1T eksamen våren 2017 løsningsforslag

Størrelse: px
Begynne med side:

Download "1T eksamen våren 2017 løsningsforslag"

Transkript

1 1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0, , Oppgave (1 poeng) Regn ut 4 ( ) Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig Eksamen MAT101 Matematikk 1T Våren 017 Side 1 av 18

2 Oppgave 4 ( poeng) Løs likningssystemet x y 4 x y y x x x x x x x 4x x x 0 x x 0 Løsningen x1 0 gir y1 0, og løsningen x gir y 0. Likningssystemet har altså løsningene x1 0 y1 x y 0. Oppgave 5 ( poeng) Løs likningen lg x 0 4 lgx x x 4 1 x 4 1 x Begge løsningene er gyldige, da x 0 for begge løsningene. 4 Eksamen MAT101 Matematikk 1T Våren 017 Side av 18

3 Oppgave 6 ( poeng) Skriv så enkelt som mulig 1 x5 x6 x x 1 x x 1 x 1 x 5 x x 6 x x 1 x 1 x x x x x x x x x x x x x x x1 x x x1 x1 x5 x x1 x 5 x 6x5 Bruker nullpunktmetoden og faktoriserer x 6x x som gir x 1 x 5 1 Dette gir x 6x 5 x 1x 5. Eksamen MAT101 Matematikk 1T Våren 017 Side av 18

4 Oppgave 7 (4 poeng) Ved en skole leser 80 % av elevene aviser på nett, 50 % leser papiraviser, og % leser ikke aviser. a) Systematiser opplysningene gitt i teksten ovenfor i et venndiagram eller i en krysstabell. Nedenfor har vi systematisert opplysningene både i Venn-diagram og krysstabell. Løsningen krever kun en av metodene. Venn-diagram: % U = 100 % Leser på nett 48 % % Leser på papir 18 % Krysstabell: b) Bestem sannsynligheten for at en tilfeldig valgt elev ved skolen leser både aviser på nett og papiraviser. Vi ser av tabellen ovenfor at % av elevene ved skolen leser både aviser på nett og papiraviser. Sannsynligheten for at en tilfeldig valgt elev ved skolen leser både aviser på nett og papiraviser blir dermed %. En elev ved skolen leser aviser på nett. På nett Ikke på nett Sum Papir % 18 % 50 % Ikke papir 48 % % 50 % Sum 80 % 0 % 100 % c) Bestem sannsynligheten for at denne eleven ikke leser papiraviser. Vi ser av tabellen ovenfor at 48 % av elevene som leser aviser på nett, ikke leser papiraviser. Sannsynligheten for at denne eleven ikke leser papiraviser, blir dermed 48 % 6 0,6 60 % 80% 10 Eksamen MAT101 Matematikk 1T Våren 017 Side 4 av 18

5 Oppgave 8 ( poeng) Om en rettvinklet trekant får du vite: Lengden av den korteste siden er 0. Differansen mellom lengdene av de to andre sidene er. Hvor lang er den lengste siden i denne trekanten? Vi setter den lengste kateten lik x og hypotenus lik x. Pytagoras læresetning gir x 0 x 400 x x 4x 4 4x 96 x 99 Den lengste siden i trekanten er Oppgave 9 (4 poeng) En funksjon f er gitt ved f x x x x ( ) a) Bestem den gjennomsnittlige vekstfarten til i intervallet Gjennomsnittlig vekstfart er gitt ved f,0 f x f x f x x x x 1 1 f 0 f Den gjennomsnittlige vekstfarten til f i intervallet, 0 er 4. b) Bestem den momentane vekstfarten til f når x. Vi deriverer f x og finner f f x x 6x f Den momentane vekstfarten til f når x er. Eksamen MAT101 Matematikk 1T Våren 017 Side 5 av 18

6 Oppgave 10 ( poeng) I koordinatsystemet ovenfor har vi tegnet grafen til en tredjegradsfunksjon f. Bruk den grafiske framstillingen til å løse ulikhetene a) fx ( ) 0 Vi ser av grafen til f at f x 0 for x 4. b) f( x) 0 Vi ser at grafen til f stiger fram til x 1. Fra x 1 og fram til x synker grafen. Fra x stiger grafen igjen. Det betyr at f x 0 for x 1 og for x. Eksamen MAT101 Matematikk 1T Våren 017 Side 6 av 18

