Eksempelsett 2P, Høsten 2010

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Eksempelsett 2P, Høsten 2010"

Transkript

1 Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger. De veier begeret flere ganger mens de fyller på etanolen. Resultatene plotter de som punkter i et koordinatsystem. Se ovenfor. a) Tegn av koordinatsystemet med punktene i besvarelsen din. Tegn en rett linje som passer godt med punktene i koordinatsystemet. Finn funksjonsuttrykket for linjen. Vi tegner en rett linje. Linja skjærer y - aksen i punktet 0,200. Stigningstallet er ca. 80. (Vi ser at linja tilnærmet går gjennom punktet 5,600. Funksjonsuttrykket er da gitt ved y 80x

2 b) Omtrent hvor mye veier begeret, og omtrent hvor mye veier én liter etanol? Konstantleddet tilsvarer 200 g. Stigningstallet tilsvarer 80 g/dl = 800 g/l. Begeret veier ca. 200 g og én liter etanol veier ca. 800 g. Oppgave 2 (12 poeng) a) Finn gjennomsnittet og medianen for tallene Gjennomsnittet er Vi sorterer tallene i stigende rekkefølge Medianen er 5. b) 1) Regn ut ) Regn ut og skriv svaret på standardform ,4 10 2, ,4 10 2, ,8 3, , ,6 10 c) 1) Skriv i titallsystemet

3 2) Skriv tallet 17 i totallsystemet d) En bil er i dag verdt kroner. Bilens verdi har avtatt med 10 % det siste året. Vi antar at verdien også vil avta med 10 % neste år Vekstfaktoren blir ) Hvor mye vil bilen være verdt om ett år? Om et år vil bilen være verdt kroner. 2) Hvor mye var bilen verdt for ett år siden? : Bilen var verdt kroner for ett år siden. 11 e) Dersom en person får i seg mer enn 3,5 10 g av et giftig stoff per kg kroppsvekt, kan det gi alvorlige helseskader. Anta at en person som veier 70 kg, har fått i seg 1,2 10 g av stoffet. Kan inntaket gi alvorlige helseskader? < 1,2 10 1, , Dette viser at giftmengden er mindre enn grenseverdien. 3

4 Oppgave 3 (8 poeng) Sommeren 2007 var 175 skoleelever på sommerleir. Etter leiren ble de spurt om hvor mye penger de hadde brukt på brus, is og godteri. Resultatene fra undersøkelsen er vist i tabellen nedenfor. Penger brukt (kroner) Klassemidtpunkt m Frekvens Hyppighet f Relativ frekvens s Produkt ms 0, ,12 2,40 40, ) 24,0 80, ) 28,0 120, ,12 16,8 160, ) 0,08 14,4 Totalt 175 1,00 85,6 a) Hvilke tall skal stå i feltene som ikke er fylt ut, og som er merket 1), 2) og 3)? 1) ) 70 70: : , : : ) 1 0,08 0,12 0,12 0,4 0,28 b) Framstill dataene over pengeforbruket i et egnet diagram. 4

5 c) Hvor mye penger brukte hver av de 175 elevene i gjennomsnitt? Vi ser av tabellen at hver av de 175 elevene brukte 85,6 kroner i gjennomsnitt. Kristian påstår at han med én gang kan si at for dette datamaterialet er medianen lavere enn gjennomsnittet. d) Forklar hvordan Kristian kan se dette direkte ut fra tabellen ovenfor. Kristian kan se direkte ut fra tabellen ovenfor at medianen lavere enn gjennomsnittet fordi over halvparten ( = 91) av elevene bruker mindre enn 80 kroner. Del 2 Tid: 3 timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 4 (6 poeng) Noen elever i Oslo ville undersøke hvor mange personer det var i hver bil som kjørte inn til sentrum om morgenen. De telte antall personer i 30 biler og fikk følgende resultat:

6 Vi bruker regneark for å løse denne oppgaven. Vi legger inn verdiene fra Oslo og fra den andre byen, og finner gjennomsnitt, median og standardavvik. Formlene i cellene B33 C35: a) Finn medianen og gjennomsnittet for dette datamaterialet. Medianen er 2. Gjennomsnittet er 2,3. (Se regnearket ovenfor.) 6

7 b) Framstill datamaterialet i et sektordiagram. Hvor stor del av bilene har mer enn én passasjer? Vi bruker regneark. Vi lager et sektordiagram ut fra verdiene i kolonne B, og bruker kolonne A som kategorinavn for dataetiketter. Vi velger å vise prosent og antall. 100% 40% 60% Det er mer enn én passasjer i 60 % av bilene. Elever i en annen by gjennomførte en tilsvarende undersøkelse. De fikk følgende resultat:

8 c) Finn standardavviket både for dette datamaterialet og for datamaterialet fra Oslo. Det ene standardavviket er større enn det andre. Per påstår at han kunne sett dette direkte ut fra resultatene fra undersøkelsene. Hvordan kunne han klart det? Standardavvik, Oslo er 1,35. Standardavvik, annen by er 0,94. (Se regnearket ovenfor.) Per kan se at spredingen i datamaterialet fra Oslo er større. Oslo: 1 passasjer: 11 biler 4 passasjerer: 6 biler 5 passasjerer: 2 biler Resten av bilene har 2 eller 3 passasjerer. Annen by: 1 passasjer: 9 biler 4 passasjerer: 3 biler Resten av bilene har 2 eller 3 passasjerer. Oppgave 5 (10 poeng) Marit vil låne kroner i banken til 9,5 % rente per år. Hun lurer på hvordan lånet vil vokse dersom hun verken betaler renter eller avdrag. 8

9 a) Hvor stort vil lånet være etter 10 år? Vi regner først ut vekstfaktor. Lånebeløpet vil være på kroner etter 10 år. b) Forklar at størrelsen på lånet etter x år kan uttrykkes ved funksjonen f gitt ved f x ,095 x Startbeløpet er kroner. Dette beløpet øker med 9,5 % per år. Det vil si at vekstfaktoren er 1,095. Beløpet multipliseres med vekstfaktoren for hvert nytt år det skal forrentes. Etter 1 år: ,095 Etter 2 år: ,095 1, ,095 Etter 3 år: ,095 1, ,095 Etter x år: ,095 x

10 c) Tegn grafen til f. Bruk x - verdier fra og med 0 til og med 10. d) Hvor lang tid går det før lånet er dobbelt så stort? Lånet blir dobbelt så stort i løpet av det åttende året. (Se koordinatsystemet ovenfor.) Espen tok opp et lån for fem år siden. Han har verken betalt renter eller avdrag. I dag er lånet dobbelt så stort som det var opprinnelig. Vi regner at renten i prosent per år har vært den samme hele denne perioden. e) Hvor stor har renten i prosent per år vært for dette lånet? Vi antar at Espen lånte kroner. Lånet har da vokst til kroner i løpet av 5 år. 5 p Vi løser likningen i wxmaxima for å finne prosenten, p. 100 Renten har vært på ca. 14,9 %. 10

11 Oppgave 6 (9 poeng) Sted i universet Jorda Saturn Pluto Sentrum av Melkeveien Avstand til sola (meter) 1, , , ,20 10 Tabellen ovenfor viser avstanden fra noen steder i universet til sola. a) Et fly har farten 250 m/s. Hvor mange år ville dette flyet brukt på en reise fra jorda til sola? , , sekunder 6,0 10 sekunder timer timer år 19år b) Tenk deg at du lager en modell der avstanden fra jorda til sola er 40 cm. Finn avstanden til sola fra Saturn, Pluto og sentrum av Melkeveien i denne modellen. Vurder om ett eller flere av de svarene du får, bør skrives på standardform. 0,40 x 1, , ,40 1,43 10 x 11 1,50 10 x 3,8 12 Avstanden til Sola fra Saturn ville være 3,8 m. 0,40 x 1, , ,40 5,96 10 x 11 1,50 10 x 15,9 12 Avstanden til Sola fra Pluto ville være 15,9 m. 11

12 0,40 x 1, , ,40 1,2 10 x 11 1, x 3,2 10 m 20 Avstanden fra Sola til sentrum av melkeveien ville være 3,2 10 m. 8 Fra oppgave b) vil du se at avstanden fra sola til sentrum av Melkeveien blir stor i modellen. Du bestemmer deg derfor for å lage modellen mindre. I den nye modellen skal avstanden fra sola til Melkeveiens sentrum være 5,0 m. c) Hvor stor blir avstanden fra sola til jorda i den nye modellen? Skriv svaret på standardform. x 5,0 1, , ,0 1,5 10 x 20 1,2 10 x 6, Avstanden fra Sola til jorda blir 6,25 10 m. 12

13 Oppgave 7 (8 poeng) Hvis du skal legge opp et effektivt treningsprogram, er det lurt å kjenne til makspulsen din (den høyeste hjertefrekvensen du kan oppnå). Makspuls er avhengig av alder. Du kan finne en tilnærmet verdi for makspulsen din ved å regne ut 220 minus alderen din. a) Finn et funksjonsuttrykk fx ( ) som viser denne sammenhengen mellom alderen til en person og makspulsen til personen. Vi setter alderen lik x. Makspulsen er da gitt ved f x 220 x Den mest nøyaktige måten å finne makspulsen din på er å gjennomføre en fysisk test der du presser deg maksimalt for å se hvor høy puls det er mulig å oppnå. Fem personer med ulik alder har gjennomført en slik test. Resultatene ser du i tabellen nedenfor. Alder, x år Makspuls

14 b) Bruk regresjon til å vise at funksjonen g gitt ved g( x) 0,67x 207, der x er alder, er en matematisk modell som viser sammenhengen mellom alder og makspuls dersom man tar utgangspunkt i datamaterialet ovenfor. Vi bruker GeoGebra, legger punktene inn i en liste, og velger RegLin[liste1]. Vi får g( x) 0,67x

15 c) Tegn grafene til f og g i samme koordinatsystem. Velg x - verdier fra og med 18 til og med

16 De to modellene f og g gir litt ulike verdier for makspuls. d) For hvilken aldersgruppe er forskjellen mellom verdien de to modellene gir for makspuls mindre enn 3? Vi tegner grafen til funksjonen h gitt ved h x f x g x. Vi ser at grafen til h skjærer linja y 3 i 30,73, 3 og linja y 3 i 48,91, 3. Forskjellen mellom verdiene de to modellene gir for makspuls er mindre enn tre for aldersgruppen år. 16

17 Oppgave 8 (6 poeng) På første stolrad i en teatersal er det 10 plasser. På andre rad er det 12 plasser, og på tredje rad er det 14 plasser. Se figuren nedenfor. Slik fortsetter det å øke med to plasser for hver rad bakover i salen. a) 1) Hvor mange plasser er det på rad 6 og på rad 10? Plasser på rad 6: Plasser på rad 10: ) Forklar at det på rad n vil være (8 2 n ) plasser. På rad n vil være hver rad. (8 2 n ) plasser fordi vi starter med 8 plasser og legger til to plasser for På første rad er billettprisen 350 kroner. På rad nummer to er prisen 340 kroner. Slik avtar prisen med 10 kroner for hver rad bakover i salen. b) Forklar at billettene på rad n til sammen koster (8 2 n) ( n ) kroner. Billettene på rad n koster til sammen (8 2 n) ( n ) kroner fordi det på rad n til sammen er (8 2 n) plasser og dette antallet må multipliseres med prisen for hver plass. Prisen for hver plass er 350 kroner på rad 1, dvs På rad 2 er den 340, eller På rad 3 er den 330, eller På rad n er den n 17

18 c) På hvilken rad koster billettene mest til sammen? Vi tegner grafen til K x (8 2 x) ( x) og finner toppunktet ved kommandoen Ekstremalpunkt[K]. Billetttene koster til sammen mest på rad 16. (Se koordinatsystemet ovenfor.) 18

19 Formler som skal være kjent ved Del 1 av eksamen i MAT1015 Matematikk 2P (Formelarket kan ikke brukes på Del 1 av eksamen.) p q p q a a a p p p p a a b a b p q a q 0 a a 1 Potenser p q p q a a p 1 a p p a p a a p b b Standardform n a k 10 1 k 10 og n er et helttall Plassverdisystemer Enkle omregninger Vekstfaktor p p Statistikk Gjennomsnitt Median Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1. Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1. Det forutsettes at en behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang. 19

20 Bildeliste Trafikk Foto: Erik Johansen/Scanpix Penger Bilde: Utdanningsdirektoratet Tredemølle Foto: Science Photo Library/Scanpix 20

Eksempeloppgåve/ Eksempeloppgave September 2010

Eksempeloppgåve/ Eksempeloppgave September 2010 Eksempeloppgåve/ Eksempeloppgave September 2010 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om

Detaljer

Eksamen 2P, Høsten 2011

Eksamen 2P, Høsten 2011 Eksamen P, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder 9 11

Detaljer

DEL 1. a) Grete setter 10 000 kr i banken. Hun får 5 % rente (per år). Grete lar pengene stå urørt i banken i 5 år.

DEL 1. a) Grete setter 10 000 kr i banken. Hun får 5 % rente (per år). Grete lar pengene stå urørt i banken i 5 år. DEL 1 Oppgave 1 a) Grete setter 10 000 kr i banken. Hun får % rente (per år). Grete lar pengene stå urørt i banken i år. 1) Hvor mange penger har Grete i banken etter ett år? Grete vil prøve å regne ut

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon.

Bokmål. Eksamensinformasjon. Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. Eksamen 19.05.2009 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) Diagrammet nedenfor viser hvordan hovedindeksen på Oslo Børs endret seg høsten 2008. Kilde: ssb.no 1) Nårvarindeksenhøyest,ognårvardenlavest? 2) Hvormyeendretindeksensegigjennomsnittperdagiperiodenfra1.septembertil

Detaljer

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 2007 MAT1003 Matematikk 2P Fellesfag Nynorsk/Bokmål DEL 1 Oppgave 1 63023 a) Gjør overslag: 101 699 b) Tallet 11011 er skrevet i totallssystemet. Gjør det om til

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et skoleår. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1

Detaljer

Eksamen 2P, Våren 2011

Eksamen 2P, Våren 2011 Eksamen 2P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 36200 3,62

Detaljer

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 3.11.011 MAT1015 Matematikk P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Løsning eksamen 2P våren 2010

Løsning eksamen 2P våren 2010 Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) AvstandeniluftlinjemellomOsloogBergenerca.300km.Brukkartetnedenfortilåanslå avstanden i luftlinje mellom Oslo og Tromsø. b) Skrivsåenkeltsommulig 1) 8 4 2 2 2 5 2) 6

Detaljer

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1017 Matematikk 2T Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

2P eksamen våren 2016

2P eksamen våren 2016 2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Eksamen 19.05.2009. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål

Eksamen 19.05.2009. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål Eksamen 19.05.2009 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Eksamen 02.12.2008. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål

Eksamen 02.12.2008. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål Eksamen 02.12.2008 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring:

Detaljer

Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre grunntall.

Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre grunntall. Oppgave 4 (1 poeng) Skriv så enkelt som mulig a a 3 0 a a 3 2 5 Oppgave 5 (1 poeng) Tallsystemet vi vanligvis bruker, er et plassverdisystem med grunntall 10. Det finnes også plassverdisystemer med andre

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 19.05.2009. MAT1003 Matematikk 2P. Nynorsk/Bokmål

Eksamen 19.05.2009. MAT1003 Matematikk 2P. Nynorsk/Bokmål Eksamen 19.05.2009 MAT1003 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Eksamen 23.11.2011. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Tall i arbeid Påbygging terminprøve våren 2012

Tall i arbeid Påbygging terminprøve våren 2012 Tall i areid Påygging terminprøve våren 2012 DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Skriv tallene på standardform. 1 0,000

Detaljer

Eksamen 1P, Våren 2011

Eksamen 1P, Våren 2011 Eksamen 1P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Markus har vært på Island. I banken betalte

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av skoleåret. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1 1

Detaljer

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte. Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Eksamen S1, Høsten 2011

Eksamen S1, Høsten 2011 Eksamen S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonen f f f 6 b) Løs likningene 6 4 ) 6

Detaljer

Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007. eksamensoppgaver.org

Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007. eksamensoppgaver.org Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og det er lastet

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene P kapittel Modellering Løsninger til innlæringsoppgavene.1 a c d e y = 4x+ 1 Stigningstallet er 4. Konstantleddet er 1. Linja skjærer altså y-aksen i punktet (0,1). y = 3x 4 Stigningstallet er 3. Konstantleddet

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder ) 0,000 533 b) Regn ut 1) 8 ) 3 3 c) I en klasse er det 10 elever. På en matematikkprøve fikk elevene karakterene

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 2) 0,000 642 3) 53 millioner 4) 0,034 10 2 b) Tegn av tabellen nedenfor i besvarelsen din og fyll inn det som mangler. Prosentvis

Detaljer

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Kapittel 4. Statistikk

Kapittel 4. Statistikk Kapittel 4. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 2007 MAT100 Matematikk Yrkesfag 2P-Y Fellesfag - påbygging Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2:

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem

Detaljer

Eksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Eksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Eksamensveiledning for elever og privatister i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for elever og privatister. Den tar utgangspunkt

Detaljer

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Eksamen 1P, Høsten 2011

Eksamen 1P, Høsten 2011 Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl

Detaljer

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette:

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Forord Generelle opplysninger om eksamen i 1T I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Eksamensordning Eksamen varer fem timer og er todelt. Del 1 og del 2 av eksamensoppgaven

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Øveprøve November 2016

Øveprøve November 2016 Øveprøve November 2016 Prøvetid: Inntil 5 klokketimer. Prøven består av to delprøver: Delprøve 1 gjennomføres uten andre hjelpemidler enn vanlige skrivesaker. Du skal skrive svarene rett inn i oppgaveheftet.

Detaljer

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Våren 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 y (kroner) x (antall stoler) a) Grafen ovenfor viser hva det koster for en fabrikk for å produsere x stoler. Hva blir kostnadene per stol dersom bedriften produserer 50

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:

Detaljer

Eksempeloppgave. Fagkode: MAT1001 Fagnavn: Matematikk 1P-Y. Side 1

Eksempeloppgave. Fagkode: MAT1001 Fagnavn: Matematikk 1P-Y. Side 1 Eksempeloppgave Fagkode: MAT1001 Fagnavn: Matematikk 1P-Y Side 1 Informasjon Eksamenstid: Hjelpemidler: Antall sider: 14 Antall vedlegg: Kilder: 4 timer Del 1: 1,5 timer Del 2: 2,5 timer Del 1: Skrivesaker,

Detaljer

Løsning eksamen 2P våren 2008

Løsning eksamen 2P våren 2008 Løsning eksamen 2P våren 2008 Del 2. Oppgaver løst med pc og enkel lommeregner. Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

Eksempeloppgave 2 2009

Eksempeloppgave 2 2009 Eksempeloppgave 2 2009 MAT0010 Matematikk Elever (10. årstrinn) Eksamen våren 2009 Del 1 Bilde: Utdanningsdirektoratet Skole: Elevnummer: Del 1 + ark fra del 2 Bokmål Bokmål Eksamensinformasjon til Del

Detaljer

Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) Skrivtallene32000000og0,000678påstandardform. b) Regnut 4 2 4 3 (3) c) Tegnpunktene 2, 1 og 3, 4 i et koordinatsystem. Finn stigningstallet til den rette linjen som

Detaljer

Nynorsk. Eksamensinformasjon

Nynorsk. Eksamensinformasjon Eksamen 27.05.2008 MAT1005 Matematikk Påbygging 2P-Y Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg:

Detaljer

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000 GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15

Detaljer

Eksamen 19.05.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 19.05.2010 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Hjelpemidler

Detaljer

Løsning eksamen 2P våren 2013

Løsning eksamen 2P våren 2013 Løsning eksamen 2P våren 2013 Del 1 Oppgave 1 a) Vi ordner tallene etter størrelse. 1, 1, 1, 2, 2, 3, 3, 4, 5, 5 Da det er 10 tall her, er median gjennomsnittet av tall nr. 5 og tall nr. 6. Medianen er

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte:

Detaljer

Eksamen REA3026 S1, Høsten 2010

Eksamen REA3026 S1, Høsten 2010 Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 2007 MAT1003 Matematikk 2P Fellesfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Vedlegg som

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen 20.05.2011. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 20.05.2011. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 0.05.011 MAT0010 Matematikk 10. årstrinn (Elever) Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

Eksamen 26.11.2014. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 26.11.2014. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 26.11.2014 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Eksamen 28.11.2012. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål

Eksamen 28.11.2012. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål Eksamen 28.11.2012 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Eksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål

Eksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål Eksamen 25.05.2012 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2014

Eksamen MAT 1011 Matematikk 1P Høsten 2014 Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra

Detaljer

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene

Detaljer

Eksamen 27.05.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 27.05.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 27.05.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Eksamen 13.05.2009. MAT0010 Matematikk Elever (10. årstrinn) Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 13.05.2009. MAT0010 Matematikk Elever (10. årstrinn) Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 13.05.2009 MAT0010 Matematikk Elever (10. årstrinn) Del 1 Skole: Bokmål Kandidatnr: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Fremgangsmåte og forklaring:

Detaljer

DEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig

DEL 1. Uten hjelpemidler. 1) Deriver funksjonen. b) Skriv så enkelt som mulig. d) Skriv så enkelt som mulig DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Vi har funksjonen 3 f( x) = x 5 x+ 1) Deriver funksjonen. ) Bestem f (1). Hva forteller svaret deg om grafen til f? b) Skriv så enkelt som mulig 3 x x+ 4

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet, medianen og

Detaljer