Eksamen MAT1005 Matematikk 2P-Y Høsten 2014
|
|
- Ludvik Eliassen
- 9 år siden
- Visninger:
Transkript
1 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0, ,00,0 10, ,0 10 5,0 10 3,0 5,0 4 8 ( 3) ,5 10 Oppgave (1 poeng) Prisen for en vare er satt opp med 5 %. Nå koster varen 50 kroner. Hva kostet varen før prisen ble satt opp? Vekstfaktoren er 1,5 x 1, x 1,5 x 00 Varen kostet 00 kroner før prisen ble satt opp. Oppgave 3 ( poeng) I en klasse er det 1 elever. 4 av elevene har vært på kino i løpet av den siste måneden. Vi trekker tilfeldig to elever fra klassen. Bestem sannsynligheten for at nøyaktig én av elevene har vært på kino i løpet av den siste måneden P (nøyaktig én har vært på kino)
2 Oppgave 4 (1 poeng) Regn ut Oppgave 5 (4 poeng) I 014 er det 350 elever ved en skole. Anta at det vil være 75 elever ved skolen i 09, og at antall elever avtar lineært i denne perioden. a) Bestem en modell som viser hvor mange elever A(x) det vil være ved skolen x år etter 014. En lineær modell vil være på formen A() x ax b, der a er stigningstallet og b er konstantleddet. Konstantleddet b angir elevtallet når x = 0, altså i 014. b er derfor lik 350. I 09 er x = 15. y a 5 x En lineær modell for antall elever ved skolen etter x antall år blir A(x) = -5x b) Hvor mange elever vil det være ved skolen i 04 ifølge modellen i oppgave a)? I 04 er x = 10. A (10) Ifølge denne modellen vil det være 300 elever ved skolen i 04. Ved en annen skole antar ledelsen at funksjonen B gitt ved Bx ( ) 00 1,03 x kan brukes som modell for antall elever ved skolen x år etter 014. c) Hva kan du si, uten å gjøre beregninger, om antall elever ved denne skolen ut fra modellen? I denne modellen øker antall elever med 3 % årlig, fra 00 elever i 014.
3 Oppgave 6 (3 poeng) I september 014 ble en mobilapplikasjon lastet ned 1500 ganger. Antall nedlastinger har økt med 8 % per måned det siste året, og vi antar at denne utviklingen vil fortsette. a) Sett opp et uttrykk som du kan bruke til å bestemme hvor mange ganger mobilapplikasjonen vil bli lastet ned i desember ,08 3 b) Sett opp et uttrykk som du kan bruke til å bestemme hvor mange ganger mobilapplikasjonen til sammen ble lastet ned i juli, august, september og oktober ,08 1,08 1, ,08 1,08 1,08
4 Oppgave 7 (4 poeng) Histogrammet ovenfor viser aldersfordelingen blant de besøkende på en kinoforestilling. a) Forklar at det var 30 besøkende mellom 30 og 50 år. 0 1,5 30 Vi multipliserer klassebredden med 1,5 og får da 30. Det var 30 besøkende mellom 30 og 50 år. b) Hvor mange prosent av de besøkende var mellom 0 og 10 år? Det er ,5 40 0, besøkende totalt. Ti av disse er mellom 0 og 10 år % 100 Ti prosent av de besøkende var mellom 0 og 10 år. c) Bestem gjennomsnittsalderen blant de besøkende. Gjennomsnittsalderen er summen av klassemidtpunkt multiplisert frekvens, dividert på det totale antall besøkende: , Gjennomsnittsalderen blant de besøkende var 34,5 år.
