Eksamen S1, Høsten 2013
|
|
- Brynjulf Solberg
- 8 år siden
- Visninger:
Transkript
1 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f x x x f x 6x 3 f Oppgave (3 poeng) Løs likningene a) xx x x x 5x x x x 7 Eksamen REA306 Matematikk S1, Høsten 013 Side 1
2 b) 3 10 x x x 5 3x 5 x 5 3 Oppgave 3 ( poeng) Løs likningssettet ved regning yx yx 4 y x yx 4 x x 4 x x 1 x 1 x 1 x 1 y 1 3 x 1 y 1 3 Oppgave 4 ( poeng) En bevegelse foregår langs en rett linje. Startfarten var v 0, og akselerasjonen er konstant lik a. Etter tida t er farten v blitt v v0 at. a) Bestem en formel for t uttrykt ved v, v 0 og a. vv v v0 at at v v0 t a 0 b) Hvor lang tid tar det før farten v er blitt 5 når akselerasjonen a 3 og startfarten v0 1? Jeg setter de oppgitte verdier inn i formelen jeg fant i a) vv0 51 t 8 a 3 Etter tiden 8 er farten blitt 5. Eksamen REA306 Matematikk S1, Høsten 013 Side
3 Oppgave 5 (4 poeng) a) Skriv så enkelt som mulig 9 a 3 3ab b a b 3 a b a b 3 a b 4 3ab 3 a b b b) Vis at a b lg lg lg lg b a a b a ab a b lg lg lg a b lga lg b b a lg b lga lga b lga lga lg a b lga lg a b lg a a b lg a ab a b b a Vi har da vist at lg lg lga b lga ab Oppgave 6 ( poeng) Løs ulikheten x x x x x x x x x x x 6 0 Jeg setter x x6 0. Da er x 3 Da er x x 6 x x 3 Jeg tar stikkprøver og sjekker fortegnet til uttrykket for x verdier mindre enn 3, mellom 3 og og større enn Løsningen på ulikheten blir: x 3 x Eksamen REA306 Matematikk S1, Høsten 013 Side 3
4 Oppgave 7 ( poeng) Figuren nedenfor viser et utsnitt av tre påfølgende rader av Pascals talltrekant. Bruk figuren til å bestemme x og y ved å sette opp og løse et likningssystem. yx1 yx16 x 1 x 16 3x 105 x 35 y Oppgave 8 (4 poeng) Funksjonen f er gitt ved 3 f x x 6 x, Df a) Bestem nullpunktene til f. 3 f x 0 x 6x 0 x x 3 0 x 0 x 3 Nullpunktene til funksjonen er 0 og 3. til å bestemme eventuelle topp- og bunnpunkter på grafen til f. b) Bruk f x 3 f x x 6x f x 6x 1x 6x x Jeg ser av uttrykket at den deriverte er null for x 0 og x. Jeg tar stikkprøver og sjekker fortegnet til den deriverte for x verdier mindre enn 0, mellom 0 og og større enn f f f Grafen har toppunkt 0, f 0 0,0 og bunnpunkt, f, 8 Eksamen REA306 Matematikk S1, Høsten 013 Side 4
5 c) Lag en skisse av grafen til f. Oppgave 9 ( poeng) Grafen til funksjonen nedenfor. f x ax b cx 1 er tegnet Bruk figuren til å bestemme verdiene til a, b og c. Grafen til funksjonen har loddrett asymptote for x 1. For denne x verdi er nevneren lik null. Det vil si at c11 0 c 1. Funksjonen går mot når x går mot uendelig. Funksjonsuttrykket går mot a c når x går mot a a uendelig. Da er a c 1 Eksamen REA306 Matematikk S1, Høsten 013 Side 5
6 Grafen viser at f 1 0. Da er c a 1 b 1 b b b 0 b Oppgave 10 (1 poeng) En funksjon f er gitt ved f x x D, f Bruk definisjonen av den deriverte til å vise at fx x. y f x f x lim lim x0x x0 lim x0 lim x0 x0 x x x x xx lim x0 x lim xx x lim x x x x f x x x x x x x x x 0 x x Eksamen REA306 Matematikk S1, Høsten 013 Side 6
7 Tid: 3 timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 1 (4 poeng) I en eske ligger 50 lyspærer. Av disse er 7 defekte. Du velger tilfeldig ut 10 lyspærer fra esken. a) Bestem sannsynligheten for at akkurat av lyspærene er defekte. Dette er en hypergeometrisk situasjon med et utvalg på 10 lyspærer av en «populasjon» på 50 lyspærer. Jeg setter n 7 i sannsynlighetskalkulatoren i GeoGebra, som svarer til at 7 av lyspærene er defekte. X står for antall defekte lyspærer i utvalget. Jeg beregner sannsynligheten for at X. Sannsynligheten for at det er akkurat defekte lyspærer i utvalget er 9,64 %. b) Bestem sannsynligheten for at du velger ut minst 3 defekte lyspærer. Jeg beregner sannsynligheten for at X 3. Eksamen REA306 Matematikk S1, Høsten 013 Side 7
8 Sannsynligheten for at det er minst 3 defekte lyspærer i utvalget er 13,6 %. Oppgave (5 poeng) En fabrikk produserer lyspærer. Fabrikken garanterer at det er 75 % sannsynlighet for at en lyspære vil lyse i 1000 h (timer). En kunde kjøper 0 slike lyspærer. a) Bestem sannsynligheten for at akkurat 18 lyspærer lyser når det er gått 1000 h. Dette er en binomisk situasjon med p 0,75, som er sannsynligheten for at en tilfeldig lyspære vil lyse i 1000 timer. Jeg bruker sannsynlighetskalkulatoren i GeoGebra, og lar X være antallet av 0 lyspærer som lyser når det er gått 1000 timer. Jeg beregner sannsynligheten for at X 18. Sannsynligheten for at akkurat 18 lyspærer lyser når det er gått 1000 h er 6,69 %. b) Bestem sannsynligheten for at minst 15 lyspærer lyser i 1000 h. Jeg beregner sannsynligheten for at X 15 Eksamen REA306 Matematikk S1, Høsten 013 Side 8
9 Sannsynligheten for at minst 15 lyspærer lyser i 1000 h er 61,7 %. Eksamen REA306 Matematikk S1, Høsten 013 Side 9
10 Kunden ønsker at det skal være en sannsynlighet på 95 % eller mer for at minst 15 av 0 lyspærer fremdeles lyser når det er gått 1000 timer. c) Bestem hvilken sannsynlighet hver lyspære da må ha for å lyse i 1000 h. Jeg prøver meg fram med økende verdier av p inntil den aktuelle sannsynligheten overstiger 95%. Når hver lyspære har en sannsynlighet på minst 86,1 % for å lyse i 1000 timer, er sannsynligheten for at minst 15 lyspærer lyser i 1000 timer, minst 95 %. Oppgave 3 ( poeng) Vi har gitt likningen x 900 1, Bestem k slik at x 10 er en løsning av likningen. x k Jeg setter inn 10 i stedet for x i likningen og løser likningen med hensyn på k ved å bruke CAS i GeoGebra. Jeg får k 1,05 k 1,05 Eksamen REA306 Matematikk S1, Høsten 013 Side 10
11 Oppgave 4 (8 poeng) Figuren viser grafen til funksjonen f gitt ved 1 f x 6 x, D f Under grafen og over x-aksen er det skrevet inn et rektangel ABCD slik figuren viser. Punktene A og B ligger på x-aksen, og C og D ligger på grafen. Punktet B har førstekoordinaten x, der x 0. a) Forklar at arealet F av rektangelet kan skrives som en funksjon av x gitt ved Bestem 3 1 F x x x D F. Grunnlinjen AB x siden f er symmetrisk om y aksen. Høyden BC f x siden punktet 1 3 C x, f x. Arealet av rektangelet er derfor: F x x f x x 6 x 1x x For å få et rektangel som beskrevet, må punktet B ligge til venstre for f sitt positive nullpunkt. 1 f x 0 6 x 0 x 1 x 3 Jeg setter Det betyr at DF 0, 3 Eksamen REA306 Matematikk S1, Høsten 013 Side 11
12 b) Det fins to verdier av x som gjør at arealet av rektangelet blir lik 9. Bestem disse to verdiene. Jeg løser likningen Fx 9 i GeoGebra. Arealet av rektangelet blir lik 9 når x 0,79 x 3 c) Bestem den verdien av x som gjør at arealet av rektangelet blir størst mulig. Hva blir det største arealet? Jeg setter den deriverte til arealfunksjonen lik null og finner at det finnes kun én verdi for x i definisjonsområdet som gir en ekstremalverdi. Det er for x. Siden F er større enn en tilfeldig annen F 16 arealverdi i definisjonsområdet, må være det største arealet. d) Bestem et uttrykk for omkretsen av rektangelet. Bestem den verdien av x som gjør at omkretsen av rektangelet blir størst mulig. Kommenter svaret. Jeg kaller omkretsen til rektangelet for O x AB BC O x x f x 1 Ox x x O x 4x 1 x 4 6 Jeg bruker samme metode på Fx i oppgave c). Omkretsen blir størst mulig når x Ox. Ox som på Dette er den samme verdien for x som også gjør arealet størst mulig. Rektangelet er da et kvadrat med side 4 fordi AB x 4 og 1 BC f () Eksamen REA306 Matematikk S1, Høsten 013 Side 1
13 Oppgave 5 ( poeng) a) Avgjør om implikasjonen nedenfor er riktig. x 4 x x x x 4 Implikasjonen er riktig. b) Avgjør om den motsatte implikasjonen er riktig. x betyr at x for eksempel kan være lik 5. Men Implikasjonen er ikke riktig. 5 5 og er ikke mindre enn 4. Oppgave 6 (8 poeng) Et bakeri lager x kaker per dag, i tillegg til andre bakervarer. Bakeriet har funnet ut at de totale kostnadene Kx i kroner ved kakeproduksjonen avhenger av antall kaker, slik tabellen viser. a) Bruk regresjon til å bestemme en polynomfunksjon av tredje grad som passer best mulig med tallene i tabellen. I regnearket laget jeg en liste med punkter fra tabellen. Så laget jeg funksjonen f ved kommandoen Eksamen REA306 Matematikk S1, Høsten 013 Side 13
14 Polynomfunksjonen av 3. grad som passer best med tallene i tabellen er 3 f x 0,001x 0,3107x 30,743x,431 I resten av oppgaven vil vi bruke kostnadsfunksjonen K gitt ved 3 0,001 0,3 30, 0,50 K x x x x x Bakeriet selger alle kakene for 15 kroner per stykk. Inntektsfunksjonen I er da gitt ved 15 b) Tegn grafene til K og I i samme koordinatsystem. Bestem hvilke produksjonsmengder som gir overskudd, og hvilke som gir underskudd. I x x Jeg har brukt kommandoen «Skjæring mellom to objekt» for å finne skjæringspunktene mellom grafene. For x -verdier mellom 63 og 37 ligger grafen for inntektsfunksjonen over grafen for kostnadsfunksjonen. For de andre x -verdiene er det motsatt. Det betyr: Eksamen REA306 Matematikk S1, Høsten 013 Side 14
15 Det blir overskudd når det produseres mellom 63 og 37 kaker per dag. Det blir underskudd når det produseres mindre enn 63 eller flere enn 37 kaker per dag. c) Bruk derivasjon til å bestemme hvor mange kaker som bør produseres dersom overskuddet skal bli størst mulig. Jeg definerer overskuddsfunksjonen Ox som Jeg finner ved regning i CAS, se utklipp, at det bør produseres 171 kaker for at overskuddet skal bli størst mulig. Hva er det største overskuddet bakeriet kan oppnå per dag når vi bare ser på kakeproduksjonen? Regningen i CAS viser at dette største overskuddet er på 107 kroner Som et ekstra tilbud til kundene vurderer bakeriet å sette ned prisen per kake. d) La prisen per kake være p kroner. Bestem den minste verdien p kan ha dersom det skal være mulig å oppnå balanse mellom kostnader og inntekter? Hvor mange kaker bør lages og selges per dag når p har denne verdien? Jeg definerer glideren p 15. Jeg omdefinerer inntektsfunksjonen slik at Ix p x. Når p 15 har vi samme situasjon som ovenfor. Se grafen nedenfor hvor også grafen til overskuddsfunksjonen er tegnet. Når vi reduserer prisen, for eksempel setter p 9, ser vi at området som gir overskudd skrumper Eksamen REA306 Matematikk S1, Høsten 013 Side 15
16 inn og overskuddet avtar. Grafene tangerer når p 7,5. Når prisen er redusert til 7,5 kroner, er overskuddet redusert til null, og kakeproduksjonen går akkurat i balanse. Det produseres og selges da 150 kaker per dag. Oppgave 7 (7 poeng) Silje lager to typer syltetøy. Type 1 inneholder 90 % bær og 10 % sukker. Type inneholder 40 % bær og 60 % sukker. Syltetøyet skal fylles på glass, og et fullt glass skal inneholde 1 kg syltetøy. Hun har 0 kg bær og 5 kg sukker som hun skal lage syltetøy av. a) Hvor mange glass av hver type må hun lage for å få brukt opp 0 kg bær og 5 kg sukker? Jeg lager en tabell for å få oversikt Type 1 x Type y Sum Bær 90 % 40 % 0 kg Sukker 10 % 60 % 5 kg Jeg lar x være antall glass av type 1 og y antall glass av type. For å få brukt opp 0 kg bær og 5 kg sukker må 0,9x 0,4y 0 og 0,1x 0,6y 5 Punktet 0,5 tilfredstiller begge likningene som grafen viser. For å få brukt opp 0 kg bær og 5 kg sukker må Silje lage 0 glass av type 1 og 5 glass av type. Eksamen REA306 Matematikk S1, Høsten 013 Side 16
17 b) Hun kan selge syltetøyet av type 1 for 80 kroner per glass og syltetøyet av type for 40 kroner per glass. Hvilken inntekt får hun i dette tilfellet? Hun får da inntekten I0, kroner Forklar ved å bruke lineær optimering at dette er den største inntekten hun kan oppnå. Jeg skraverer området for mulige verdier av x og y. Det vil si det områder som oppfyller kravene 0,9x0,4y 0 0,1x0,6y 5 x0 og y 0 Jeg setter inntekten i 000 som en glider i GeoGebra. Så setter jeg i 80x 40y Jeg endrer glideren og ser grafisk at når grafen som viser inntekten skal skjære det skraverte området, så blir inntekten størst når x 0 og y 5 Det viser at den største inntekten hun kan oppnå er 1800 kroner. Helsemyndighetene foreslår å øke sukkerprisen slik at syltetøy av type blir dyrest. c) Når Silje skal lage mer syltetøy, kjøper hun bær for 30 kroner per kilogram. Det skal koste 5 kroner mer per glass å lage syltetøy av type enn av type 1. Undersøk hva prisen per kilogram sukker da må være. Jeg setter prisen per kg sukker til z kroner. Prisen for å lage ett glass av type 1 blir da 0,930 0,1 z kroner. Prisen for å lage ett glass av type blir da 0,430 0,6 z kroner. Når det skal koste 5 kroner mer å lage ett glass av type, må 0,930 0,1z50,430 0,6 z Jeg løser likningen ,6 z 0,1z 0 0,5z z 40 Prisen per kg sukker må være 40 kroner. Eksamen REA306 Matematikk S1, Høsten 013 Side 17
18 Kilder Oppgavetekst med grafiske framstillinger: Utdanningsdirektoratet Eksamen REA306 Matematikk S1, Høsten 013 Side 18
Eksamen S1, Høsten 2013
Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df Oppgave
Eksamen S1, Hausten 2013
Eksamen S1, Hausten 013 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Funksjonen f er gjeve ved Bestem f. f x 3x 3x 1, Df
Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen S1 Va ren 2014 Løsning
Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x
Eksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x
S1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
Eksamen REA3026 S1, Høsten 2010
Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x
S1 eksamen våren 2018 løsningsforslag
S1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene
Eksamen S1 Va ren 2014
Eksamen S1 Va ren 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x b) x lg lg x Oppgave ( poeng)
Eksamen S1 høsten 2014 løsning
Eksamen S1 høsten 014 løsning Tid: timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) x 10 xx 5 x x 10 x 5x 7x 10 0 7 49 40
S1 eksamen våren 2017 løsningsforslag
S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0
Eksamen REA3026 S1, Høsten 2012
Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6
S1 eksamen våren 2016
S1 eksamen våren 016 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg 7 Oppgave (4 poeng)
Eksamen REA3026 S1, Våren 2012
Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b
Eksamen S1 Va ren 2014 Løysing
Eksamen S1 Va ren 014 Løysing Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (3 poeng) Løys likningane a) x 3x 3 3 x x x x 3 3 3 0 x
Eksamen REA3026 S1, Høsten 2012
Eksamen REA3026 S1, Høsten 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 2 2x 8 x b) 33
Eksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
Eksamen S2 va ren 2015 løsning
Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x
S2 eksamen våren 2018 løsningsforslag
S eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x =
Eksamen S2 høsten 2014 løsning
Eksamen S høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f 3ln 1 3 f 3 1 b) g ln3 1 ln3 g 1
Eksamen S1 høsten 2015 løsning
Eksamen S1 høsten 015 løsning Oppgave 1 (5 poeng) Løs likningene nedenfor a) x 3x 0 x(x3) 0 x 0 x 3 0 3 x 0 x b) 3x1 17 4 x lg 3 1 34 lg 3 x1 34 3x 1 lg 34lg 3x 1 lg lg 34 lg lg 3x 1 34 3 x 33 3 3 x 11
Eksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 b) x x 1 Oppgave
Eksamen S2 høsten 2015 løsning
Eksamen S høsten 015 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (4 poeng) Deriver funksjonene f x x x a) 3 f x 3x g x 3 e x 1 b) 1
Eksamen S2, Høsten 2013
Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x
Eksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Eksamen R1 høsten 2014 løsning
Eksamen R1 høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene 3 a) f x x x 5 5 f x 15x 4x
1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
Eksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
Eksamen S1 vår 2011 DEL 1. Uten hjelpemidler. Oppgave f x x. f x x. x x. S1 Eksamen våren 2011, Løsning MATEMATIKK
S Eksamen våren 0, Løsning Eksamen S vår 0 DEL Uten hjelpemidler Oppgave a) Vi har funksjonen f x x 3 x 5 ) Deriver funksjonen. f x x 3 3 5 f x x 6 5 ) Bestem f. Hva forteller svaret deg om grafen til
R1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
Eksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Løys likningane a) lg x 3 5 lg x 3 5 lg
R1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
S1 eksamen våren 2016 løysingsforslag
S1 eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (4 poeng) Løys likningane a) x x 0 4 1 x 1 9 8 x 1 x x 1
Eksamen S1, Høsten 2011
Eksamen S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonen f f f 6 b) Løs likningene 6 4 ) 6
Eksamen S2 høsten 2014
Eksamen S2 høsten 2014 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f x 3ln x 2 b) gx x ln3x Oppgave 2 (2
Eksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
S1 eksamen våren 2017
S1 eksamen våren 017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 x b) 310 3000 c) 4lg( x 15) 8 Oppgave
Eksamen S2 høsten 2016 løsning
Eksamen S høsten 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f 5 f 3 5 b) g 5 1 7 5 7 1 70 1
Eksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
S1 eksamen våren 2018
S1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x + 1 =
Eksamen REA3026 S1, Hausten 2012
Eksamen REA306 S1, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (5 poeng) Løys likningane a) 8 8 0 1 1 4 1 8 4 3
Eksamen 1T våren 2015
Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave
Eksamen S2, Va ren 2013
Eksamen S, Va ren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave ( poeng) Deriver funksjonene f x x e a) x x x f x x e x e x x e x e e x x
Eksamen R1, Våren 2015
Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h
1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
Eksamen R1 høsten 2014
Eksamen R1 høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene 3 a) f x x x x b) gxx e 5 5 Oppgave
Eksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
Eksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
R1 eksamen våren 2018
R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4
DEL 1. Uten hjelpemidler. a) Sett opp et likningssystem som svarer til opplysningene ovenfor.
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg7 Oppgave (4 poeng) Skriv uttrykkene så enkelt som mulig a) b) (x 3) 3( x ) ( x 1)( x 1) 3 a b ( a b) 3 Oppgave 3 (3 poeng)
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
Eksamen S1 høsten 2014
Eksamen S1 høsten 2014 Tid: 2 timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) 2x 10 xx 5 b) x lg 3 5 2 Oppgave 2 (1 poeng)
Eksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Eksamen REA3026 S1, Våren 2012
Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b
Eksamen S2 høsten 2016
Eksamen S høsten 016 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f x x 5x b) g x 5x 1 7 c) h x x e x e 1
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen
Eksamen S2. Va ren 2014 Løsning
Eksamen S. Va ren 04 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (3 poeng) Deriver funksjonene f 3 a) f 3 3 3 6 3 b) 4 g e 4 4 4 4 4 g
Eksamen MAT1013 Matematikk 1T Våren 2012
Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform
S1-eksamen høsten 2017
S1-eksamen høsten 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Løs likningene a) x x 80, a 1, b, c 8 b b 4ac 4 1 ( 8) 4 6 1
1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
Eksamen S1 Va ren 2014
Eksamen S1 Va ren 014 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (3 poeng) Løys likningane a) x 3x 3 3 x b) x lg lg x Oppgåve (
R1 eksamen høsten 2016 løsningsforslag
R eksamen høsten 06 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) fx 4x 5 b) g(
R1 eksamen høsten 2016
R eksamen høsten 06 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) b) g( x) xlnx c) h x x e x 3
Eksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
Løsningsforslag matematikk S1 V14
Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
S1 eksamen våren 2017 løysingsforslag
S1 eksamen våren 017 løysingsforslag Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (5 poeng) Løys likningane a) x 5x 0 xx ( 5) 0 x 0 x 5
Eksamen REA3022 R1, Våren 2012
Eksamen REA30 R, Våren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) a) Deriver funksjonene gitt ved ) f 3 5 4 f 5 ) 3
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 28.05.2008 REA3026 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:
S1 eksamen våren 2018 løysingsforslag
S1 eksamen våren 018 løysingsforslag DEL 1 Utan hjelpemiddel Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (5 poeng) Løys likningane
8 Eksamens trening. E1 (Kapittel 1) Bruk en av kvadratsetningene til å bestemme verdien av produktet 995 995. (Eksamen høsten 2014)
4 8 Eksamenstrening 8 Eksamens trening Uten hjelpemidler E1 (Kapittel 1) Bruk en av kvadratsetningene til å bestemme verdien av produktet 995 995. (Eksamen høsten 014) E (Kapittel 1) Bruk konjugatsetningen
Eksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
Eksamen S2 va ren 2016 løsning
Eksamen S va ren 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene x a) f x e f x e b) gx x x 3 x 4 1 x
Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.05.014 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DEL 1 Uten hjelpemidler. Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt.
S2 eksamen vår 2018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 3 f x = 2x
Eksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
Eksamen R2 Høsten 2013 Løsning
Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen
DEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (
S1 Eksamen høst 2009 Løsning
S1 Eksamen, høsten 009 Løsning S1 Eksamen høst 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig: 1) 5a a a a 1 5a a 4 a 1 6a a 5 ) 1 3 13 3 3 48 3 6 7 8 6 3) 4 a b a 3 a b 13 43 1 a b a b 4 4)
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)
Eksamen R2, Høst 2012, løsning
Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen
Eksamen R2 høsten 2014
Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave
R1 eksamen våren 2018 løsningsforslag
R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene
Eksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
Eksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
1T eksamen hausten 2017
1T eksamen hausten 017 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 10 5000 0,15 Oppgåve
S1 eksamen høsten 2016 løsningsforslag
S1 eksamen høsten 016 løsningsforslag Oppgave 1 (4 poeng) Løs likningene a) x 1 3 x 5 3 4 6 Fellesnevner blir 1 x1 3x 5 1 1 1 3 4 6 (x 1)4 (3x )3 5 8x 4 9x 6 10 x 10 6 4 0 x 0 b) lg(x 6) 10 10 lg(x6) x
Eksamen REA3028 S2, Høsten 2011
Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
Eksamen REA3022 R1, Høsten 2010
Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x
Eksamen R2, Høst 2012
Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave
Funksjoner 1T, Prøve 1 løsning
Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksamen REA3022 R1, Våren 2010
Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksamen REA3022 R1, Våren 2013
Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet