1P eksamen våren 2017 løsningsforslag
|
|
- Bengt Rønningen
- 6 år siden
- Visninger:
Transkript
1 1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i begre. I hvert beger er det plass til dl. Hvor mange begre kan du fylle? 150 Gjør først om 15 L til 150 dl Antall begre: 75 Det er mulig å fylle 75 begre. Oppgave (1 poeng) I 006 var indeksen for en vare 15. Varen kostet da kroner. I 016 var indeksen for den samme varen 150. Hvor mye kostet varen i 016 dersom prisen har fulgt indeksen? Indeks Pris x x x x x 15 x 100 Varen kostet 100 kroner. Eksamen MAT1011 matematikk 1P våren 017 Side 1 av 19
2 Oppgave 3 (3 poeng) I Norge måler vi temperatur i grader celsius ( C ). I USA måles temperatur i grader 9 fahrenheit (ºF). Når temperaturen er x C, er den y F, der y x 3 5 a) Bruk formelen ovenfor til å regne om 15 C til grader fahrenheit. Vi setter inn 15 i formelen ovenfor og finner at 15 C tilsvarer 59 fahrenheit. y b) Løs likningen x x 3. Hva forteller løsningen du fikk? 5 9 x x3 5 5x 9x160 x 40 Løsningen viser at ved akkurat 40 C er y x, dvs. 40 C 40 F. Oppgave 4 ( poeng) Et taxiselskap har en fast pris på turer fra Oslo sentrum til Gardermoen. Ofte tar flere personer taxi sammen. Taxiselskapet vil lage en tabell som viser sammenhengen mellom antall personer som er med i én taxi, og beløpet hver person må betale for turen. Se nedenfor. a) Skriv av og fyll ut tabellen. Oslo Gardermoen Antall personer Beløp å betale per person (kroner) Vi ser at 3 personer må betale 60 kroner hver. Det betyr at den faste prisen er på 360 kroner 780 kroner. For personer blir det da kroner og for 4 personer blir det kroner. b) Forklar at antall personer og beløpet hver person må betale, er omvendt proporsjonale størrelser. Vi ser at beløpet hver person betaler, halveres når antall personer dobles. Det betyr at produktet av antall personer og beløpet hver person betaler, er konstant lik 780 kroner. Antall personer og beløpet hver person må betale, er da omvendt proporsjonale størrelser. Eksamen MAT1011 matematikk 1P våren 017 Side av 19
3 Oppgave 5 (3 poeng) En funksjon f er gitt ved f x ( ) x 4 a) Skriv av og fyll ut verditabellen nedenfor. x fx ( ) b) Tegn grafen til f. Nedenfor har vi tegnet grafen til f i GeoGebra. Du må selvfølgelig tegne grafen på ark. Sett av punktene fra tabellen i et koordinatsystem og trekk en jevn kurve gjennom punktene. Før du begynner på oppgaven, kan du godt legge merke til at funksjonsuttrykket til f viser at grafen til f vil være en parabel som vender sin hule side ned og skjærer y-aksen i 4. Eksamen MAT1011 matematikk 1P våren 017 Side 3 av 19
4 Oppgave 6 (4 poeng) 1 m 13 m 4 m 7 m Området som er markert med blått ovenfor, er satt sammen av en halv sirkel, et rektangel, et kvadrat og en rettvinklet trekant. Sett 3 og regn ut tilnærmede verdier for omkretsen og for arealet av området. Vi bruker pytagoras, og finner den korteste siden x i trekanten til høyre på figuren. x 1 13 x x x 5 Bredden på rektangelet til venstre på figuren er dermed: 7 m5 m1 m 10 m d 34m Omkretsen av halvsirkelen er: 6m Omkretsen av området ovenfor blir: 7 m 13 m 1 m 8 m 10 m 6 m 76 m Areal kvadrat: m Areal trekant: m Areal rektangel: m Areal sirkel: 3 6m Areal av området blir: 144m 30m 40m 6m 0m Eksamen MAT1011 matematikk 1P våren 017 Side 4 av 19
5 Oppgave 7 ( poeng) Gi et eksempel på en sammenheng fra virkeligheten som kan beskrives med en lineær funksjon. Bestem funksjonsuttrykket, og lag en skisse av grafen til funksjonen. Per har en sommerjobb og har en timelønn på 150 kroner. En lineær funksjon er gitt på formen y ax b. Funksjonsuttrykket f x 150 x, der f er lønn og x er antall timer vise lønnen til Per. Konstantleddet b er 0, da Per ikke får noe lønn dersom han ikke jobber. Eksamen MAT1011 matematikk 1P våren 017 Side 5 av 19
6 Oppgave 8 (4 poeng) Ved en skole leser 80 % av elevene aviser på nett, 50 % leser papiraviser, og % leser ikke aviser. a) Systematiser opplysningene gitt i teksten ovenfor i et venndiagram eller i en krysstabell. Nedenfor har vi systematisert opplysningene både i venndiagram og krysstabell. Løsningen krever kun en av metodene. Venndiagram % U = 100 % Leser på nett 48 % 3 % Leser ikke på nett 18 % Krysstabell På nett Ikke på nett Sum Papir 3 % 18 % 50 % Ikke papir 48 % % 50 % Sum 80 % 0 % 100 % b) Bestem sannsynligheten for at en tilfeldig valgt elev ved skolen leser både aviser på nett og papiraviser Vi ser av tabellen ovenfor at 3 % av elevene ved skolen leser både aviser på nett og papiraviser. Sannsynligheten for at en tilfeldig valgt elev ved skolen leser både aviser på nett og papiraviser, blir dermed 3 %. En elev ved skolen leser aviser på nett. c) Bestem sannsynligheten for at denne eleven ikke leser papiraviser. Vi ser av tabellen ovenfor at 48 % av elevene som leser aviser på nett, ikke leser papiraviser. Sannsynligheten for at denne eleven ikke leser papiraviser blir dermed 48 % 6 0,6 60 % 80% 10 Eksamen MAT1011 matematikk 1P våren 017 Side 6 av 19
7 Oppgave 9 (4 poeng) Tenk deg at du skal blande rød og blå maling i forholdet : 5. a) Hvor mye rød maling må du tilsette dersom du har en boks med 7,5 dl blå maling? Blandingsforholdet er : 5. Det betyr at vi har 5 deler med blå maling. Hver del vil da utgjøre 7,5 1,5 dl. Vi skal ha to deler med rød maling og trenger derfor 3,0 dl rød 5 maling. b) Hvor mye rød maling trenger du for å lage 1 L ferdig blanding? I dette tilfelle vil hver del utgjøre 1 3 L. Det betyr at vi må ha 6 L rød maling for å 7 lage 1 L ferdig blanding. Du har 1 L ferdig blanding i forholdet : 5, men ønsker en blanding i forholdet 1 : 3. Du vil ordne dette ved å tilsette litt mer av den ene fargen. c) Hvilken farge må du tilsette? Hvor mye må du tilsette av denne fargen? Vi ønsker en blanding i forholdet 1 : 3. Det betyr 3 ganger så mye blå maling som rød maling. Vi har 1 L ferdig blanding i forholdet : 5. Det betyr at denne blandingen består av 6 L rød maling og 15 L blå maling. Vi ønsker 3 ganger så mye blå maling som rød maling, altså L blå maling. Det betyr at vi kan tilsette 3 L blå maling for å få blandingsforholdet 1 : 3. Eksamen MAT1011 matematikk 1P våren 017 Side 7 av 19
8 Tid: 3 timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 1 (6 poeng) Funksjonen f gitt ved f x x x x x 3 ( ) 0,0047 0,40 8,3 86, 0 5 viser fyllingsgraden fx ( ) prosent i et vannmagasin x uker etter 1. januar 016. a) Bruk graftegner til å tegne grafen til f. Vi tegner grafen til f i GeoGebra. Eksamen MAT1011 matematikk 1P våren 017 Side 8 av 19
9 b) Bestem bunnpunktet på grafen til f. Hvilken praktisk informasjon gir koordinatene til bunnpunktet? Vi bruker kommandoen «ekstremalpunkt (polynom)» i GeoGebra og finner A 13.7, 35.3, se graf nedenfor. bunnpunktet Det betyr at fyllingsgrader i vannmagasinet er på sitt laveste 13,7 uker etter 1. januar, dvs. i uke 14. Fyllingsgraden er da på 35,3 %, se punkt A på grafen nedenfor. c) Hvor mange prosentpoeng avtok fyllingsgraden med i løpet av de fire første ukene i 016? Hvor mange prosent avtok fyllingsgraden med i løpet av de fire første ukene i 016? Fyllingsgraden etter 0 uker er f 0 86 % og fyllingsgraden etter 4 uker er f 4 58,9 %. Fyllingsgraden avtok med 86 58,9 7,1 prosentpoeng i løpet av disse 4 ukene. Nedgangen i prosent var 7, ,5 % 86. Eksamen MAT1011 matematikk 1P våren 017 Side 9 av 19
10 Oppgave (6 poeng) Pedalbøtte Sylinderformet beholder Til venstre ovenfor ser du en pedalbøtte med lokk. Vi antar at pedalbøtten er satt sammen av en sylinder og en halv kule. Ved siden av ser du den sylinderformede beholderen som er inne i pedalbøtten. Anta at alle mål gitt på bildene ovenfor er innvendige mål. a) Bestem volumet av den sylinderformede beholderen. Radius til beholderen er 160 mm 1,6 dm. Volumet, V, av beholderen er gitt ved V r h 1,6 5,35 43,03. Volumet av beholderen er 43 3 dm 43 L Tenk deg at du fyller 40 L vann i denne beholderen. b) Hvor høyt i beholderen vil vannet stå? I dette tilfellet vet vi at beholderen skal romme 40 L vann. Vi bruker samme formel som i oppgave a) med høyden h som den ukjente. V r h 40 1,6 h 40 Løst i CAS h 1,6 h 4,97 Vannet vil stå 4,97 dm 497 mm opp i beholderen. Vi kan jo legge merke til at dette svaret er rimelig sammenliknet med svaret i a). Eksamen MAT1011 matematikk 1P våren 017 Side 10 av 19
11 c) Bestem volumet av pedalbøtta med lokk. Denne bøtta er satt sammen av en sylinder og en halvkule. Fra målene på bildet ovenfor ser vi at radius er 00 mm,0 dm. Volum av sylinder: V V Volum av halvkule: V V V V sylinder sylinder halvkule halvkule halvkule halvkule,0 7,55,0 69, r r 6 4,0 6 16,76 3 Volumet av pedalbøtte blir ,74 dm 16,76 dm 86,50 dm 86,5L Eksamen MAT1011 matematikk 1P våren 017 Side 11 av 19
12 Oppgave 3 (4 poeng) En nettbutikk selger leverpostei i porsjonspakninger og i bokser. Se nedenfor. g leverpostei i hver porsjonspakning 6 porsjonspakninger i hver eske 3 kroner per eske 00 g leverpostei i hver boks a) Hva ville en boks med 00 g leverpostei ha kostet dersom prisen per gram hadde vært den samme som for leverposteien i porsjonspakningene? Vi finner prisen per gram leverpostei i porsjonspakningene. Antall gram leverpostei i porsjonspakningene: g 6 13 g Pris per gram: 3 0,44 kroner per gram. 13 En boks med 00 g leverpostei ville ha kostet 00 0,44 kroner 48,48 kroner. Boksen med 00 g leverpostei koster 4 kroner i nettbutikken. b) Hvor mange prosent dyrere per gram er leverposteien i porsjonspakninger sammenliknet med leverposteien i boks? Finner pris per gram: 4 0,1 00 kroner. Forskjell i pris: 0,44 0,1 0,14 Forskjell i prosent: 0, % 0,1. Eksamen MAT1011 matematikk 1P våren 017 Side 1 av 19
13 ,0 m Husvegg Løsningene er laget av Oppgave 4 (3 poeng) E C D A 0,75 m 1,0 m B Bakkenivå En stige står på skrå mot en husvegg. Stigen berører et gjerde. Gjerdet er,0 m høyt og står 0,75 m fra husveggen. Stigen er plassert 1,0 m fra gjerdet. Se figuren ovenfor. a) Forklar at ABD og CDE er formlike. Begge trekantene har en rett vinkel, A C 90. Videre er linjen gjennom AB parallell med linjen gjennom CD. Setningen om samsvarende vinkler ved parallelle linjer gir dermed at B D. Vi vet da at to av vinklene i trekantene er like store. Det betyr at den tredje vinkelen må være lik og trekantene er formlike. b) Hvor lang er stigen? Vi finner først lengden BD ved å bruke pytagoras læresetning BD 1,0,0 BD 5,0, Vi bruker at ABD og CDE er formlike og finner lengden DE DE 5,0 0,75 1,0 DE 1,7 BD DE, 1,7 3,9 Vi finner at stigen er 3,9 meter lang. Eksamen MAT1011 matematikk 1P våren 017 Side 13 av 19
14 Oppgave 5 (4 poeng) Ved et meieri blir det oppdaget en feil ved en av maskinene som skrur korker på kartongene. På kjølelageret er det 00 kartonger med lettmelk og 100 kartonger med helmelk. 5 av kartongene med lettmelk og 1 4 av kartongene med helmelk har ikke tett kork. Tenk deg at du skal ta en kartong tilfeldig fra kjølelageret. a) Bestem sannsynligheten for at kartongen ikke har tett kork. Vi velger å systematisere opplysningene i en krysstabell. Kartong med lettmelk som ikke har tett kork: Kartong med helmelk som ikke har tett kork: Lettmelk Helmelk Sum Tett kork Ikke tett kork Sum Fra tabellen ser vi at 105 av 300 kartonger ikke har tett kork. Sannsynligheten blir ,35 35 % Anta at du tar en kartong som ikke har tett kork. b) Bestem sannsynligheten for at kartongen inneholder lettmelk. Vi ser av tabellen ovenfor at det er 105 kartonger til sammen som ikke har tett kork. Videre ser vi at 80 av disse kartongene er lettmelk. Sannsynligheten blir dermed ,76 76,% Eksamen MAT1011 matematikk 1P våren 017 Side 14 av 19
15 Oppgave 6 (3 poeng) Du får vite følgende om Marte: - Hun har en fast brutto månedslønn på kroner. - Hun betaler % i pensjonsinnskudd. - Hun betaler 400 kroner i fagforeningskontingent hver måned. - Hun har et prosentkort med et skattetrekk på 31 %. Lag et regneark der du legger inn opplysningene ovenfor på en oversiktlig måte. Bruk regnearket til å bestemme Martes netto månedslønn. Vi bruker Excel og legger inn opplysningene gitt ovenfor. Husk å vise hvilke formler som er brukt samt rad- og kolonneoverskrift. Eksamen MAT1011 matematikk 1P våren 017 Side 15 av 19
16 Oppgave 7 (5 poeng) Arbeidstakere som har en personinntekt på over kroner, må betale trinnskatt. Trinnskatten på de to laveste trinnene beregnes slik: 0,93 % av den delen av personinntekten som er mellom og kroner,41 % av den delen av personinntekten som er mellom og kroner Terje har en personinntekt på kroner. Lise har en personinntekt på kroner. a) Hvor mye må hver av dem betale i trinnskatt? Vi finner først skattegrunnlaget til Terje. Terje har en personinntekt som er lavere enn kroner. Det betyr at det kun skal beregnes skatt på det laveste trinnet. Skattegrunnlag: kr kr kr Trinnskatten til Terje blir: kr 0, kr Lise får både trinnskatt på trinn 1 og på trinn. Skattegrunnlag på trinn 1 blir: kr kr kr Skattegrunnlag på trinn blir: kr kr kr Trinnskatten til Lise blir: kr 0, kr 0, kr b) Lag ett regneark som arbeidstakere med en personinntekt på mellom og kroner kan bruke for å beregne hvor mye de må betale i trinnskatt. Når en arbeidstaker legger inn sin personinntekt, skal regnearket beregne skatt på hvert trinn og samlet trinnskatt. Bruk regnearket til å kontrollere svarene dine fra oppgave a). Vi bruker Excel. Beregning av trinnskatt for Terje. Eksamen MAT1011 matematikk 1P våren 017 Side 16 av 19
17 Beregning av trinnskatt til Lise. Nedenfor ser du hvilke formler som er brukt. Eksamen MAT1011 matematikk 1P våren 017 Side 17 av 19
18 Oppgave 8 (5 poeng) a) Vis at du vil bruke 6 min og 40 s på å kjøre 1 mil dersom du holder en fart på 90 km/h. Vi har at 1 mil er 10 km og at 1 time er 3600 sekunder Det betyr at du vil bruke sekunder på 10 km sekunder er det samme som 6 minutter og 40 sekunder, Overskriften, tabellen og sitatet nedenfor er hentet fra nettsidene til Norges Automobil-Forbund (NAF). Opprinnelig fart Tidsbesparelse per mil om du øker farten til 90 km/h 100 km/h 110 km/h 80 km/h 50 s 1 min 30 s min 3 s 90 km/h 40 s 1 min 13 s 100 km/h 33 s b) Vis at du sparer ca. 1 min og 13 s per mil ved å øke farten fra 90 km/h til 110 km/h. Vi finner først hvor lang tid vi vil bruke på 10 km med en fart på 110 km/h. 10 Med en fart på 110 km/h vil vi bruke sekunder på 10 km. 100 Ved en fart på 90 km/h brukte vi 400 sekunder. Forskjellen er 73 sekunder, altså 1 minutt og 13 sekunder. Anta at du kjører med en konstant fart på 110 km/h. c) Hvor langt må du kjøre for å spare 15 min sammenliknet med om du hadde holdt en konstant fart på 90 km/h? Fra oppgave b) har vi at du vil spare 73 sekunder på 1 mil. Vi har at 15 min er 900 sekunder. Det gir 900 1,3 73. Du må kjøre omtrent 1,3 mil for å spare 15 min. Eksamen MAT1011 matematikk 1P våren 017 Side 18 av 19
19 Kilder Oppgavetekst med grafiske framstillinger og bilder: Utdanningsdirektoratet Eksamen MAT1011 matematikk 1P våren 017 Side 19 av 19
1P eksamen våren 2017
1P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i begre. I hvert
DetaljerAlle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1P eksamen våren 2017
1P eksamen våren 2017 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Du har 15 L saft. Du skal helle safta over i beger. I kvart
Detaljer1P eksamen våren 2017 løysingsforslag
1P eksamen våren 017 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Du har 15 L saft. Du skal helle safta over i
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 15 L 150 dl Til sammen 150 dl med dl i hvert glass gir: 150 glass 75 glass Oppgave Vi
DetaljerEksamen. MAT1011 Matematikk 1P Nynorsk/Bokmål
Eksamen 26.05.2017 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerAlle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
Detaljer1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt
Detaljer1P eksamen våren 2016 løsningsforslag
1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti
DetaljerEksamen MAT 1011 Matematikk 1P Va ren 2015
Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
Detaljer1P eksamen våren 2016
1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Detaljer1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Rekn ut og skriv svaret på standardform 0,72 10 60 10 8 8
Detaljer1P eksamen høsten 2017
1P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1P eksamen høsten 2018 løsning
1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Tenk deg at du har et spann med 8 L maling. Du vil helle malingen over i mindre bokser. I hver boks er det plass til 2 3 L. Hvor mange bokser trenger du? Oppgave
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Detaljer1T eksamen våren 2017 løysingsforslag
1T eksamen våren 017 løysingsforslag Tid: timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform 0,710
Detaljer2P-Y eksamen våren 2016 løsningsforslag
2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
Detaljer1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1T våren 2016 løsning
Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket
Detaljer2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
Detaljer1P eksamen høsten 2018
1P eksamen høsten 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer, del 2 etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
DetaljerKvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013
Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente
DetaljerEksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen
Detaljer2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
Detaljer1P eksamen våren 2018 løsningsforslag
1P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DetaljerEksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
DetaljerR1 eksamen høsten 2016 løsningsforslag
R eksamen høsten 06 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) fx 4x 5 b) g(
DetaljerEksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1001
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp prisen med 10 % eller 15 %. a) Hvor mye vil varen koste dersom prisen settes opp med 10 %? b) Hvor
DetaljerR1 eksamen høsten 2016
R eksamen høsten 06 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) b) g( x) xlnx c) h x x e x 3
DetaljerDel 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.
Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2
DetaljerR1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2012
Eksamen MAT 1011 Matematikk 1P Høsten 2012 Oppgave 1 (2 poeng) En dag har butikk A følgende tilbud: Du skal kjøpe 1,5 kg druer. I hvilken butikk lønner det seg å handle? Butikk A: 1,5 kg tilsvarer 3 beger,
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
DetaljerEksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
DetaljerEksamen våren 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =
DetaljerEksamen 1P, Høsten 2011
Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl
DetaljerEksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer2P-Y eksamen våren 2017 løsningsforslag
2P-Y eksamen våren 2017 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) I en klasse er det 16 elever. Tabellen nedenfor
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2015
Eksamen MAT 1011 Matematikk 1P Høsten 015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt,4 g per dag. a) Hvor mange gram salt kan
DetaljerR1 eksamen våren 2018
R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1T, Våren 2011
Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerEksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
DetaljerDEL 1 Uten hjelpemidler 2 timer
DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.
DetaljerEksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerEksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerEksamen 1T våren 2016
Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerEksamen MAT 1011 matematikk 1P va ren 2015
Eksamen MAT 1011 matematikk 1P va ren 015 Oppgåve 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgåve ( poeng) a) Forklar at dei to trekantane over er formlike. Vinkelsummen i ein trekant
DetaljerEksamen 1T, Høsten 2011
Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye
DetaljerEksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
DetaljerR1 eksamen våren 2018 løsningsforslag
R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene
DetaljerEksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerNY Eksamen 1T, Høsten 2011
NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk P-Y Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
DetaljerEksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15
DetaljerØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn. Oppgave 1 (2 poeng) Regn ut. a) 34, ,3 = c) 1,1 2,9 = b) 3,06 1,28 = d) 33 : 2,2 =
ØVINGSPRØVE TIL ÅRSPRØVEN 10. trinn Del 1: 2 timer. Maks 30,5 poeng. Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Bruk sort eller blå penn når du fører inn svar eller
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) I en vase står det 20 tulipaner. 25 % av tulipanene er hvite, 1 5 Hvor mange tulipaner er røde? er gule, og resten er røde. Oppgave 2 (2 poeng) Tabellen nedenfor
DetaljerEksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 2013 Fag: MAT1001
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Vi fordeler malingen på de små oksene: 8 8 3 4 8 : 1 3 3 3 3 Vi trenger 1 okser. Oppgave
DetaljerEksamen R1, Våren 2015
Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h
Detaljer5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2 timer. Del 2 skal du levere innen 5 timer.
Høst 2016 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2
DetaljerEksamen 1T våren 2015
Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave
DetaljerHjelpemidler på Del 1: Ingen hjelpemidler er tillatt, bortsett fra vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle
1P-Y eksamen vår 2018 løsningsforslag Programområde: Alle Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Et skolesenter har el-bil
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerFaktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt
Detaljer2P eksamen våren 2016
2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C
DetaljerEksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål
Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del
DetaljerS1 eksamen våren 2017 løsningsforslag
S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0
DetaljerEksamen R2 høsten 2014
Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave
DetaljerEksamen REA3022 R1, Våren 2011
Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen
DetaljerEksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerEksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål
Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål
DetaljerEksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1001
DetaljerEksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1006
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)
Detaljer