Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Størrelse: px
Begynne med side:

Download "Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål"

Transkript

1 Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål

2 MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Løsningen av Del 1 har her et digitalt format for lesbarhetens skyld. Elevene kan ikke bruke datamaskin på Del 1, og må skrive besvarelsen for hånd. Oppgave 1 a) y 4 3 y 8 Jeg bruker addisjonsmetoden: y 4 3y y 4 y 4 y 43 y 1 Likningssystemet har løsning 3 y 1 Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side av 31

3 b) For å løse likningen grafisk, tegner jeg først de to rette 1 linjene y1 og 4 5 y i et koordinatsystem. Jeg finner så skjæringspunktet mellom linjene. Linjen y 1 skjærer y aksen i punktet 0, og har 1 stigningstall. 4 Linjen y skjærer y - aksen i 5 punktet 0, og har stigningstall. De to linjene skjærer 3 hverandre i punktet,. (Se koordinatsystemet til høyre.) Likningen har løsning. Ved regning: c) ,7 10 3, ,0 10 Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 3 av 31

4 d) 3 4 3( 4) ( 4)( 4) ( 4)( 4) 3 14 ( 4)( 4) 3 1 ( 4)( 4) 3( 4) ( 4)( 4) 3 4 e) 8 0 Jeg faktoriserer først andregradsuttrykket ( 8) ( 4)( ) 0 Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 4 av 31

5 Jeg setter så opp et fortegnsskjema: 4 -linje ( 4) 0 ( ) Løsning:, 4, f) Jeg vet at tangens er forholdet mellom motstående katet og hosliggende katet. 5 Når tanc, kan for eksempel 1 motstående katet til C AB være 5 og hosliggende katet til C AC være 1. Se figuren til høyre. g) 1) Jeg bruker produktsetningen for avhengige hendelser og finner sannsynligheten for at Per liker begge twistbitene: P Per liker begge twistbitene vi trekker 40% Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 5 av 31

6 ) Hvis Per bare liker én av twistbitene, liker han enten bare den første eller bare den andre biten: P Per liker bare én av twistbitene vi trekker % 100 Oppgave a) f1 er den momentane vekstfarten til f når 1. Jeg deriverer funksjonen og finner f f 7 3 f f Den momentane vekstfarten når 1 er 1. b) Jeg regner først ut den gjennomsnittlige vekstfarten. f f I a) har vi sett at den momentane vekstfarten er negativ når 1. Siden den gjennomsnittlige vekstfarten i intervallet 0,3 er null, må vekstfarten også være positiv for noen verdier i dette intervallet. Det vil si at grafen både stiger og synker og derfor må ha et ekstremalpunkt i intervallet. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 6 av 31

7 c) I eventuelle topp- og bunnpunkter er den deriverte lik null. 1 3 f ( ) 7 3 f ( ) f ( ) 0 0 ( ) 0 0 Den deriverte er lik 0 for 0 og. For å avgjøre om dette er toppunkt eller bunnpunkt, sjekker jeg om negativ i intervallene,0, 0, og,. f er positiv eller f 1 ( 1) ( 1) f f >0 Dette viser at grafen til f har et toppunkt i 1 3 0, f 0 0, ,7 og et bunnpunkt i ,, 7, 3, f Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 7 av 31

8 Del Alle hjelpemidler Her et Del løst med grafisk kalkulator som eneste digitale verktøy. Løsningen av Del har her et digitalt format for lesbarhetens skyld. Med kun en grafisk kalkulator tilgjengelig, må elevene skrive besvarelsen for hånd. Oppgave 3 a) Jeg tegnet først grafen til T på kalkulatoren for å se hvordan den så ut (GRAPH, la inn funksjonsuttrykket, DRAW), så brukte jeg TABLE for å finne koordinatene til ulike punkter på grafen, slik at jeg kunne lage en nøyaktig tegning på papir. b) Opprinnelig mengde er 100 %. Når opprinnelig mengde er halvert, er det 50 % igjen. Jeg tegner linjen y1 50 i samme koordinatsystem som grafen til T og finner skjæringspunktet mellom denne linjen og grafen (GSOLV, ISCT). Se koordinatsystemet ovenfor. Det tar 5730 år før opprinnelig mengde C-14 er halvert. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 8 av 31

9 c) Jeg tegner linjen y 86,5 i samme koordinatsystem som grafen til T. Jeg finner skjæringspunktet mellom y og grafen til T (GSOLV, ISCT). Se koordinatsystemet ovenfor. Brønnen var omtrent 100 år gammel da målingene ble gjort. Oppgave 4 a) Jeg setter høyden av flaggstanga lik. For å finne høyden bruker jeg at tan51,3. 10 tan51, tan51,31,5 Flaggstanga er ca. 1,5 m høy. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 9 av 31

10 b) For å finne ut hvor langt det er fra A til B, setter jeg AB og bruker sinussetningen: AB AC sinc sinb 40 sin94,9 sin 18069,794,9 40 sin94,9 sin15,4 40 sin94,9 sin15,4 150 Det er ca. 150 m fra A til B. c) Jeg bruker først cosinussetningen og finner vinkelen mellom sidene som er 0 m og 4 m: cos cos 0 4 cos 0,815 1 cos 0,815 35,66 Jeg regner så ut arealet av trekanten ved å bruke arealsetningen: 1 Areal 04 sin35, Arealet er ca. 140 m. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 10 av 31

11 Oppgave 5 a) Jeg foretar beregninger og fyller ut tabellen: Det er 40 medlemmer totalt. 45 % av medlemmene er kvinner: 40 0, Det er 108 kvinner. Resten er menn: Det er 13 menn. 63 menn ønsker ballbinge menn ønsker ikke ballbinge. Totalt 110 medlemmer ønsker ikke ballbinge kvinner ønsker ikke ballbinge kvinner ønsker ballbinge. Ønsker ballbinge Ønsker ikke ballbinge Mann Kvinne Totalt Totalt Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 11 av 31

12 b) Det er her 130 gunstige av 40 mulige utfall: 130 0,54 40 Sannsynligheten for at et tilfeldig valt medlem ønsker ballbinge er ca. 54 %. c) Der er her 63 gunstige av 130 mulige utfall: ,48 Sannsynligheten for at dette medlemmet er en gutt er ca. 48 %. d) Jeg setter antall nye medlemmer som må velges lik. Jeg får da 130 gunstige og 40 mulige og kan sette opp følgende likning: 130 0, , , , Fotballgruppa må verve 00 nye medlemmer. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 1 av 31

13 Oppgave 6 a) Grafen starter ca. i punktet (0,90). Fast månedspris er ca. 90 kroner. Grafen går gjennom punktet (100,140). Jeg kan da regne ut stigningstallet (som tilsvarer prisen for hvert minutt du ringer): , Prisen for hvert minutt du ringer er ca. 50 øre. b) Jeg setter opp funksjonsuttrykk som beskriver hvert av de tre abonnementene: 1,59 A B , ,49 C Jeg tegnet først grafene på kalkulatoren for å se hvordan de så ut (GRAPH, la inn funksjonsuttrykkene, DRAW), så brukte jeg TABLE for å finne koordinatene til ulike punkter på grafene, slik at jeg kunne lage en nøyaktig tegning på papir. Se koordinatsystemet nedenfor. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 13 av 31

14 c) Jeg finner skjæringspunktene mellom grafene (GSOLV, ISCT), og ser da at: Abonnement A lønner seg dersom du ringer i mindre enn ca. 63 minutt per måned. Abonnement B lønner seg hvis du ringer mellom ca. 63 og ca. 384 minutt hver måned. Abonnement C lønner seg dersom du ringer mer enn ca. 384 minutt hver måned. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 14 av 31

15 Oppgave 7 a) 5 I følge produktsetningen er sannsynligheten 0,95 0,77. Sannsynligheten for at alle 5 elevene har egen profil er ca. 7,7 %. b) Dette er en binomisk sannsynlighetsmodell. For å finne sannsynligheten kan jeg regne ut ,95 0,05 5 Jeg taster dette uttrykket inn på kalkulatoren min slik: 5CX0,95 ^ 0,05 ^ 5, X, 1, 5 Jeg finne at summen blir tilnærmet lik 0,998. Sannsynligheten for at flere enn 0 av de 5 elevene har egen profil er ca. 99,3 %. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 15 av 31

16 Oppgave 8 Alternativ I a) f a 4 fa 4 f er en andregradsfunksjon med negativt andregradsledd. Grafen er derfor en parabel med toppunkt. 0 f i toppunktet. : Jeg løser likningen f 0 0 f a4 0 4 a a 4 Når a, er a Jeg finner f 1 : f a 4 a a 4 7 a Når a er Toppunkt når a er 1 7a 7 9 f 1 9, Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 16 av 31

17 b) I a) fant jeg at a i toppunktet. 4 Dersom koordinaten skal være lik 1 m å a 4. c) I a) fant jeg at koordinaten til toppunktet er 4 a. y koordinaten til toppunktet er da f a 4. Jeg finner f a 4 : f a 4 a a a f a a a a 4 8 y koordinaten til toppunktet er a. 8 4 y koordinaten til toppunktet har da lavest verdi når y koordinaten til toppunktet har lavest verdi når a 0. a har lavest verdi, altså når a 0. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 17 av 31

18 Oppgave 8 Alternativ II a) Hvis trekanten er rettvinklet, må den lengste siden (7 cm) være hypotenus, og de to korteste sidene (0 cm og 1 cm) må være kateter. Jeg setter: a 0cm b 1cm c 7cm Hvis trekanten er rettvinklet, har vi i følge Pythagoras setning at a b c Trekanten er ikke rettvinklet. b) Jeg setter den andre kateten lik. Hypotenusen blir da 6,0,0 4,0 Jeg bruker Pythagoras setning og får likningen,0 4,0 Jeg løser denne likningen og får:,0 4,0,0 4,0 8,0 8, , ,5 8,0 Den andre kateten er 1,5 m. 4,0 4,0 1,5,5 Hypotenusen er,5 m. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 18 av 31

19 c) Jeg setter den motstående siden til vinkelen på 10 lik. Den siste siden blir da 6,0,0 4,0. Jeg bruker cosinussetningen og får da likningen: 4,0,0 4,0,0 cos ,0 4,0 8,0,0 10 8,8 4,0,8 1, De to andre sidene i denne trekanten er,8 m og 1, m. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 19 av 31

20 Del Alle hjelpemidler Et eksempel på hvordan oppgavene i Del kan løses ved hjelp av ulike digitale verktøy. Dynamisk geometriprogram: GeoGebra CAS: wmaima Løsningen av Del har her et digitalt format for lesbarhetens skyld. Elevene kan levere Del som IKTbasert eksamen eller på papir (som utskrift fra et digitalt verktøy eller som håndskrevet besvarelse). Oppgave 3 a) Jeg bruker graftegner i GeoGebra, skriver inn funksjonsuttrykket og tegner grafen til ,5 T for 0, 1000 ved å bruke kommandoen Funksjon[Funksjonsuttrykk, Startverdi for, Sluttverdi for ] b) Opprinnelig mengde er 100 %. Når opprinnelig mengde er halvert, er det 50 % igjen. Jeg tegner linjen y1 50 i samme koordinatsystem som grafen til T og finner skjæringspunktet mellom denne linjen og grafen, ved å bruke kommandoen Skjæring mellom to objekter. Se koordinatsystemet ovenfor. Det tar 5730 år før opprinnelig mengde C-14 er halvert. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 0 av 31

21 c) Jeg tegner linjen y 86,5 i samme koordinatsystem som grafen til T. Jeg finner skjæringspunktet mellom linjen og grafen til T ved å bruke kommandoen Skjæring mellom to objekter. Se koordinatsystemet ovenfor. Brønnen var omtrent 100 år gammel da målingene ble gjort. Oppgave 4 a) Jeg setter høyden av flaggstanga lik. For å finne høyden bruker jeg at tan51,3. 10 tan51, tan51,31,5 Flaggstanga er ca. 1,5 m høy. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 1 av 31

22 b) For å finne ut hvor langt det er fra A til B, setter jeg AB og bruker sinussetningen: AB AC sinc sinb 40 sin94,9 sin 18069,794,9 Jeg løser denne likningen ved hjelp av CAS, her wmaima: Det er ca. 150 m fra A til B. c) Jeg bruker først cosinussetningen og finner vinkelen mellom sidene som er 0 m og 4 m: cos Jeg bruker CAS og løser denne likningen: Jeg vet at vinkelen må være mindre enn 180. Vinkelen er derfor ca. 35,66. Jeg regner så ut arealet av trekanten ved å bruke arealsetningen: 1 Areal 04 sin35,66 Jeg bruker CAS: Arealet er ca. 140 m. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side av 31

23 Oppgave 5 a) Jeg foretar beregninger og fyller ut tabellen: Det er 40 medlemmer totalt. 45 % av medlemmene er kvinner: Det er 108 kvinner. Resten er menn: Det er 13 menn. 63 menn ønsker ballbinge. 69 menn ønsker ikke ballbinge. Totalt 110 medlemmer ønsker ikke ballbinge. 41 kvinner ønsker ikke ballbinge. 67 kvinner ønsker ballbinge. Ønsker ballbinge Ønsker ikke ballbinge Mann Kvinne Totalt Totalt Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 3 av 31

24 b) Det er her 130 gunstige av 40 mulige utfall: Sannsynligheten for at et tilfeldig valt medlem ønsker ballbinge er ca. 54 %. c) Der er her 63 gunstige av 130 mulige utfall: Sannsynligheten for at dette medlemmet er en gutt er ca. 48 %. d) Jeg setter antall nye medlemmer som må velges lik. Jeg får da 130 gunstige og 40 mulige og kan sette opp følgende likning: ,75 Jeg løser likningen ved hjelp av CAS: Fotballgruppa må verve 00 nye medlemmer. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 4 av 31

25 Oppgave 6 a) Grafen starter ca. i punktet (0,90). Fast månedspris er ca. 90 kroner. Grafen går gjennom punktet (100,140). Jeg kan da regne ut stigningstallet (som tilsvarer prisen for hvert minutt du ringer): Prisen for hvert minutt du ringer er ca. 50 øre. b) Jeg setter opp funksjonsuttrykk som beskriver hvert av de tre abonnementene: 1,59 A B , ,49 C Jeg tegner så grafene til funksjonene A, B, og C i GeoGebra ved å bruke kommandoen Funksjon[Funksjonsuttrykk, Startverdi for, Sluttverdi for ]. Se koordinatsystemet nedenfor. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 5 av 31

26 c) Jeg finner skjæringspunktene mellom grafene ved å bruke kommandoen Skjæring mellom to objekter, og ser da at: Abonnement A lønner seg dersom du ringer i mindre enn ca. 63 minutt per måned. Abonnement B lønner seg hvis du ringer mellom ca. 63 og ca. 384 minutt hver måned. Abonnement C lønner seg dersom du ringer mer enn ca. 384 minutt hver måned. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 6 av 31

27 Oppgave 7 a) 5 I følge produktsetningen er sannsynligheten 0,95 0,77. Sannsynligheten for at alle 5 elevene har egen profil er ca. 7,7 %. b) Dette er en binomisk sannsynlighetsmodell. Jeg bruker CAS og finner sannsynligheten. Jeg får da: Sannsynligheten for at flere enn 0 av de 5 elevene har egen profil er ca. 99,3 %. ELLER: Dette er en binomisk sannsynlighetsmodell. For å finne sannsynligheten kan jeg regne ut ,95 0,05 5 Jeg bruker CAS og finner denne summen: Sannsynligheten for at flere enn 0 av de 5 elevene har egen profil er ca. 99,3 %. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 7 av 31

28 Oppgave 8 Alternativ I a) Jeg bruker CAS, definerer funksjonen f og finner f : fa 4 f er en andregradsfunksjon med negativt andregradsledd. Grafen er derfor en parabel med toppunkt. 0 f i toppunktet. : Jeg bruker CAS og løser likningen f 0 Når a, er a Jeg bruker CAS og finner f 1 : Når a er Toppunkt når a er 1 a f 1 9, Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 8 av 31

29 b) I a) fant jeg at a i toppunktet. 4 Dersom koordinaten skal være lik 1 m å a 4. c) I a) fant jeg at koordinaten til toppunktet er 4 a. y koordinaten til toppunktet er da f a 4. Jeg bruker CAS og finner f a 4 : y koordinaten til toppunktet er a 4. 8 y koordinaten til toppunktet har da lavest verdi når y koordinaten til toppunktet har lavest verdi når a 0. a har lavest verdi, altså når a 0. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 9 av 31

30 Oppgave 8 Alternativ II a) Hvis trekanten er rettvinklet, må den lengste siden (7 cm) være hypotenus, og de to korteste sidene (0 cm og 1 cm) må være kateter. Jeg setter: a 0cm b 1cm c 7cm Hvis trekanten er rettvinklet, har vi i følge Pythagoras setning at a b c. Trekanten er ikke rettvinklet. b) Jeg setter den andre kateten lik. Hypotenusen blir da 6,0,0 4,0 Jeg bruker Pythagoras setning og får likningen,0 4,0 Jeg løser denne likningen ved hjelp av CAS og får: Den andre kateten er 1,5 m. 4,0 4,0 1,5,5 Hypotenusen er,5 m. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 30 av 31

31 c) Jeg setter den motstående siden til vinkelen på 10 lik. Den siste siden blir da 6,0,0 4,0. Jeg bruker cosinussetningen og får da likningen: 4,0,0 4,0,0 cos 10 Jeg løser likningen ved hjelp av CAS: De to andre sidene i denne trekanten er,8 m og 1, m. Eksempel på løsning MAT1013 Matematikk 1T Høst 010 Side 31 av 31

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1 Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy

Detaljer

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 27.01.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Eksamen 26.11.2015. REA3026 Matematikk S1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)

Eksamen 26.11.2015. REA3026 Matematikk S1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Eksamen 6.11.015 REA306 Matematikk S1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1017 Matematikk 2T Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning

Eksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning Eksempeloppgave 2014 MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2 Fotball Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) René Descartes II Minstekrav

Detaljer

Eksamen 24.11.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:

Detaljer

Eksempeloppgave 2014. REA3024 Matematikk R2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3024 Matematikk R2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 REA04 Matematikk R Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Kommentar til eksempeloppgaven i MAT0010 Matematikk for eksamen våren 2015. Særlig om bruk av graftegner på datamaskin

Kommentar til eksempeloppgaven i MAT0010 Matematikk for eksamen våren 2015. Særlig om bruk av graftegner på datamaskin Kommentar til eksempeloppgaven i MAT0010 Matematikk for eksamen våren 2015. Særlig om bruk av graftegner på datamaskin Eksempeloppgaven kan inneholde flere oppgaver i forhold til en ordinær eksamensoppgave.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del

Detaljer

1T 2014 vår LØSNING 9 1 2 6 0 4 1 3 ( 3 2 ) 1 1 = 3. 3 + x = 5 x = 2. + 8x + c = 16 DEL EN. Oppgave 1: Oppgave 2: Oppgave 3: Oppgave 4: Oppgave 5:

1T 2014 vår LØSNING 9 1 2 6 0 4 1 3 ( 3 2 ) 1 1 = 3. 3 + x = 5 x = 2. + 8x + c = 16 DEL EN. Oppgave 1: Oppgave 2: Oppgave 3: Oppgave 4: Oppgave 5: 1T 014 vår LØSNING Contents Oppgaven som pdf Tråd om denne oppgaven på Matteprat Enda en tråd om denne oppgaven på Matteprat Løsning laget av Nebu DEL EN Oppgave 1:, 5 10 15 3, 0 10 5 7, 5 10 15+( 5) 7,

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Læreplanmål Matematikk S1 lage og tolke funksjoner som modellerer og beskriver praktiske problemstillinger i økonomi tegne grafen til polynomfunksjoner,

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen 20.05.2015. Del 1. MAT0010 Matematikk. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler)

Eksamen 20.05.2015. Del 1. MAT0010 Matematikk. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Eksamen 20.05.2015 MAT0010 Matematikk Del 1 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin: Graftegner Regneark Skole:

Detaljer

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Eksempeloppgave 2014. MAT1011 Matematikk 1P Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1011 Matematikk 1P Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1011 Matematikk 1P Eksempel på eksamen våren 2015 etter ny ordning Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Eksamen 1T, Våren 2011

Eksamen 1T, Våren 2011 Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern: Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 a) Skriv tallet 2460000 på standardform. b) Regn ut: 3 3 3 2 81 4 + 12 5 + 8 + 4 3 c) Løs likningssystemet: 2x y = 3 x+ 2y = 4 d) Løs ulikheten: 2 2x + 2x+ 4 0 e) Løs

Detaljer

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten.

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten. DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningene a) 6 4 0 b) lg lg lg(4 ) Oppgave ( poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC og CB. C P 10 A 0

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1006 Matematikk 1T-Y. Høsten 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1006 Matematikk 1T-Y. Høsten 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmark fylkeskommune Troms fylkeskommune Nordland fylkeskommune Nord-Trøndelag fylkeskommune Sør-Trøndelag fylkeskommune Møre og Romsdal fylke Skriftlig eksamen MAT1006 Matematikk

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1

Detaljer

Eksamen R1 Høsten 2013

Eksamen R1 Høsten 2013 Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x

Detaljer

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette:

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Forord Generelle opplysninger om eksamen i 1T I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Eksamensordning Eksamen varer fem timer og er todelt. Del 1 og del 2 av eksamensoppgaven

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte. Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals

Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra Av Sigbjørn Hals 1 Innhold Innledning... 3 Typeoppgave 1... 3 Oppgaven... 3 Fremgangsmåten... 4 Løsningen... 4

Detaljer

Eksamen 21.05.2012. MAT0010 Matematikk 10. årstrinn (Elever) Del 2. Matematikken i Mesopotamia. Hos frisøren. Bokmål

Eksamen 21.05.2012. MAT0010 Matematikk 10. årstrinn (Elever) Del 2. Matematikken i Mesopotamia. Hos frisøren. Bokmål Eksamen 21.05.2012 MAT0010 Matematikk 10. årstrinn (Elever) Del 2 Hos frisøren Matematikken i Mesopotamia Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal

Detaljer

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2014

Eksamen MAT 1011 Matematikk 1P Høsten 2014 Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra

Detaljer

IKT-basert eksamen i matematikk

IKT-basert eksamen i matematikk IKT-basert eksamen i matematikk Hvordan besvare Del 2 av eksamen i matematikk? Vi viser til beslutningen om innføring av revidert eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og

Detaljer

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

NYE OPPGAVETYPER OG KRAV TIL FØRING

NYE OPPGAVETYPER OG KRAV TIL FØRING CAS, Graftegner og regneark på eksamen Eksamen 1P, 2P og 2P-Y 2 timer uten hjelpemidler 3 timer med hjelpemidler Noen oppgaver i del 2 kreves løst med digitale verktøy Aktuelle verktøy er graftegner og

Detaljer