Eksamen MAT 1011 Matematikk 1P Høsten 2012

Størrelse: px
Begynne med side:

Download "Eksamen MAT 1011 Matematikk 1P Høsten 2012"

Transkript

1 Eksamen MAT 1011 Matematikk 1P Høsten 2012 Oppgave 1 (2 poeng) En dag har butikk A følgende tilbud: Du skal kjøpe 1,5 kg druer. I hvilken butikk lønner det seg å handle? Butikk A: 1,5 kg tilsvarer 3 beger, men du betaler for 2. Prisen blir kr Butikk B: Prisen per kg er 70 kr. For 1,5 kg druer I butikk B betaler du 1, kr Det lønner seg å handle i butikk A. Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 1 av 14

2 Oppgave 2 (1 poeng) Tidligere kostet en vare 50 kroner. Nå koster varen 90 kroner. Hvor mange prosent har prisen økt med? Prisvekst i kroner: 90 kr 50 kr 40 kr Prisvekst i prosent: % 80% 50 Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen ovenfor i besvarelsen din, gjør beregninger og fyll inn tallene som mangler. Antall elever Pris per elev (kroner) Beregninger: Total pris er kr 3000 kr. Pris per elev ved 10 elever blir 3000 kr 300 kr 10 Antall elever når prisen er 100 kr per elev blir b) Hvor mye koster det å leie hytten? Det koster 3000 kr å leie hytten, se beregning i oppgave a). Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 2 av 14

3 Oppgave 4 (3 poeng) Skriv av, gjør beregninger, og sett inn tallene som mangler i hver av linjene: 20 L 20 dm 0, 02m 3 3 Forutsetter at vi vet at 4,4 h 4 h og 24 min. 3 1 dm 1 L Beregninger: Finner antall minutter slik 0,4 h 60 min/h 24 min 200 m/s 720 km/h Beregninger: 200 m 0,2 km. Det er sekunder i en time (h). Farten i km/h blir dermed 0,2 km/s 3600 s/h 720 km/h Oppgave 5 (2 poeng) Ved forrige valg fikk et parti 40 % av stemmene i en kommune. Partiet har etter valget økt oppslutningen med to prosentpoeng ifølge en meningsmåling. Hvor mange prosent har økningen vært på? En økning fra 40 % til 42 % gir en økning på 2 prosentpoeng. Økningen i prosent blir 2 100% 5% 40 Oppgave 6 (2 poeng) Eli hadde en nominell lønn på kroner i basisåret. Et annet år var konsumprisindeksen 120. Hvor mye måtte Eli ha tjent dette året dersom hun skulle hatt samme kjøpekraft som i basisåret? I basisåret er konsumprisindeksen 100. Når konsumprisindeksen et år er 120 vil det det si at indeksen Konsumprisindeksen har økt med 20 %, sammenliknet med basisåret. Eli må dermed tjene , kroner dette året dersom kjøpekraften skulle opprettholdes. Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 3 av 14

4 Oppgave 7 (4 poeng) I klasse 1A er det 25 elever. 12 av elevene har valgt internasjonal engelsk neste skoleår. 14 av elevene far valgt sosialkunnskap. 4 elever har verken valgt internasjonal engelsk eller sosialkunnskap. a) Systematiser opplysningene ovenfor i en krysstabell eller i et venndiagram. Krysstabell: Sosialkunnskap Ikke internasjonal engelsk Internasjonal engelsk Ikke sosialkunnskap Vi velger tilfeldig en elev fra klassen. b) Bestem sannsynligheten for at eleven har valgt både internasjonal engelsk og sosialkunnskap Bruker opplysningene som jeg finner i krysstabellen, se oppgave a) Sannsynligheten for både internasjonal engelsk og sosialkunnskap blir: 5 1 0, Vi velger tilfeldig en elev som har valgt sosialkunnskap. c) Bestem sannsynligheten for at eleven også har valgt internasjonal engelsk. Sannsynligheten for at en som har valgt sosialkunnskap også har valgt internasjonal engelsk blir: 5 14 Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 4 av 14

5 Oppgave 8 (2 poeng) Mike fra England og Arne fra Norge møttes i Litauen. Bruk Arnes og Mikes regneregler til å finne ut hvor mange norske kroner et pund svarte til. 1 litauiske litas er 2,25 norske kroner og 1 litauiske litas er 0,25 engelsk pund. Det betyr at 0,25 engelsk pund tilsvarer 2,25 norske kroner. Et engelsk pund tilsvarer dermed 2,25 9 norske kroner. 0,25 Oppgave 9 (3 poeng) Gjør beregninger og avgjør om påstandene nedenfor er riktige. a) C 83,6 Dette er en likebeint trekant. Vinkel B er dermed lik vinkel A altså 48,2. Vinkel C blir dermed , ,4 83,6 2 b) Arealet av ABC er mindre enn 20 cm Høyden fra C deler linjestykket AB på midten pga. likebeint trekant. Finner høyden ved Pytagoras setning h h h 6,0 4, er mindre enn 5 Arealet blir 8, Dette må være mindre enn 20, da 20 er mindre enn 5. 2 Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 5 av 14

6 Oppgave 10 (3 poeng) Antall hektogram smågodt Pris for påskeegg med smågodt (kroner) Stian vil kjøpe et påskeegg. Han vil fylle påskeegget med smågodt. Tabellen ovenfor viser sammenhengen mellom hvor mye smågodt han fyller i påskeegget, og hvor mye han må betale. a) Tegn et koordinatsystem med hektogram langs x aksen og kroner langs y aksen. Marker verdiene fra tabellen ovenfor som punkter i koordinatsystemet, og tegn en rett linje som går gjennom punktene. Markerer punktene og tegner linja gjennom punktene i et koordinatsystem b) Bruk linjen i a) til å bestemme prisen for det tomme påskeegget og prisen per hektogram smågodt. Prisen for det tomme påskeegget finner vi der linjen skjærer y aksen. Prisen er 30 kroner. Prisen per hektogram blir 90 kr 30 kr 60 kr 6 kr/hg 10 hg 10 hg c) Hvor mye smågodt er det i et påskeegg som koster 81 kroner? Tegner inn linja y 81 i koordinatsystemet ovenfor. Finner grafisk at det er 8,5 hg smågodt i et påskeegg som koster 81 kroner, se koordinatsystem i a). Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 6 av 14

7 Oppgave 1 (2 poeng) Sindre er lærling. Han har en timelønn på 90 kroner. Ved overtid får han et tillegg på 60 %. Sindre betaler 18 % skatt av alt han tjener. En måned arbeidet Sindre 160 timer. 10 av disse timene var overtid. Hvor mye betalte Sindre i skatt denne måneden? Samlet lønn denne måneden: kr kr 1, kr kr kr Skatten denne måneden blir dermed kr 0, kr Oppgave 2 (2 poeng) Siri setter inn kroner på en ny bankkonto. Hun lar pengene stå urørt og får 4,5 % rente per år. Hvor mye vil hun ha på kontoen etter 15 år? Beløp på kontoen etter 15 år: kr 1, kr Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 7 av 14

8 Oppgave 3 (6 poeng) Svein skal bygge hytte. Han skal lage grunnmur og gulv av betong. Se figur ovenfor. Det mørkeblå området er grunnmuren. Denne skal være 0,25 m bred. a) Bestem arealet av det lyseblå og av det mørkeblå området på figuren. Areal av lyseblått område: 14,0 m 2 0,25 m 7,0 m 2 0,25 m 4,0 m 2 0,25 m 1,0 m 13,5 m 6,5 m 3,5 m 1,0 m 87,75 m 3,5 m 91,25 m Areal av mørkeblått område: Areal av hele grunnflaten areal av lyseblått område ,0 m 7 m 1,0 m 4,0 m 91,25 m 102 m 91,25 m 10,75 m I det lyseblå området skal Svein legge et 10 cm tykt betonglag. Grunnmuren skal være 40 cm høy. b) Hvor mange kubikkmeter betong trenger han? Antall kubikkmeter betong: Han trenger ca m betong ,25 m 0,10 m 10,75 m 0,40 m 13,425 m Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 8 av 14