7 Oppgave 11 (8 poeng) Funksjonen f er gitt ved f x x x ( ) 4 a) Bestem nullpunktene til f. x 4x x 1 4 x x 1 x 1 Grafen til f er symmetrisk om en linje. b) Tegn grafen til f sammen med linjen i et koordinatsystem. Grafen til f har en tangent med stigningstall. c) Bestem likningen for denne tangenten. Tegn tangenten i det samme koordinatsystemet som du brukte i oppgave b). f x x 4 x f 4 0 Vi bruker ettpunktsformelen og finner likningen for tangenten. 1 0 x y f x f x x x y y x6 Tangenten (blå) er tegnet i grafen nedenfor. Eksamen MAT101 Matematikk 1T Våren 017 Side 7 av 18

8 Tangenten fra oppgave c) skjærer linjen i punktet P. Grafen til f har en annen tangent som også går gjennom punktet P. d) Skisser denne tangenten i samme koordinatsystem som du har brukt tidligere i oppgaven. Bestem likningen for tangenten grafisk. Tangenten (rød) er skissert i koordinatsystemet ovenfor. Vi ser at stigningstallet til denne tangenten er, og at tangenten skjærer y-aksen i 0,. Likningen for denne tangenten blir dermed y x. e) Gjør beregninger og avgjør om likningen du fant i oppgave d), er riktig. Likningen vi fant i d), har stigningstall og skjærer y-aksen i 0,. Er likningen riktig, må disse betingelsene være oppfylt. Vi sjekker stigningstallet: f , dette stemmer. Vi sjekker konstantleddet. Vi vet at tangenten skal gå gjennom, dette punktet og sjekker: y ax b b b. Vi bruker Vi finner at stigningstallet er, og at konstantleddet er. Likningen i d) er riktig. Eksamen MAT101 Matematikk 1T Våren 017 Side 8 av 18

9 Oppgave 1 (5 poeng) a) Bruk PQR ovenfor til å vise at sin0 1 cos0 tan0 Vi finner først siden PQ. PQ 1 PQ PQ 41 sin 0 QR PR 1 PQ PR cos 0 tan 0 QR 1 1 PQ Videre i oppgaven kan du få bruk for noen av disse trigonometriske verdiene. I ABC er AB, AC 4 og A 0 b) Bestem arealet av ABC. Vi bruker arealsetningen for trekanter og finner arealet av ABC. Areal blir: 1 AB AC sin c) Vis at BC BC BC BC BC 45 BC 5 Eksamen MAT101 Matematikk 1T Våren 017 Side 9 av 18

10 Tid: timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 1 (7 poeng) Funksjonen f gitt ved f x x x x ( ) 0,0047 0,40 8, 86 x 0,5 viser fyllingsgraden fx ( ) prosent i et vannmagasin x uker etter 1. januar 016. a) Bruk graftegner til å tegne grafen til f. Vi tegner grafen til f i GeoGebra. Eksamen MAT101 Matematikk 1T Våren 017 Side 10 av 18

11 b) I hvor mange uker var fyllingsgraden høyere enn 60 %? Vi legger inn en linje y 60 og finner skjæringspunktene A og B mellom denne linjen og grafen til f ved å bruke verktøyet «Skjæringer mellom to objekt» i GeoGebra, se nedenfor. Vi leser av og finner at fyllingsgraden er lavere enn 60 % fra,8 uke etter nyttår fram til uke 6,7 etter nyttår, altså i ca. uker. Det betyr at fyllingsgraden er høyere enn 60 % i ca. 9 uker i løpet av 016. c) I hvilken uke var fyllingsgraden lavest? Hvor stor del av vannmagasinet var fylt da? Vi bruker verktøyet «Ekstremalpunkt» i GeoGebra og finner bunnpunktet 1.67, 5.8, se punkt C ovenfor. Fyllingsgraden var lavest et stykke ut i uke 14, og den var da på ca. 5 %. (Legg merke til at uke 1 er fra 0 1, så uke 14 blir i intervallet 1 14 ). Eksamen MAT101 Matematikk 1T Våren 017 Side 11 av 18

12 d) Bestem likningen for tangenten til grafen til f i punktet (, f ()). Hva forteller stigningstallet til denne tangenten om fyllingsgraden i vannmagasinet? Vi bruker verktøyet «Tangenter» i GeoGebra og tegner tangenten til grafen til f i punktet, f, se nedenfor. Likningen for tangenten er y,48 x 7,51. Stigningstallet til tangenten er,48. Dette taller forteller oss at uker etter nyttår er fyllingsgraden i vannmagasinet i ferd med å øke med,48 prosentpoeng i uka. Oppgave ( poeng) To voksne og tre barn betaler til sammen 50 kroner for billetter til en kinoforestilling. En voksenbillett koster 40 kroner mer enn en barnebillett. Hvor mye koster en barnebillett, og hvor mye koster en voksenbillett? Vi lar x stå for en voksenbillett og y for en barnebillett. Vi setter opp to likninger og løser likningene ved hjelp av CAS i GeoGebra, se nedenfor. En voksenbillett koster 18 kroner, og en barnebillett koster 88 kroner. Eksamen MAT101 Matematikk 1T Våren 017 Side 1 av 18

13 Oppgave ( poeng) Linjediagrammet ovenfor viser hvordan andelen dagligrøykere ved en bedrift har avtatt i perioden a) Bestem en lineær modell som tilnærmet beskriver utviklingen. En lineær modell er gitt på formen y ax b. Vi ser at i løpet av 17 år synker antall dagligrøykere fra 0 % til 14 %. 16 Stigningstallet a er dermed En lineær modell som beskriver utvikling, er da gitt ved y x 0. b) Når vil andelen dagligrøykere ved bedriften være 5 % ifølge modellen i oppgave a)? Vi løser likningen fra a) og finner: x 0 5 x 5 Ifølge modellen vil antall dagligrøykere være 5 % i 05. Eksamen MAT101 Matematikk 1T Våren 017 Side 1 av 18

14 Oppgave 4 (4 poeng) Ved et meieri blir det oppdaget en feil ved en av maskinene som skrur korker på kartongene. På kjølelageret er det 00 kartonger med lettmelk og 100 kartonger med helmelk. 5 av kartongene med lettmelk og 1 4 av kartongene med helmelk har ikke tett kork. Tenk deg at du skal ta en kartong tilfeldig fra kjølelageret. a) Bestem sannsynligheten for at kartongen ikke har tett kork. Vi velger å systematisere opplysningene i en krysstabell. Kartong med lettmelk som ikke har tett kork: Kartong med helmelk som ikke har tett kork: Lettmelk Helmelk Sum Tett kork Ikke tett kork Sum Fra tabellen ser vi at 105 av 00 kartonger ikke har tett kork. Sannsynligheten blir ,5 5% Anta at du tar en kartong som ikke har tett kork. b) Bestem sannsynligheten for at kartongen inneholder lettmelk. Vi ser av tabellen ovenfor at det er 105 kartonger til sammen som ikke har tett kork. Videre ser vi at 80 av disse kartongene er lettmelk. Sannsynligheten blir dermed ,76 76,% Eksamen MAT101 Matematikk 1T Våren 017 Side 14 av 18

15 Oppgave 5 ( poeng) Gitt trekanten ovenfor. Bruk CAS til å bestemme s. Vi velger å bruke CAS i GeoGebra og bestemmer s ved hjelp cosinussetningen, se nedenfor. I denne oppgaven er det kun den positive løsningen som er mulig. Det betyr at 8 s. Eksamen MAT101 Matematikk 1T Våren 017 Side 15 av 18

16 Oppgave 6 ( poeng) En funksjon f er gitt ved Bruk CAS til å f x x ax a x a ( ), 0 vise at grafen til f har et nullpunkt og et stasjonært punkt i Pa (, 0) avgjøre om P er et toppunkt, et bunnpunkt eller et terrassepunkt I linje 1 definerer vi funksjonen f. Linje og viser at grafen til f har et nullpunkt i a,0. I linje finner vi at den momentane veksthastigheten til f er 0 for 1 x a og for x a. I linje 5 og 6 tar vi stikkprøver og sjekker veksthastigheten på begge sider av a. Her er det viktig at vi tar en stikkprøve mellom 1 og a a. På grunnlag av stikkprøvene ser vi at det stasjonære punktet P a,0 er et bunnpunkt. Eksamen MAT101 Matematikk 1T Våren 017 Side 16 av 18

17 Oppgave 7 (4 poeng) Figuren ovenfor viser en halvsirkel med sentrum i B og radius R en halvsirkel med sentrum i C og radius r en kvart sirkel med sentrum i A og radius R De to halvsirklene tangerer hverandre i punktet D. Punktet D ligger på linjen gjennom B og C. a) Bruk Pytagoras setning til å vise at r R. Vi har at AB R, AC R r og BC R r. Bruker CAS og finner r. b) Bruk CAS til å bestemme arealet av det blå området på figuren uttrykt ved R. Vi bestemmer arealet av kvartsirkelen og trekker fra de to halvsirklene, se linje og 4. Eksamen MAT101 Matematikk 1T Våren 017 Side 17 av 18

18 Kilder Oppgavetekst med grafiske framstillinger og bilder: Utdanningsdirektoratet. Eksamen MAT101 Matematikk 1T Våren 017 Side 18 av 18

1T eksamen våren 2017

1T eksamen våren 2017 1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt

Detaljer

1T eksamen våren 2017 løysingsforslag

1T eksamen våren 2017 løysingsforslag 1T eksamen våren 017 løysingsforslag Tid: timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform 0,710

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal

Detaljer

1T eksamen våren 2017

1T eksamen våren 2017 1T eksamen våren 2017 Tid: 3 timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Rekn ut og skriv svaret på standardform 0,72 10 60 10 8 8

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 1T våren 2016 løsning

Eksamen 1T våren 2016 løsning Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket

Detaljer

1T eksamen høsten 2017 løsning

1T eksamen høsten 2017 løsning 1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen

Detaljer

1T eksamen våren 2018 løsningsforslag

1T eksamen våren 2018 løsningsforslag 1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

1P eksamen våren 2017 løsningsforslag

1P eksamen våren 2017 løsningsforslag 1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i

Detaljer

Eksamen 1T våren 2016

Eksamen 1T våren 2016 Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig

Detaljer

1T eksamen våren 2018

1T eksamen våren 2018 1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Eksamen 1T våren 2015 løsning

Eksamen 1T våren 2015 løsning Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003

Detaljer

1P eksamen våren 2017

1P eksamen våren 2017 1P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i begre. I hvert

Detaljer

Eksamen 1T, Høsten 2010

Eksamen 1T, Høsten 2010 Eksamen 1T, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Løs likningssystemet xy4 3x y 8 xy4 3xy8 4x

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

S1 eksamen våren 2016 løsningsforslag

S1 eksamen våren 2016 løsningsforslag S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)

Detaljer

S1 eksamen våren 2017 løsningsforslag

S1 eksamen våren 2017 løsningsforslag S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningssystemet 5x y x y 9 Oppgave ( poeng) Skriv så enkelt som mulig x x x 1 Oppgave 3 ( poeng) Løs ulikheten x x 3 10 Oppgave 4 ( poeng) Løs likningen

Detaljer

Eksamen 1T våren 2015

Eksamen 1T våren 2015 Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.

Detaljer

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast

Detaljer

Eksamen høsten 2017 Løsninger

Eksamen høsten 2017 Løsninger DEL Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 3 0 5 000,0 0 5,0 0 5 + 3 ( ) 5 6 6 7 = = 0 = 0 = 0 0 =,0 0 0,5 5 0 5 3 Oppgave Skjæringspunktet

Detaljer

1T eksamen våren 2018

1T eksamen våren 2018 1T eksamen våren 018 DEL 1 Utan hjelpemiddel Tid: Del 1 skal leverast inn etter 3 timar. Hjelpemiddel: Del 1 Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve 1 ( poeng) Løys

Detaljer

R1 eksamen høsten 2015

R1 eksamen høsten 2015 R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)

Detaljer

Eksamen 1T høsten 2015

Eksamen 1T høsten 2015 Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005

Detaljer

Eksamen REA3022 R1, Våren 2009

Eksamen REA3022 R1, Våren 2009 Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningssystemet 5x y 4 3x 4y 6 Oppgave (1 poeng) Løs likningen x 310 3000 Oppgave 3 ( poeng) Regn ut og skriv svaret på standardform 6 0,5 10 0, 10 310 4

Detaljer

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) 8 v 6 Bruk trekanten ovenfor til å bestemme sinv. Oppgave ( poeng) Skriv så enkelt som mulig 4x 4 x x 1 Oppgave 3 ( poeng) Løs ulikheten x 4x 1 0 Eksamen MAT1013

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen

Detaljer

1P eksamen våren 2016 løsningsforslag

1P eksamen våren 2016 løsningsforslag 1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti

Detaljer

S1 eksamen våren 2016

S1 eksamen våren 2016 S1 eksamen våren 016 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg 7 Oppgave (4 poeng)

Detaljer

NY Eksamen 1T, Høsten 2011

NY Eksamen 1T, Høsten 2011 NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)

Detaljer

Eksamen 1T våren 2016 løysing

Eksamen 1T våren 2016 løysing Eksamen T våren 06 løysing Oppgåve ( poeng) Rekn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av

Detaljer

1T eksamen våren 2018 løysingsforslag

1T eksamen våren 2018 løysingsforslag 1T eksamen våren 018 løysingsforslag DEL 1 Utan hjelpemiddel Tid: Del 1 skal leverast inn etter timar. Hjelpemiddel: Del 1 Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve

Detaljer

Eksamen R1, Våren 2015

Eksamen R1, Våren 2015 Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h

Detaljer

1T eksamen hausten 2017

1T eksamen hausten 2017 1T eksamen hausten 017 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 10 5000 0,15 Oppgåve

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4

Detaljer

1T eksamen hausten 2017 Løysing

1T eksamen hausten 2017 Løysing 1T eksamen hausten 017 Løysing Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 105000 0,15

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 8.05.018 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3

Detaljer

Eksamen 1T våren 2016

Eksamen 1T våren 2016 Eksamen 1T våren 016 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av 1 punkt. Kvart av tala nedanfor

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram

Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del

Detaljer

Funksjoner 1T, Prøve 1 løsning

Funksjoner 1T, Prøve 1 løsning Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:

Detaljer

S1 eksamen våren 2018 løsningsforslag

S1 eksamen våren 2018 løsningsforslag S1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksamen 1T, Hausten 2012

Eksamen 1T, Hausten 2012 Eksamen 1T, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Ei rett linje har stigingstal. Linja skjer x

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen S2 va ren 2015 løsning

Eksamen S2 va ren 2015 løsning Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x

Detaljer

R1 eksamen våren 2017 løsningsforslag

R1 eksamen våren 2017 løsningsforslag R eksamen våren 07 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f 5 4 a) 3 f 6 5 b) g ( ) e

Detaljer

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål Eksamen 1.11.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast

Detaljer

R1 eksamen høsten 2016

R1 eksamen høsten 2016 R eksamen høsten 06 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) b) g( x) xlnx c) h x x e x 3

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Utan hjelpemiddel Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgåve (1 poeng) Løys likningssystemet x3y7 5xy8 Vel å løyse likninga

Detaljer

Eksamen S2 høsten 2014 løsning

Eksamen S2 høsten 2014 løsning Eksamen S høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f 3ln 1 3 f 3 1 b) g ln3 1 ln3 g 1

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Eksamen S1 Va ren 2014 Løsning

Eksamen S1 Va ren 2014 Løsning Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x

Detaljer

Eksamen 1T høsten 2015

Eksamen 1T høsten 2015 Eksamen 1T høsten 015 DEL 1 Uten hjelpemidler Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 1,8 10 0,0005 = 1,8 10 5,0 10 = 9,0 10 1 1 4 8 Oppgave Vi bruker

Detaljer

Eksamen REA3022 R1, Våren 2011

Eksamen REA3022 R1, Våren 2011 Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen

Detaljer

Eksamen REA3022 R1, Våren 2012

Eksamen REA3022 R1, Våren 2012 Eksamen REA30 R, Våren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) a) Deriver funksjonene gitt ved ) f 3 5 4 f 5 ) 3

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen

Detaljer

Eksamen 1T, Høsten 2011

Eksamen 1T, Høsten 2011 Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 1T, Høsten 2010

Eksamen 1T, Høsten 2010 Eksamen 1T, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Løs likningssystemet xy4 3x y 8 b) Løs

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

Eksamen S1 Va ren 2014

Eksamen S1 Va ren 2014 Eksamen S1 Va ren 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x b) x lg lg x Oppgave ( poeng)

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

1P eksamen våren 2016

1P eksamen våren 2016 1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.

Detaljer

S1 eksamen våren 2018

S1 eksamen våren 2018 S1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x + 1 =

Detaljer

R1 eksamen våren 2018

R1 eksamen våren 2018 R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

1P eksamen høsten Løsningsforslag

1P eksamen høsten Løsningsforslag 1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren

Detaljer

S1 eksamen våren 2017

S1 eksamen våren 2017 S1 eksamen våren 017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 x b) 310 3000 c) 4lg( x 15) 8 Oppgave

Detaljer

R1 eksamen våren 2018 løsningsforslag

R1 eksamen våren 2018 løsningsforslag R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA3026 S1, Høsten 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 2 2x 8 x b) 33

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen REA3026 S1, Våren 2013

Eksamen REA3026 S1, Våren 2013 Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x

Detaljer

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.

Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgåve ( poeng) Rekn ut og skriv svaret så enkelt som mogleg

Detaljer

Eksamen R1, Va ren 2014, løsning

Eksamen R1, Va ren 2014, løsning Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker

Detaljer

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1 Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5

Detaljer

Eksamen matematikk S1 løsning

Eksamen matematikk S1 løsning Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer