Detaljer

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

1T eksamen høsten 2017 løsning

1T eksamen høsten 2017 løsning 1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15

Detaljer

1P eksamen våren 2016 løsningsforslag

1P eksamen våren 2016 løsningsforslag 1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti

Detaljer

1P eksamen våren 2016

1P eksamen våren 2016 1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.

Detaljer

Eksamen MAT 1011 Matematikk 1P Va ren 2015

Eksamen MAT 1011 Matematikk 1P Va ren 2015 Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant

Detaljer

1P eksamen våren 2017 løsningsforslag

1P eksamen våren 2017 løsningsforslag 1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

1T eksamen hausten 2017 Løysing

1T eksamen hausten 2017 Løysing 1T eksamen hausten 017 Løysing Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 105000 0,15

Detaljer

1P eksamen høsten 2018 løsning

1P eksamen høsten 2018 løsning 1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Detaljer

Eksamen 1T våren 2015 løsning

Eksamen 1T våren 2015 løsning Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003

Detaljer

1T eksamen hausten 2017

1T eksamen hausten 2017 1T eksamen hausten 017 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 10 5000 0,15 Oppgåve

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Tenk deg at du har et spann med 8 L maling. Du vil helle malingen over i mindre bokser. I hver boks er det plass til 2 3 L. Hvor mange bokser trenger du? Oppgave

Detaljer

Eksamen 1T våren 2015

Eksamen 1T våren 2015 Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave

Detaljer

1T eksamen våren 2017 løsningsforslag

1T eksamen våren 2017 løsningsforslag 1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen høsten 2016 Løsninger

Eksamen høsten 2016 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Vi fordeler malingen på de små oksene: 8 8 3 4 8 : 1 3 3 3 3 Vi trenger 1 okser. Oppgave

Detaljer

1P eksamen våren 2018 løsningsforslag

1P eksamen våren 2018 løsningsforslag 1P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave

Detaljer

1P eksamen høsten 2018

1P eksamen høsten 2018 1P eksamen høsten 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer, del 2 etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Detaljer

1T eksamen våren 2017

1T eksamen våren 2017 1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:

Detaljer

1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle

1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle 1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Et skolesenter har el-bil

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2012

Eksamen MAT 1011 Matematikk 1P Høsten 2012 Eksamen MAT 1011 Matematikk 1P Høsten 2012 Oppgave 1 (2 poeng) En dag har butikk A følgende tilbud: Du skal kjøpe 1,5 kg druer. I hvilken butikk lønner det seg å handle? Butikk A: 1,5 kg tilsvarer 3 beger,

Detaljer

1T eksamen våren 2018

1T eksamen våren 2018 1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs

Detaljer

1P eksamen våren 2016 løysingsforslag

1P eksamen våren 2016 løysingsforslag 1P eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 ( poeng) Ved kommunevalet i haust fekk eit politisk parti

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2015

Eksamen MAT 1011 Matematikk 1P Høsten 2015 Eksamen MAT 1011 Matematikk 1P Høsten 015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt,4 g per dag. a) Hvor mange gram salt kan

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) I en vase står det 20 tulipaner. 25 % av tulipanene er hvite, 1 5 Hvor mange tulipaner er røde? er gule, og resten er røde. Oppgave 2 (2 poeng) Tabellen nedenfor

Detaljer

Eksamen REA3022 R1, Våren 2009

Eksamen REA3022 R1, Våren 2009 Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x

Detaljer

1P eksamen våren 2016

1P eksamen våren 2016 1P eksamen våren 2016 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (2 poeng) Ved kommunevalet i haust fekk eit politisk parti 4,5 % av røystene.

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 1 6 50 x x 6 50 x 300 Feilen lir 300 mm 30 cm. Oppgave 617 L 600L og 15,3L 15L 600 40

Detaljer

R1 eksamen våren 2017 løsningsforslag

R1 eksamen våren 2017 løsningsforslag R eksamen våren 07 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f 5 4 a) 3 f 6 5 b) g ( ) e

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 15 L 150 dl Til sammen 150 dl med dl i hvert glass gir: 150 glass 75 glass Oppgave Vi

Detaljer

Eksamen. MAT1011 Matematikk 1P Nynorsk/Bokmål

Eksamen. MAT1011 Matematikk 1P Nynorsk/Bokmål Eksamen 25.05.2016 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

1P eksamen våren 2017

1P eksamen våren 2017 1P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i begre. I hvert

Detaljer

Eksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.

Eksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1. Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1001

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

R1 eksamen høsten 2015

R1 eksamen høsten 2015 R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen

Detaljer

Eksamen MAT 1011 matematikk 1P va ren 2015

Eksamen MAT 1011 matematikk 1P va ren 2015 Eksamen MAT 1011 matematikk 1P va ren 015 Oppgåve 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgåve ( poeng) a) Forklar at dei to trekantane over er formlike. Vinkelsummen i ein trekant

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

NY Eksamen 1T, Høsten 2011

NY Eksamen 1T, Høsten 2011 NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

5.4 Konstruksjon med passer og linjal

5.4 Konstruksjon med passer og linjal 5.4 Konstruksjon med passer og linjal OPPGAVE 5.40 Analyse: Vi skal konstruere trekanten til høyre. Vi starter da med å konstruere en rettvinklet trekant med kateter lik 7 cm og 3 cm. Forlenger så hypotenusen

Detaljer

Eksamen 1P, Høsten 2011

Eksamen 1P, Høsten 2011 Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA3026 S1, Høsten 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 2 2x 8 x b) 33

Detaljer

R1 eksamen høsten 2016

R1 eksamen høsten 2016 R eksamen høsten 06 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) b) g( x) xlnx c) h x x e x 3

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

Eksamen REA 3022 Høsten 2012

Eksamen REA 3022 Høsten 2012 Eksamen REA 0 Høsten 01 Del 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x 1 f '( x) x 1 f ' x 8x b) g x x x 1 g( x) x x 1 1 1 g( x) x x x x 1 g x x x x c) hx x e h x x e x e x x

Detaljer

2P-Y eksamen våren 2016 løsningsforslag

2P-Y eksamen våren 2016 løsningsforslag 2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksempeloppgave 2014. MAT1011 Matematikk 1P Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1011 Matematikk 1P Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1011 Matematikk 1P Eksempel på eksamen våren 2015 etter ny ordning Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 2013 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden

Detaljer

2P eksamen våren 2016 løsningsforslag

2P eksamen våren 2016 løsningsforslag 2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2013

Eksamen MAT 1011 Matematikk 1P Hausten 2013 Eksamen MAT 1011 Matematikk 1P Hausten 01 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 0 % av sidene i boka. Kor mange sider er det i boka? Går «vegen om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

1T eksamen våren 2018 løsningsforslag

1T eksamen våren 2018 løsningsforslag 1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1

Detaljer

Eksamen 1T våren 2016 løsning

Eksamen 1T våren 2016 løsning Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket

Detaljer

5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal du levere innen 5 timer.

5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal du levere innen 5 timer. Høst 2016 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2

Detaljer

2P-Y eksamen høsten 2017 Løsning

2P-Y eksamen høsten 2017 Løsning 2P-Y eksamen høsten 2017 Løsning Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved

Detaljer

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70

Detaljer

Eksamen R1, Våren 2015

Eksamen R1, Våren 2015 Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

1P-Y eksamen våren 2016 løsningsforslag

1P-Y eksamen våren 2016 løsningsforslag 1P-Y eksamen våren 2016 løsningsforslag Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skjermdumpen ovenfor viser værdata for 26. januar

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

R1 eksamen høsten 2016 løsningsforslag

R1 eksamen høsten 2016 løsningsforslag R eksamen høsten 06 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) fx 4x 5 b) g(

Detaljer

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:

Detaljer

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16

Detaljer

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

1P eksamen våren 2018

1P eksamen våren 2018 1P eksamen våren 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Nedenfor

Detaljer

Eksamen REA3022 R1, Våren 2011

Eksamen REA3022 R1, Våren 2011 Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3

Detaljer

Eksamen R1 høsten 2014 løsning

Eksamen R1 høsten 2014 løsning Eksamen R1 høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene 3 a) f x x x 5 5 f x 15x 4x

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

2P-Y eksamen våren 2017 løsningsforslag

2P-Y eksamen våren 2017 løsningsforslag 2P-Y eksamen våren 2017 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) I en klasse er det 16 elever. Tabellen nedenfor

Detaljer

R1 eksamen våren 2018

R1 eksamen våren 2018 R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2014

Eksamen MAT 1011 Matematikk 1P Høsten 2014 Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra

Detaljer

2P eksamen høsten 2017 Løsningsforslag

2P eksamen høsten 2017 Løsningsforslag 2P eksamen høsten 2017 Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen

Detaljer

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag. Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1001

Detaljer

Geometri R1, Prøve 2 løsning

Geometri R1, Prøve 2 løsning Geometri R, Prøve løsning Del Tid: 90 min Hjelpemidler: Skrivesaker Oppgave Gitt punktene A,, B 0, og D,6 a) Bestem koordinatene til AB og lengden til AB AB 0, 8, AB 8 68 7 A, B og D er hjørner i parallellogrammet

Detaljer