9 Oppgave 4 (6 poeng) Tabellen til høyre viser prisindeksen for eneboliger i perioden fra 1989 til a) Hvor mange prosent har verdien på en enebolig økt med fra 1989 til 2010 ifølge indeksene i tabellen ovenfor? Forskjell i indeks: 177,2 68,5 108,7 I prosent blir dette: 108,7 100% 158,7 % 68,5 Familien Hansen kjøpte en enebolig for kroner i år b) Hvor mye ville en tilsvarende bolig kostet i 2006 dersom prisen hadde fulgt indeksen? Prisindeksen var akkurat 100,0 i år Indeksen i 2006 var 139,7. Det betyr at indeksen har steget med 39,7 % i denne perioden. Tilsvarende enebolig ville ha kostet , kroner i I 2010 solgte familien Hansen boligen for kroner. Sønnen i huset mente at de da hadde tjent kroner på salget av huset, mens faren påsto at de egentlig ikke hadde tjent mer enn ca kroner på salget. c) Gjør beregninger og forklar hvordan faren har kommet fram til dette. Prisstigningen fra 2000 til 2010 var 77,2 %. Tilsvarende enebolig ville ha kostet , kroner i Vi ser da at fortjenesten hadde vært i underkant av kroner. Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 9 av 14

10 Oppgave 5 (4 poeng) En dag fikk elevene ved en skole servert lunsj. De fikk velge mellom pizza og pølser. 3 4 av elevene valgte pizza. Resten valgte pølser. I tillegg fikk alle tilbud om salat. Halvparten av elevene som valgte pizza, ønsket også salat, men bare 1 5 av elevene som valgte pølse, ønsket salat. Vi velger tilfeldig en elev ved skolen. a) Bestem sannsynligheten for at eleven valgte pølser, men ikke ønsket salat. Pizza og salat: Pizza men ikke salat: Pølse og salat: Pølser men ikke salat: ,20 dvs. 20 % Anta at det er 200 elever ved skolen. b) Hvor mange av disse elevene ønsket salat? Hva er sannsynligheten for at en tilfeldig valgt elev ved skolen ønsket salat? Andel som ønsket salat: elever Sannsynligheten for at en tilfeldig valgt elev ved skolen ønsket salat blir dermed ,425. Det betyr at det er 42,5 % sannsynlighet for at denne eleven ønsker salat Alternativ løsning til a). Anta at det er 200 elever ved skolen. Setter opp en krysstabell. Pølser Pizza Sum Uten salat Med salat Sum Vi kan lese ut fra tabellen at 40 elever ønsker pølser, men uten salat. Sannsynligheten er dermed ,20 dvs. 20 % Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 10 av 14

11 Oppgave 6 (6 poeng) Frank deltar i et friidrettsmesterskap. Han kaster et spyd. Grafen til funksjonen f gitt ved 2 f x 0,01x 0,85x 2,20 beskriver banen spydet følger gjennom luften. Her er x meter målt langs bakken fra stedet hvor Frank står, og over bakken. a) Tegn grafen til f for x 0. Bruker GeoGebra og tegner grafen. f x meter er høyden spydet har b) Bestem skjæringspunktene mellom grafen til f og aksene. Bestem toppunktet på grafen til f. Bruker grafen og finner svarene, se a) Finner skjæringspunktene mellom aksene og grafen ved å bruke kommandoen skjæring mellom to objekt i GeoGebra Skjæringspunktet mellom grafen og x aksen er 87,5 og mellom grafen og y er 2,2. Finner toppunktet ved å bruke kommandoen Ekstremalpunkt polynom i GeoGebra. Toppunktet er 42.5, 20.3 c) Hva forteller svarene i b) om spydkastet? Frank kaster ut spydet 2,2 meter over bakken. Spydet når en høyde på litt over 20 meter og lander på 87,5 meter. Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 11 av 14

12 Oppgave 7 (4 poeng) Til venstre ovenfor ser du et glass med stett. Vi regner at den delen av glasset som fylles med drikke, har form som en kjegle. Diameteren i toppen av kjeglen er 9,0 cm, og sidekantene er 6,0 cm. Se tverrsnittet til høyre ovenfor. a) Bestem høyden i kjeglen. Grunnet likebeint trekant kan vi finne høyden ved hjelp av Pytagoras: h 6,0 4,5 h 4,0 cm b) Hvor mange centiliter vann er det plass til i glasset? Volumet er gitt ved 2 2 G h r h V ,5 cm 4,0 cm 84,2 cm 3 0,0842 dm 3 0,0842 L 8,42 cl Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 12 av 14

13 Oppgave 8 (6 poeng) Per og Kari skal ut å reise. Per skal kjøre en strekning på 300 km med bil. Kari skal reise samme strekning. Hun tar buss første del av turen og deretter tog. Per startet klokka og holder en gjennomsnittsfart på 60 km/h. Karis buss går klokka og holder en gjennomsnittsfart på 50 km/h. Etter 100 km skifter Kari til tog. Hun må vente 15 minutter på toget. Toget har en gjennomsnittsfart på 100 km/h. a) Vis at Kari når først fram. Tidsbruk til Per: Tidsbruk til Kari: 300 km 5 timer Per er framme kl km/h 100 km 200km 15min 2 timer 2 timer 15 min 4 timer 15 minutter 50 km/h 100 km/h Kari er framme kl b) Hvor langt vil Per ha kjørt når Kari går på toget? Når tar toget igjen bilen til Per? Det har gått 2 timer og 15 minutter når Kari går på toget. Per startet 0,5 timer før Kari. Per har da kjørt 60 km/h 2,75 h 165 km Når Kari går på toget, har hun forflyttet seg 100 km. Hun ligger altså 65 km bak Per på dette tidspunktet. Lar x stå for den tiden det tar før toget tar igjen bilen til Per. Setter opp en likning. 60 x 100 x 65 40x 65 x 1,625 Det tar 1,625 timer før toget tar igjen Per. Altså 1 time og 37,5 minutter. Toget tar igjen Per 3 timer og 52,5 minutter 1 t 37,5 min 15 min 2 t etter Kari startet. Det vil si kl.14:22:30 c) Hvilken gjennomsnittsfart må Per holde hvis han skal nå fram samtidig med Kari? Kari var framme 15 minutter før Per. Per må altså kjøre de 300 km på 4 timer og 45 minutter, dvs. 4,75 timer. Gjennomsnittsfarten blir da 300 km 4,75h x x 63,2 km/h Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 13 av 14

14 Kilder Bilder, tegninger og grafiske framstillinger: Utdanningsdirektoratet Eksamen MAT1011 Matematikk 1P Høsten 2012 løsning Side 14 av 14

Eksamen MAT 1011 Matematikk 1P, Høsten 2012

Eksamen MAT 1011 Matematikk 1P, Høsten 2012 Eksamen MAT 1011 Matematikk 1P, Høsten 2012 Oppgave 1 (2 poeng) En dag har butikk A følgende tilbud: Du skal kjøpe 1,5 kg druer. I hvilken butikk lønner det seg å handle? Oppgave 2 (1 poeng) Tidligere

Detaljer

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2012

Eksamen MAT 1011 Matematikk 1P Hausten 2012 Eksamen MAT 1011 Matematikk 1P Hausten 2012 Oppgåve 1 (2 poeng) Ein dag har butikk A dette tilbodet: Du skal kjøpe 1,5 kg druer. I kva for butikk lønner det seg å handle? Butikk A: 1,5 kg svarar til 3

Detaljer

Eksamen MAT 1011 Matematikk 1P, Hausten 2012

Eksamen MAT 1011 Matematikk 1P, Hausten 2012 Eksamen MAT 1011 Matematikk 1P, Hausten 2012 Oppgåve 1 (2 poeng) Ein dag har butikk A dette tilbodet: Du skal kjøpe 1,5 kg druer. I kva for butikk lønner det seg å handle? Oppgåve 2 (1 poeng) Tidlegare

Detaljer

Eksamen 26.11.2012. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 26.11.2012 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger "gratis").

I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger gratis). 1P 2012 høst LØSNING DEL EN Oppgave 1 Butikk A : I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger "gratis"). Butikk B: Oppgave 2 I butikk B koster druene 10 kr.