5 Oppgave 8 (3 poeng) Torbjørn og Tore padler fra Flekkefjord til Torsøy. Der går de i land og tar en pause før de padler tilbake. Ovenfor ser du en forenklet grafisk framstilling av padleturen til Torbjørn (blå graf) og padleturen til Tore (rød graf). a) Hvem kommer først til Torsøy? Hvor lenge er hver av de to guttene på Torsøy? Vi ser av den grafiske framstillingen over at Torbjørn kom først fram til Torsøy, 10 minutter før Tore. Begge drar samtidig fra øya, Torbjørn etter 30 minutter og Tore etter 0 minutter. b) Hvor fort padler Tore på vei ut til Torsøy? s 4 km 4000 m v 100 m/min t 40 min 40 min Tore padler med en fart på 100 m/min på vei ut til Torsøy. c) Hva kan du si om hjemturen ut fra grafene ovenfor? Tore padlet med en konstant fart, mens Torbjørn sin fart varierer. Torbjørn padler fortere enn Tore til å begynne med, men tar det så rolige, før han så legger inn en innspurt de siste 10 minuttene. Han legger også inn to pauser på fem minutter underveis. Tore er tilbake i Flekkefjord 10 minutter før Torbjørn.
6 Oppgave 9 (5 poeng) Antall mål per kamp Frekvens Kumulativ frekvens Oda spiller ishockey. Tabellen ovenfor viser hvor mange mål hun skåret per kamp i løpet av forrige sesong. a) Bestem gjennomsnittet og medianen. Gjennomsnitt = , Jeg setter opp alle antall mål i hver kamp i stigende rekkefølge Medianen blir gjennomsnittet av 1 og. 1 1,5 I snitt skårer Oda 1,75 mål per kamp. Medianen er 1,5. b) Bestem den kumulative frekvensen for to mål per kamp. Jeg regner ut de kumulative frekvensene i en ny kolonne i tabellen over. Den kumulative frekvensen for to mål per kamp er 11. c) Bestem den relative frekvensen for tre mål per kamp , Den relative frekvensen for tre mål per kamp er 5 %. d) Forklar hva svarene i b) og c) forteller om antall mål Oda skåret denne sesongen. I 11 av 16 kamper skårer Oda to mål eller færre. I 5 % av kampene skårer hun tre mål.
7 Oppgave 1 (3 poeng) I kroppsøvingstimen kastet Svein spyd seks ganger. Nedenfor ser du hvor langt han kastet i hvert av de seks kastene. 3,5 m 6,1 m 18,4 m,8 m 5,1 m 0,3 m a) Bestem gjennomsnittet og standardavviket. Jeg legger tallene inn i et regneark i GeoGebra, markerer dem, høyreklikker og velger Lag liste. Listen får navnet Liste1. Jeg finner så gjennomsnitt og standardavvik i CAS-verktøyet ved å bruke kommandoene Gjennomsnitt[Liste1] og Standardavvik[Liste1]. Gjennomsnittskastet er på,7 meter. Standardavviket er på,65 meter. Kjell kastet også spyd seks ganger. Standardavviket for kastene til Kjell var 3, m. b) Hva kan du ut fra dette si om kastene til Kjell sammenliknet med kastene til Svein? Kjell har større spredning i resultatene på sine seks kast sammenliknet med Svein.
8 Oppgave (5 poeng) En tankbil med gift har vært innblandet i en ulykke. Noe av giften har havnet i en innsjø. Innsjøen brukes som drikkevannskilde. Giftkonsentrasjonen f(x) mg/l i drikkevannet x døgn etter ulykken er gitt ved fx ( ) 1,4 0,87 x a) Bestem giftkonsentrasjonen i drikkevannet rett etter ulykken. Hvor mange prosent avtar giftkonsentrasjonen i drikkevannet per døgn? 0 f (0) 1,4 0,87 1,4 Vekstfaktoren er 0,87. Da avtar konsentrasjonen med 1 0,87 = 0,13 per døgn. Giftkonsentrasjonen er på 1,4 mg/l rett etter ulykken, og av tar så med 13 % per døgn. b) Hvor mye avtok giftkonsentrasjonen i drikkevannet i gjennomsnitt per døgn den første uken etter ulykken? Regner i CAS i GeoGebra: Giftkonsentrasjonen avtok i gjennomsnitt med 0,13 mg/l per døgn den første uken etter ulykken. Når giftkonsentrasjonen kommer under 0,40 mg/l, er det ikke lenger farlig å drikke vannet. c) Hvor mange døgn tar det før vannet igjen kan drikkes? Regner i CAS i GeoGebra: Det tar litt over 9 døgn før vannet igjen kan drikkes.
9 Oppgave 3 (4 poeng) Da Mads og Malin ble konfirmert, opprettet de hver sin konto i banken. Begge satte inn kroner. Renten er,5 % per år. a) Hvor mye vil Mads ha på kontoen 10 år etter konfirmasjonen dersom han lar pengene stå urørt? Hvor mange prosent har beløpet på kontoen hans til sammen økt i denne perioden? Regner i CAS i GeoGebra: Mads vil ha kroner på kontoen etter 10 år. Beløpet har da vokst med til sammen 5 %. Malin lar pengene stå urørt i 5 år. Så setter hun inn kroner til på kontoen sin. b) Hvor mye vil Malin ha på kontoen 10 år etter konfirmasjonen? Regner i CAS i GeoGebra: Malin vil ha kroner på kontoen etter 10 år.
10 Oppgave 4 (4 poeng) Ole lager figurer av runde perler. Ovenfor ser du tre figurer, F 1, F og F 3. a) Følg samme mønster, og tegn figuren F 4. b) Sett opp en modell som viser hvor mange perler det vil være i figur F n uttrykt ved n. F F 4 4 F F F ( n ) n n c) Bruk modellen til å bestemme hvor mange perler det vil være i figuren F 50. F 50 (50 ) Det vil være 604 perler i figuren F 50.
11 Oppgave 5 (4 poeng) Du skal lage et fuglebur av hønsenetting. Buret skal ha form som et rett, firkantet prisme. Buret skal bygges langs en mur slik at muren utgjør den ene veggen. Buret skal stå på bakken og trenger ikke bunn. Sett bredden av buret lik x meter og høyden lik h meter. Buret skal være fire ganger så langt som det er bredt. Se skissen ovenfor. a) Vis at overflaten O(x) m som skal lages av hønsenetting, er gitt ved O( x) 4x 6hx O( x) x h 4x h 4x x hx 4hx 4x 4x 6hx Du skal bruke 40 m hønsenetting. b) Vis at høyden h meter av buret da er gitt ved 40 4x h 6x 4x 6hx 40 6hx 40 4x 40 4x h 6x
12 c) Hvordan må du lage buret for at volumet skal bli størst mulig? 40 4x V( x) G h 4x 40x 4x 6x 3 3 Jeg tegner grafen til V(x) i GeoGebra, og finner topp- og bunnunkt ved å bruke kommandoen Ekstremalpunkt[V]. Jeg må lage buret med en bredde på 6,67 meter for at volumet skal bli størst mulig.
13 Oppgave 6 (8 poeng) Diagrammet ovenfor viser hvor mange liter melk hver person i Norge drakk i gjennomsnitt hvert år i perioden Sett x = 0 i 007, x = 1 i 008 og så videre. a) Bruk opplysningene i diagrammet til å bestemme en lineær funksjon som viser hvordan forbruket av melk har endret seg i denne perioden en andregradsfunksjon som viser hvordan forbruket av melk har endret seg i denne perioden b) Tegn grafene til funksjonene du fant i oppgave a) i et koordinatsystem for 0 x 5. a) og b): Jeg lager en tabell i regnearket i GeoGebra, markerer tallene og velger Lag liste med punkt. Listen får navnet liste 1. Jeg skriver så kommandoene RegLin[Liste1] og RegPoly[Liste1, ] i innskrivingsfeltet, og får de to modellene: f ( x) 1,44x 99,49 g( x) 0,09x 0,9x 99,05 Grafer:
14 c) Hvor mange liter melk vil hver person i Norge i gjennomsnitt drikke hvert år om ti år ifølge hver av de to funksjonene? Jeg skriver x = 10 i innskrivingsfeltet, og finner skjæringspunktet mellom denne linjen og de to grafene ved å bruke kommandoen «Skjæring mellom to objekt»: I følge den lineære modellen, vil hver person drikke 85,1 liter melk i 017. I følge andregradsmodellen, vil hver person drikke 81, liter melk i 017.
15 d) Hvor mange liter vil forbruket per person avta med per år om ti år ifølge hver av de to funksjonene? I den lineære modellen avtar forbruket per person konstant med 1,44 liter per år hele perioden. For å finne hvor mye forbruket avtar per år i andregradsmodellen, bruker vi kommandoen «Tangenter», og lager en tangent (grønn linje) i punktet (10, 81.). Stigningstallet til denne tangenten forteller oss hvor mye forbruket avtar med per år dette året. Ifølge den lineære modellen avtar forbruket per person med 1,44 liter per år i 017. Ifølge andregradsmodellen avtar forbruker per person med,65 liter per år i 017.
16 Oppgave 7 (8 poeng) I displayet på en tredemølle kan farten justeres mellom 0 km/h og 0 km/h. Det er mistanke om at båndet på tredemøllen går for fort i forhold til farten som angis i displayet (angitt fart). En gruppe P-elever får i oppgave å undersøke dette. Elevene måler at løpebåndet på tredemøllen er 3,5 meter langt. Når båndet har gått én runde, har man altså løpt 3,5 meter. For å undersøke sammenhengen mellom angitt fart og reell fart teller elevene antall runder båndet går i løpet av ett minutt ved ulike fartsangivelser. Angitt fart x km/h Antall runder i løpet av ett minutt Reell fart f(x) km/h,5 18 3,51 5, , ,0 95 0,0 14 a) Skriv av tabellen ovenfor i besvarelsen din, gjør beregninger, og fyll inn verdiene for reell fart i kolonnen til høyre. Angitt fart x km/h Antall runder i løpet av ett minutt Antall runder i løpet av en time, , , , , Reell fart f(x) km/h ,5 3, ,5 6, ,5 1, ,5 18, ,5 4, Elevene vil lage en modell som viser den reelle farten f(x) km/h som funksjon av den angitte farten x km/h. b) Bestem den lineære funksjonen som passer best som modell for denne sammenhengen. Bestem den potensfunksjonen som passer best som modell for denne sammenhengen. Hvilken av disse to modellene mener du elevene bør velge? Begrunn svaret.
17 Jeg lager en tabell i regnearket i GeoGebra, markerer tallene og velger Lag liste med punkt. Listen får navnet liste 1. Jeg skriver så kommandoene RegLin[Liste1] og RegPot[Liste1, ] i innskrivingsfeltet. Den lineære funksjonen: f( x) 1,18x 0,79 Potensfunksjonen: g( x) 1,5 x 0,9
18 Begge modellene passer godt med tallene, men jeg mener elevene bør velge potensfunksjonen, ettersom den starter i 0 og passer veldig godt med tallene vi har. Henrik vil løpe i 15 km/h. c) Hvilken fart bør han angi i displayet på tredemøllen ifølge modellen du valgte i oppgave b)? Jeg tegner linja y = 15, og finner skjæringspunktet mellom denne og grafen til potensfunksjonen ved å bruke kommandoen «skjæring mellom to objekt». Hvis Henrik vil løpe i 15 km/h må han angi displayet på 11,9 km/h.
19 Elevene vil lage et oppslag som skal henge ved siden av tredemøllen, slik at de som løper, kan finne den reelle farten. d) Lag et forslag til oppslag. Undersøkelser har vist at farten som er angitt på displayet er lavere enn den reelle farten. Grafen under viser sammenhengen mellom angitt fart og reell fart.
20 Bildeliste Kilder for bilder, tegninger osv.: Melk: ( ) Andre bilder, tegninger og grafiske framstillinger: Utdanningsdirektoratet Løsninger: Roar Edland-Hansen, NDLA matematikk.
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00 Oppgave (1 poeng) Prisen for en vare er satt opp med 5 %. Nå koster varen 50 kroner. Hva kostet
DetaljerEksamen MAT1015 Matematikk 2P Høsten 2014
Eksamen MAT1015 Matematikk 2P Høsten 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,002 Oppgave 2 (1 poeng) Prisen for en vare er satt opp med 25 %. Nå koster varen
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen MAT1015 Matematikk 2P Hausten 2014
Eksamen MAT1015 Matematikk 2P Hausten 2014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 0,0003 500000000 0,002 Oppgåve 2 (1 poeng) Prisen for ei vare er sett opp med 25 %. No kostar varen
DetaljerEksamen MAT1005 Matematikk 2P-Y Hausten 2014
Eksamen MAT1005 Matematikk P-Y Hausten 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgåve (1 poeng) Prisen
DetaljerEksamen 26.11.2014. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 26.11.2014 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2014
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet
DetaljerEksamen MAT1005 Matematikk 2P-Y Høsten 2013
Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk P-Y Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2014
Eksamen MAT1015 Matematikk 2P Va ren 2014 Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet,
DetaljerEksamen 2P MAT1015 Høsten 2012 Løsning
Eksamen 2P MAT1015 Høsten 2012 Oppgave 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg
DetaljerEksamen MAT 1015 Matematikk 2P Høsten 2015
Eksamen MAT 1015 Matematikk P Høsten 015 Tid: timer Hjelpemiddel: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (1 poeng) Prisen på en vare er satt ned med 30 %. I dag
Detaljer2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
Detaljer2P-Y eksamen våren 2016 løsningsforslag
2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03
DetaljerEksamen MAT 1011 Matematikk 1P Va ren 2015
Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk 2P Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Lotte har spurt ti medelever om hvor mange ganger de handler i kantina i løpet av en uke. Resultatene ser du nedenfor. 1 5 1 3 3 1 4 2 4 0 Bestem medianen, gjennomsnittet,
Detaljer2P-Y eksamen våren 2018 løsningsforslag
2P-Y eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
Detaljer2P eksamen våren 2018 løsningsforslag
2P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.
Detaljer2P eksamen høsten 2017 Løsningsforslag
2P eksamen høsten 2017 Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen
Detaljer2P-Y eksamen høsten 2017 Løsning
2P-Y eksamen høsten 2017 Løsning Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved
DetaljerEksamen våren 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =
DetaljerEksamen Matematikk 2P-Y Høsten 2015
Eksamen Matematikk 2P-Y Høsten 2015 Tid: 2 timer Hjelpemiddel: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (1 poeng) Prisen på en vare er satt ned med 30 %. I dag koster
Detaljer2P eksamen våren 2017 løsningsforslag
2P eksamen våren 2017 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) I en klasse er det 16 elever. Tabellen nedenfor
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2014
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
DetaljerEksamen 2P MAT1015 Høsten 2012
Eksamen 2P MAT1015 Høsten 2012 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg inn i
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert
DetaljerLøsningsforslag for 2P våren 2015
Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65
DetaljerEksamen Matematikk 2P Høsten 2015
Eksamen Matematikk 2P Høsten 2015 Tid: 2 timer Hjelpemiddel: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (1 poeng) Prisen på en vare er satt ned med 30 %. I dag koster
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65
DetaljerEksamen MAT1005 Matematikk 2P-Y Høsten 2013
Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv tallene nedenfor på standardform 26,3 millioner 16,5 10 8 Oppgave 2 (1 poeng) Regn ut og skriv svaret som desimaltall 8 3,5 10 7,0 10 0,5 10 5 6 Oppgave
DetaljerTest, 5 Funksjoner (1P)
Test, 5 Funksjoner (1P) 5.1 Funksjonsbegrepet 1) f ( x) = 16x + 0 f (0) = 0 16 0 ) f ( x) = 4x 6 f ( ) = 14 6 3) f er en funksjon av x dersom hver verdi av x gir nøyaktig en verdi av f. Riktig Galt 4)
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
DetaljerEksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
Detaljer2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
DetaljerEksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
Detaljer2P-Y eksamen våren 2017 løsningsforslag
2P-Y eksamen våren 2017 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) I en klasse er det 16 elever. Tabellen nedenfor
DetaljerEksamen 2P, Våren 2011
Eksamen 2P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 36200 3,62
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerEksamen S1 høsten 2014 løsning
Eksamen S1 høsten 014 løsning Tid: timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) x 10 xx 5 x x 10 x 5x 7x 10 0 7 49 40
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet og medianen for
Detaljer2P eksamen våren 2016
2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C
DetaljerEksamen Matematikk 2P-Y Høsten 2015
Eksamen Matematikk 2P-Y Høsten 2015 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (1 poeng) Prisen på en vare er satt ned med 30 %. I dag koster
DetaljerTallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre grunntall.
Oppgave 4 (1 poeng) Skriv så enkelt som mulig a a 3 0 a a 3 2 5 Oppgave 5 (1 poeng) Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2015
Eksamen MAT 1011 Matematikk 1P Høsten 015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt,4 g per dag. a) Hvor mange gram salt kan
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet, medianen og
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2012
Eksamen MAT 1011 Matematikk 1P Høsten 2012 Oppgave 1 (2 poeng) En dag har butikk A følgende tilbud: Du skal kjøpe 1,5 kg druer. I hvilken butikk lønner det seg å handle? Butikk A: 1,5 kg tilsvarer 3 beger,
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen
DetaljerEksamen høsten 2017 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med entimetermål og vinkelmåler Oppgave 1 a Antall elever i klassen: 3 + 12 + 25 + 12 + 6 + 2 = 60 3 + 12 15 = = 0, 25 = 25 % 60
Detaljer2P eksamen høsten 2017
2P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved en skole ved
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2014
Eksamen MAT1015 Matematikk 2P Va ren 2014 Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet,
Detaljer1P eksamen våren 2016 løsningsforslag
1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti
Detaljer1T eksamen våren 2018
1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs
DetaljerNoen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.
Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen
DetaljerBokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer.
Eksamen 02.12.2008 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5
DetaljerLøsningsforslag eksamen matematikk 2P 26. mai 2014. Del 1. Setter tallene i stigende rekkefølge for å lettere finne medianen og variasjonsbredden
Oppgave 1 Del 1 Gjennomsnitt= 10+5+22+28+2+8+50+15+40+10 = 190 10 10 =19 Astrid plukket i gjennomsnitt 19 snegler i hagen hver kveld Setter tallene i stigende rekkefølge for å lettere finne medianen og
DetaljerEksamen MAT1015 Matematikk 2P Va ren 2014
Eksamen MAT1015 Matematikk 2P Va ren 2014 Oppgåve 1 (3 poeng) Nedanfor ser du kor mange sniglar Astrid har plukka i hagen kvar kveld dei ti siste kveldane. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet,
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
DetaljerOppgaver. Innhold. Funksjoner i praksis Vg2P
Oppgaver Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 10 Modul 3: Tredjegradsfunksjoner... 1 Modul 4: Potensfunksjoner og rotfunksjoner... 14 Modul 5: Eksponentialfunksjoner...
DetaljerEksempelsett 2P, Høsten 2010
Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.
Detaljer2P eksamen våren 2017
2P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) I en klasse er det 16 elever. Tabellen nedenfor viser hvor
DetaljerEksamen S1 høsten 2015 løsning
Eksamen S1 høsten 015 løsning Oppgave 1 (5 poeng) Løs likningene nedenfor a) x 3x 0 x(x3) 0 x 0 x 3 0 3 x 0 x b) 3x1 17 4 x lg 3 1 34 lg 3 x1 34 3x 1 lg 34lg 3x 1 lg lg 34 lg lg 3x 1 34 3 x 33 3 3 x 11
DetaljerEksamen MAT1005 matematikk 2P-Y va ren 2015
Eksamen MAT1005 matematikk P-Y va ren 015 Oppgåve 1 ( poeng) Dag Temperatur Måndag 4 C Tysdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Laurdag Tabellen over viser korleis temperaturen har variert i løpet
DetaljerLøsninger. Innhold. Funksjoner Vg1P
Løsninger Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 9 Modul 3. Mer om lineær vekst... 16 Modul 4. Andregradsfunksjoner... 5 Modul 5. Andre funksjoner... 30 Polynomfunksjoner...
DetaljerS1 eksamen våren 2017 løsningsforslag
S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder ) 0,000 533 b) Regn ut 1) 8 ) 3 3 c) I en klasse er det 10 elever. På en matematikkprøve fikk elevene karakterene
DetaljerEksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Prisen på en vare er satt ned med 30 %. I dag koster varen 280 kroner. Hvor mye kostet varen før prisen ble satt ned? Oppgave 2 (1 poeng) Regn ut og skriv svaret
DetaljerS1 eksamen høsten 2016 løsningsforslag
S1 eksamen høsten 016 løsningsforslag Oppgave 1 (4 poeng) Løs likningene a) x 1 3 x 5 3 4 6 Fellesnevner blir 1 x1 3x 5 1 1 1 3 4 6 (x 1)4 (3x )3 5 8x 4 9x 6 10 x 10 6 4 0 x 0 b) lg(x 6) 10 10 lg(x6) x
DetaljerEksamen MAT1005 Matematikk 2P-Y Va ren 2014
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgåve 1 (2 poeng) Nedanfor ser du kor mange sniglar Astrid har plukka i hagen kvar kveld dei ti siste kveldane. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet
DetaljerS1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
DetaljerEksamen 2P, Høsten 2011
Eksamen P, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder 9 11
DetaljerEksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall observasjoner er et partall, slik som her, er medianen gjennomsnittet
DetaljerEksamen S2 høsten 2014 løsning
Eksamen S høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f 3ln 1 3 f 3 1 b) g ln3 1 ln3 g 1
Detaljer1P, Funksjoner løsning
1P, Funksjoner løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene. j : y
Detaljer1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2015
Eksamen MAT 1011 Matematikk 1P Høsten 2015 Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt
DetaljerDEL 1 Uten hjelpemidler
Eksamen MAT1013 Matematikk 1T Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7,5 10 4,0 10 12 4 Oppgave 2 (4 poeng) Siv har fire blå og seks svarte bukser
DetaljerSIGBJØRN HALS TORE OLDERVOLL. GeoGebra 6 for Sinus 2PY
SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 2PY Sinus 2PY ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert
DetaljerEksamen 2P MAT1015 Vår 2012 Løsning
Eksamen 2P MAT1015 Vår 2012 Oppgave 1 (14 poeng) a) 20 elever blir spurt om hvor mange datamaskiner de har hjemme. Se tabellen ovenfor. Finn variasjonsbredden, typetallet, medianen og gjennomsnittet. Variasjonsbredden
Detaljer1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
DetaljerEksamen R1, Våren 2015
Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Tenk deg at du har et spann med 8 L maling. Du vil helle malingen over i mindre bokser. I hver boks er det plass til 2 3 L. Hvor mange bokser trenger du? Oppgave
DetaljerEksamen S2 va ren 2015 løsning
Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerLøsningsforslag. Innhold. Funksjoner i praksis Vg2P
Løsningsforslag Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 1 Modul 3: Tredjegradsfunksjoner... 6 Modul 4: Potensfunksjoner og rotfunksjoner... 3 Modul 5: Eksponentialfunksjoner...
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.
Detaljer1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
DetaljerR1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DetaljerEksamen MAT1005 matematikk 2P-Y va ren 2015
Eksamen MAT1005 matematikk 2P-Y va ren 2015 Oppgåve 1 (2 poeng) Dag Temperatur Måndag 4 C Tysdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Laurdag Tabellen over viser korleis temperaturen har variert i løpet
Detaljer