Detaljer

1P eksamen våren 2016 løsningsforslag

1P eksamen våren 2016 løsningsforslag 1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti

Detaljer

1P eksamen våren 2016

1P eksamen våren 2016 1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 2013 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

1P eksamen høsten Løsningsforslag

1P eksamen høsten Løsningsforslag 1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2014

Eksamen MAT 1011 Matematikk 1P Høsten 2014 Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

Eksamen MAT 1011 Matematikk 1P Va ren 2015

Eksamen MAT 1011 Matematikk 1P Va ren 2015 Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp prisen med 10 % eller 15 %. a) Hvor mye vil varen koste dersom prisen settes opp med 10 %? b) Hvor

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig

Detaljer

1P eksamen høsten 2017

1P eksamen høsten 2017 1P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp

Detaljer

1P eksamen våren 2017 løsningsforslag

1P eksamen våren 2017 løsningsforslag 1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2014

Eksamen MAT 1011 Matematikk 1P Høsten 2014 Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Tenk deg at du har et spann med 8 L maling. Du vil helle malingen over i mindre bokser. I hver boks er det plass til 2 3 L. Hvor mange bokser trenger du? Oppgave

Detaljer

2P-Y eksamen våren 2016 løsningsforslag

2P-Y eksamen våren 2016 løsningsforslag 2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2015

Eksamen MAT 1011 Matematikk 1P Høsten 2015 Eksamen MAT 1011 Matematikk 1P Høsten 015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt,4 g per dag. a) Hvor mange gram salt kan

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2015

Eksamen MAT 1011 Matematikk 1P Høsten 2015 Eksamen MAT 1011 Matematikk 1P Høsten 2015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt

Detaljer

Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre grunntall.

Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre grunntall. Oppgave 4 (1 poeng) Skriv så enkelt som mulig a a 3 0 a a 3 2 5 Oppgave 5 (1 poeng) Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

Eksamen S1 høsten 2014 løsning

Eksamen S1 høsten 2014 løsning Eksamen S1 høsten 014 løsning Tid: timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) x 10 xx 5 x x 10 x 5x 7x 10 0 7 49 40

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2013

Eksamen MAT 1011 Matematikk 1P Hausten 2013 Eksamen MAT 1011 Matematikk 1P Hausten 01 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 0 % av sidene i boka. Kor mange sider er det i boka? Går «vegen om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

1P eksamen våren 2018 løsningsforslag

1P eksamen våren 2018 løsningsforslag 1P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave

Detaljer

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag. Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1001

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4

Detaljer

Eksamen S1 høsten 2014

Eksamen S1 høsten 2014 Eksamen S1 høsten 2014 Tid: 2 timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) 2x 10 xx 5 b) x lg 3 5 2 Oppgave 2 (1 poeng)

Detaljer

1P eksamen høsten 2018 løsning

1P eksamen høsten 2018 løsning 1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Detaljer

1P eksamen høsten 2018

1P eksamen høsten 2018 1P eksamen høsten 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer, del 2 etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 2013 Oppgave 1 (2 poeng) Hilde skal kjøpe 2 L melk 2,5 kg poteter 0,5 kg ost 200 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. Eksamen MAT1011

Detaljer

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16

Detaljer

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag. Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1001

Detaljer

2P eksamen våren 2016 løsningsforslag

2P eksamen våren 2016 løsningsforslag 2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) I en vase står det 20 tulipaner. 25 % av tulipanene er hvite, 1 5 Hvor mange tulipaner er røde? er gule, og resten er røde. Oppgave 2 (2 poeng) Tabellen nedenfor

Detaljer

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

1P-Y eksamen våren 2016 løsningsforslag

1P-Y eksamen våren 2016 løsningsforslag 1P-Y eksamen våren 2016 løsningsforslag Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skjermdumpen ovenfor viser værdata for 26. januar

Detaljer

Eksamen 1P, Høsten 2011

Eksamen 1P, Høsten 2011 Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs

Detaljer

Eksamen 1T, Høsten 2011

Eksamen 1T, Høsten 2011 Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgåve 1 ( poeng) Hilde skal kjøpe L mjølk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjer eit overslag og finn ut omtrent kor mykje ho må betale L mjølk:14,95 kr

Detaljer

c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time.

c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time. c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time. 1) Hvor mange prosent steg lønnen? Konsumprisindeksen (KPI) var 100 det året Grete tjente 160 kroner per time. 2)

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Løsninger. Innhold. Tall og algebra Vg1P

Løsninger. Innhold. Tall og algebra Vg1P Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 11 Modul 4: Koordinatsystemet... 14 Modul 5: Forhold... 18 Modul 6: Proporsjonale

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

1P-Y eksamen våren 2016

1P-Y eksamen våren 2016 1P-Y eksamen våren 2016 Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skjermdumpen ovenfor viser værdata for 26. januar 2016. a) Hvor mange

Detaljer

Løsninger. Innhold. Tall og algebra Vg1P

Løsninger. Innhold. Tall og algebra Vg1P Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... Modul : Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 13 Modul 5: Forhold... 17 Modul 6: Proporsjonale

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2013

Eksamen MAT 1011 Matematikk 1P Hausten 2013 Eksamen MAT 1011 Matematikk 1P Hausten 2013 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 30 % av sidene i boka. Kor mange sider er det i boka? Oppgåve 2 (1 poeng) På eit kart er avstanden

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

1T eksamen våren 2017 løsningsforslag

1T eksamen våren 2017 løsningsforslag 1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2015

Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Eksamen MAT1005 Matematikk P-Y Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2015

Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgåve ( poeng) Rekn ut og skriv svaret så enkelt som mogleg

Detaljer

Eksamen 1P våren 2011

Eksamen 1P våren 2011 Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen

Detaljer

Eksamen matematikk S1 løsning

Eksamen matematikk S1 løsning Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen

Detaljer

1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle

1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle 1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Et skolesenter har el-bil

Detaljer

Eksamen 1T, Hausten 2012

Eksamen 1T, Hausten 2012 Eksamen 1T, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Ei rett linje har stigingstal. Linja skjer x

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2014

Eksamen MAT 1011 Matematikk 1P Hausten 2014 Eksamen MAT 1011 Matematikk 1P Hausten 2014 Oppgåve 1 (2 poeng) Diagrammet ovanfor viser kor mange bøker ein forfattar har selt kvart år dei fire siste åra. Når var den prosentvise auken i salet frå eit

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem

Detaljer

2P-Y eksamen våren 2016

2P-Y eksamen våren 2016 2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6

Detaljer

1P eksamen våren 2018

1P eksamen våren 2018 1P eksamen våren 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Nedenfor

Detaljer

ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 =

ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 = ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn Del 1: 2 timer. Maks 30,5 poeng. Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Bruk sort eller blå penn når du fører inn svar eller

Detaljer

Eksamen MAT1015 Matematikk 2P Høsten 2014

Eksamen MAT1015 Matematikk 2P Høsten 2014 Eksamen MAT1015 Matematikk 2P Høsten 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,002 Oppgave 2 (1 poeng) Prisen for en vare er satt opp med 25 %. Nå koster varen

Detaljer

Eksamen REA3026 S1, Våren 2013

Eksamen REA3026 S1, Våren 2013 Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x

Detaljer

1T eksamen våren 2018 løsningsforslag

1T eksamen våren 2018 løsningsforslag 1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer

1P-Y eksamen høsten 2018

1P-Y eksamen høsten 2018 1P-Y eksamen høsten 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 1,5 timer, del 2 etter 4 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal og vinkelmåler. Oppgave 1 (1 poeng)

Detaljer

Eksamen MAT1015 Matematikk 2P Va ren 2015

Eksamen MAT1015 Matematikk 2P Va ren 2015 Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet

Detaljer

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt kan du maksimalt innta

Detaljer

1P eksamen hausten 2017

1P eksamen hausten 2017 1P eksamen hausten 2017 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Ei vare kostar 640 kroner. Butikkeigaren vurderer å setje

Detaljer

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.

Eksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag. Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 2013 Fag: MAT1001

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00 Oppgave (1 poeng) Prisen for en vare er satt opp med 5 %. Nå koster varen 50 kroner. Hva kostet

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

Eksamen 2P MAT1015 Høsten 2012 Løsning

Eksamen 2P MAT1015 Høsten 2012 Løsning Eksamen 2P MAT1015 Høsten 2012 Oppgave 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges? Oppgave 2 (1 poeng)

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer