Matematikk 2P. Odd Heir Ørnulf Borgan John Engeseth Per Arne Skrede BOKMÅL

Størrelse: px
Begynne med side:

Download "Matematikk 2P. Odd Heir Ørnulf Borgan John Engeseth Per Arne Skrede BOKMÅL"

Transkript

1 Matematikk P Odd Heir Ørnulf Borgan John Engeseth Per Arne Skrede BOKMÅL

2 Matematikk P dekker målene i læreplanen av 005 for Matematikk VgP i studieforberedende utdanningsprogram. H. Aschehoug & Co. (W. Nygaard) 010. utgave / 1. opplag 010 Det må ikke kopieres fra denne boka i strid med åndsverkloven eller i strid med avtaler om kopiering inngått med Kopinor, interesseorgan for rettighetshavere til åndsverk. Kopiering i strid med lov eller avtale kan føre til erstatningsansvar og inndragning, og kan straffes med bøter eller fengsel. Redaktør: Dag-Erik Møller Grafisk formgivning og omslag: Mona Dahl og Marit Heggenhougen Ombrekning: Type-it AS Bilderedaktør: Nina Hovda Johannesen Tekniske illustrasjoner: Framnes Tekst og Bilde AS Grunnskrift: Sabon 10,8/1 Papir: 100 g Multiart matt 0,9 Trykk og innbinding: AIT Otta AS ISBN Bildeliste, se side 08

3 Guide til Matematikk P Aktivitet i starten av hvert kapittel: Læringsmål i margen ved starten av hvert underkapittel: AKTIVITET: Ren magi? Skriv ned et tilfeldig tresifret tall abc der a er større enn b og b er større enn c. Bytt om rekkefølgen på sifrene i tallet og finn differansen mellom det første og det siste tallet. Bytt om rekkefølgen på sifrene i svaret og finn summen av de to tallene. I. skal du lære å lage en lineær modell ved å bruke digitalt verktøy.. LINEÆR REGRESJON På øyemål er det ikke lett å avgjøre hvilken linje som passer best til punkter i et koordinatsystem. Nå skal vi se på en metode for å avgjøre det. Metoden kaller vi lineær regresjon. Linja kaller vi regresjonslinje. Teori: Åttetallsystemet 8 - plass 8 - plass plass plass I åttetallsystemet forteller det bakerste sifferet antall (antall enere), det nest bakerste sifferet antall 8 1 (antall åttere), osv. Vi setter på indeks 8 når tallet er skrevet i åttetallsystemet. Tallet 8 er altså skrevet i åttetallsystemet. Sifferet står på siste plass og forteller oss at tallet har enere. Sifferet står på nest siste plass forteller oss at tallet har åttere. 8 0 Eksempler: Eksempel 1 Tolv alligatorer og en potensfunksjon Tabellen viser lengden og massen av alligatorer fanget og målt i Florida, USA. Lengde (m),9,7,18 1,60 1,75,5,08 1,88,9 1,7,,90 Masse (kg) Vi skal lage en modell for sammenhengen mellom lengden x i meter og massen fx ( ) i kg. Til det skal vi bruke en potensfunksjon. Deretter skal vi bruke modellen til å anslå massen til en alligator som er målt til å være m lang. Innlæringsoppgaver, med henvisninger til elevnettstedet og til oppgavesamlingen bak i boka: Lokus NETTINNHOLD Stifinner: side 179 Oppgave.0 I perioden drakk norske menn i alderen 5 9 år i gjennomsnitt 5,1 liter ren alkohol per år, mens medianforbruket var,9 liter. Kilde: Tidsskrift for Den norske lægeforening, nr. 0, 00 a Hva kommer det av at gjennomsnittet er større enn medianen? b Hva gir etter din mening best uttrykk for alkoholforbruket til en «typisk» 5 9 år gammel norsk mann? Oppgavesamling bak i boka, med tre forslag til stier: 1.6 Totallsystemet Sti 1 Sti Sti 19, 11, 1 19, 11, 1, 1, 1, 16 10, 11, 1, 1, 15, 16, Skriv tallene i titallsystemet. a b c d Elevnettstedet:

4 Forord Matematikk P Læreverket Matematikk P er skrevet for læreplanen Matematikk VgP på de studieforberedende utdanningsprogrammene. Utdrag fra læreplanen finner du på side 19. Læreverket består av Læreboka, alt-i-ett, med teori, eksempler, innlæringsoppgaver og oppgavesamling. Elevnettstedet, på Lokus.no, med bl.a. interaktive oppgaver og innlæringsressurser. Læreboka Hvert kapittel innledes med en kort aktivitet som kan gi deg en idé om hva kapitlet inneholder. Aktivitetene egner seg godt for samtale. I hvert underkapittel finner du teori, eksempler og innlæringsoppgaver. Innlæringsoppgavene er plassert løpende i teksten, slik at du hele tiden kan kontrollere om du har forstått lærestoffet. Du bør regne alle innlæringsoppgavene. Du kan så gå til oppgavesamlingen bak i boka for videre arbeid og utdypning. I slutten av hvert kapittel finner du en kapitteltest og et sammendrag. Her kan du kontrollere om du har forstått helheten i kapitlet. Sammendragene inneholder bl.a. norsk-engelske ordlister med ti sentrale begreper fra kapitlet. Du finner løsninger til innlæringsoppgavene og kapitteltestene på elevnettstedet. Underveis har vi plassert bilder som kan utdype teksten og knytte stoffet til samfunn og kultur. Vi oppfordrer til aktiv bruk av bildene. På klaffene finner du viktige definisjoner, setninger og formler. Du bør lære deg alt som står på klaffene. Oppgavesamlingen bak i læreboka I oppgavesamlingen finner du varierte oppgaver av mange forskjellige typer og vanskelighetsgrader. Du finner blandede oppgaver i slutten av hvert kapittel, og dessuten testen «15 rette eller gale» og eksamensoppgaver. Eksamensoppgavene er merket med X. Oppgavene innenfor et underkapittel er ordnet etter vanskelighetsgrad. De letteste er ikke markert. De noe vanskeligere er markert med trekanter: eller. De blandede oppgavene har ikke markeringer for vanskelighetsgrad.

5 * Noen oppgaver fra oppgavesamlingen har løsninger på elevnettstedet. Disse oppgavene er merket med stjerne *. Til hjelp i arbeidet har vi laget Stifinneren, en tabell med tre forskjellige forslag til «stier». En sti er et utvalg av oppgaver satt i en passende rekkefølge. Sti 1 er lettest. Sti er vanskeligst. Lokus NETTINNHOLD Elevnettstedet Elevnettstedet har samme kapittelinndeling som læreboka. Til hvert kapittel har vi laget interaktive oppgaver av mange typer. Her får du vite med en gang om du har svart riktig, og ofte kan du velge å se hint og løsningsforslag. Vi har også laget lydeksempler, animasjoner, regneark, basisoppgaver, lenkesamling og opplæringskurs i bruk av digitale verktøy. Elevnettstedet vil være i stadig utvikling. Underveis i læreboka har vi plassert henvisninger til innhold på elevnettstedet. Digitale verktøy Der det har vært aktuelt å forklare bruken av lommeregnere, har vi forklart inntastingen for Casio CFX-9850/fx-9860-seriene og Texas TI-8/TI-8-seriene. I noen oppgaver blir du bedt om å bruke digitalt verktøy. Disse oppgavene kan vanligvis løses både på lommeregner og ved å bruke andre digitale verktøy. Under Verktøyopplæring på elevnettstedet finner du opplæringskurs i bruk av digitale verktøy som lommeregnere, GeoGebra, TI-nspire og regneark. Takk Vi takker konsulentene Jostein Walle og Petter Callin for gode forslag og innspill. En spesiell takk til redaktør Dag-Erik Møller og teknisk redaktør Fred W. Alvad. Lykke til I årenes løp har vi fått mange nyttige tilbakemeldinger fra elever og lærere. Ønsker du å gi kommentarer, kan du bruke adressen Vi ønsker deg lykke til med bruken av læreverket! Hilsen Odd Heir, Ørnulf Borgan, John Engeseth og Per Arne Skrede

6 Innhold 1 Tall og algebra 1.1 Potenser 9 1. Nye potenser Store og små tall. Standardform Tallsystemer 1.5 Femtallsystemet Totallsystemet 1.7 Prosentregning med vekstfaktor Renteregning Kapitteltest. Sammendrag 8 Modellering.1 Rette linjer og lineær vekst 51. En lineær modell på øyemål 58. Lineær regresjon 61. Modellering med polynomfunksjoner 67.5 Modellering med eksponentialfunksjoner 76.6 Modellering med potensfunksjoner 8.7 Valg av modell 86 Kapitteltest. Sammendrag 9

7 Statistikk.1 Frekvenstabell og histogram 95. Kumulativ frekvens 101. Median 107. Gjennomsnitt 11.5 Spredningsmål Diagrammer 16.7 Statistiske undersøkelser 16 Kapitteltest. Sammendrag 10 Oppgavesamling 1 Utdrag fra læreplanen i Matematikk VgP 19 Fasit Innlæringsoppgaver og kapitteltester 19 Fasit Oppgavesamling 199 Register 06

8 1 Tall og algebra AKTIVITET: Ren magi? Skriv ned et tilfeldig tresifret tall abc der a er større enn b og b er større enn c. Bytt om rekkefølgen på sifrene i tallet og finn differansen mellom det første og det siste tallet. Bytt om rekkefølgen på sifrene i svaret og finn summen av de to tallene. Eksempel: = 97 = 1089 Prøv med forskjellige tall. Hva ser du? Kan du forklare hvorfor det blir slik?

9 Tall og algebra I 1.1 skal du lære å regne med potenser med positive eksponenter POTENSER eksponent grunntall I dette kurset vil regning med potenser gå igjen flere steder. Før du skal lære mer om potensregning, frisker vi opp en del grunnleggende kunnskaper. 5 er et eksempel på en potens. 5 kalles grunntall, og kalles eksponent. Grunntallet i en potens kan være et tall, en bokstav eller en kombinasjon av tall og bokstaver. Når eksponenten er et positivt heltall, forteller den hvor mange ganger grunntallet skal stå som faktor. Eksempel 1 Grunntall og eksponent I potensen 5 er grunntallet 5 og eksponenten. 5 = = 15 I potensen a er grunntallet a og eksponenten. a = a a a a I potensen a er grunntallet a og eksponenten. faktorer faktorer ( ) ( ) = a a a a faktorer Eksempel Å skrive et tall som en potens Skriv 16 som en potens med som grunntall. Vi faktoriserer 16 og får. faktorer Tallet 16 kan altså skrives som. Oppgave 1.1 a I en potens er grunntallet og eksponenten. Skriv potensen. b I en potens er eksponenten og grunntallet 5a. Skriv potensen. Oppgave 1. Regn ut uten å bruke digitalt verktøy. a 8 b 10 c 5 d

10 10 Tall og algebra 1.1 produkt = faktor faktor Oppgave 1. a Skriv 81 som en potens med 9 som grunntall. b Skriv 81 som en potens med som grunntall. ( ) c Skriv m som et produkt. d Skriv som et produkt. Eksempel Potensregning med digitale verktøy 5 Vi skal regne ut med digitalt verktøy. På mange digitale verktøy skrives potenser ved å bruke tasten mellom grunntallet og eksponenten. Hvis du har denne tasten, taster du slik: 5 EXE / ENTER. Noen verktøy har en tast ( x y eller a n ) som gir en «mal» for potenser:. 5 Finn ut hvordan du skriver inn på ditt digitale verktøy og kontroller at du får 15. Oppgave 1. a Regn ut med digitalt verktøy b Regn ut, 10 5 med digitalt verktøy. Kontroller at svaret blir c Regn ut 75, 5 med digitalt verktøy. Kontroller at svaret blir 18,5. 5 d Regn ut ,80 med digitalt verktøy. Kontroller at svaret blir 168,0. Potensreglene Eksempel Potenser som har samme grunntall Multiplikasjon av potenser: = ( ) ( )= = 6 Divisjon av potenser: 5 5 : = = = = 6 For = er eksponenten 6 lik summen av eksponentene og. 5 For : = er eksponenten lik differansen mellom eksponentene 5 og.

11 Tall og algebra Tilsvarende gjelder generelt: Vi multipliserer to potenser med samme grunntall ved å beholde grunntallet og legge sammen eksponentene. a a = a p q p+ q 1 Vi dividerer to potenser med samme grunntall ved å beholde grunntallet og trekke den siste eksponenten fra den første. a : a = a p q pq a a p q = a pq Eksempel 5 Å bruke potensreglene 1 og 8 11 Regn ut og, og skriv svaret som en potens Husk: 11 kan skrives 11 1, og kan skrives = = = 11 = = = + 1+ = 7 5 = = 7 5 Husk: a = a 1 Oppgave 1.5 Regn ut og skriv svaret som en potens a b c d Oppgave 1.6 Regn ut og skriv svaret som en potens a b c Oppgave 1.7 Regn ut og skriv svaret som et produkt av to potenser a b c 5 5

12 1 Tall og algebra 1.1 Fargerik eksponent Eksempel 6 Når grunntallet er et produkt ( ) Skriv 5 som et produkt av to potenser. Her er grunntallet 5. Vi får at ( 5) = ( 5) ( 5) ( 5)= 5 5 5= 5 I eksemplet ser vi at både og 5 får eksponenten. Tilsvarende gjelder alltid når grunntallet er et produkt: Når grunntallet i en potens er et produkt, opphøyer vi hver av faktorene i eksponenten. p p p ( a b) = a b

13 Tall og algebra Eksempel 7 Når grunntallet er en brøk Hva blir? Her er grunntallet, og vi får at = = I eksemplet ser vi at både teller og nevner får eksponenten. Tilsvarende gjelder alltid når grunntallet er en brøk: Når grunntallet i en potens er en brøk, opphøyer vi både teller og nevner i eksponenten. p a a b = b p p Eksempel 8 Når grunntallet er en potens Skriv ( ) Her skal enklere. stå som faktor ganger. ( ) = = = = Eksponenten 8 får vi når vi ganger eksponentene og. Tilsvarende gjelder alltid når grunntallet er en potens: Vi opphøyer en potens i en ny eksponent ved å opphøye grunntallet i produktet av eksponentene. p a q pq ( ) = a 5 Oppgave 1.8 Regn ut. a b x c ( ) ( ) d 1 ( a) e f Oppgave 1.9 Regn ut og skriv svaret som en potens. a b c d ( ) 5x ( ) ( 5 ) 6 ( x )

14 1 Tall og algebra 1.1 Vi har kommet fram til fem potensregler: a a = a p q p+ q a : a = a p q p q ( a b) = a b p a a b = b ( a ) = a p p p p p p q p q 1 eller p a p q = a q a 5 Vi forutsetter at a 0 og b 0 dersom de står i nevneren. Eksempel 9 Flere potensregler i samme oppgave Regn ut ( ) 5 6 ( ) 5 6. = = = = = Oppgave 1.10 Regn ut og skriv svaret som en potens. 8 ( ) a b c d ( a ) Oppgave 1.11 Regn ut og skriv svaret som en potens. a c 5 ( ) ( 5 ) Oppgave 1.1 a Bruk at kan skrives som en potens av, til å vise at 6 =. b Skriv som en potens med som grunntall. 9 b d ( ) ( ) 6 ( ) ( ) 5 ( )

15 Tall og algebra NYE POTENSER I 1. skal du lære å regne med potenser der eksponenten er null eller negativ. Hva betyr 0, 0, 0 osv.? p q pq Bruker vi potensregelen a : a = a på divisjonen 5 : 5, får vi 5 : 5 = 5 = 5 0 Bruker vi brøkregning, får vi : 5 = = = Både 5 0 og 1 er svaret på den samme divisjonen. p q pq Skal regelen a : a = a gjelde når p= q, må derfor 5 0 være lik 1. Vi vedtar derfor at et tall opphøyd i 0 er lik 1. a 0 = 1 Vi har altså at når a 0 ( ) = = 1, 56 = 1, 1, osv Potenser med negative eksponenter p q pq 5 Bruker vi potensregelen a : a = a på divisjonen 7 : 7, får vi 7 : 7 = 7 = Men vi kan også utføre divisjonen med brøkregning: : 7 = = = = p q pq Skal regelen a : a = a gjelde for p < q, må 7 være det samme 1 som. 7 1 Det betyr at 7 og er to skrivemåter for samme tall. Generelt vedtar vi: 7 a p = 1 for a 0 p a Når p = 1, får vi at a p = a = =. 1 a a Vi får altså at = =, = =, osv. 1 1

16 16 Tall og algebra 1. Eksempel 1 Potens brøk desimaltall = = =0, = = =0, Legg merke til at og 10 ikke er negative tall! Vi kan også gå «den andre veien». Vi kan skrive enkelte brøker og desimaltall som potenser = = , 01 = = = Husk: er det 1 positive tallet. Oppgave 1.1 Skriv som brøk og desimaltall. a 1 b 10 c 5 d 0 1 Vi vil ikke være negative, så vi kommer oss under streken.

17 Tall og algebra Oppgave 1.1 a Skriv 1 som en potens med som grunntall. 9 b Skriv 1 som en potens med som grunntall. c Skriv 0,001 som en potens med 10 som grunntall. d 1 Skriv som en potens med som grunntall. 16 e 1 Skriv som en potens med som grunntall. 16 Eksempel Regning med negative eksponenter Potensreglene gjelder både for positive og negative eksponenter: 1 + = ( ) = = ( ) + 7 = = = ( ) 6 ( ) = = ( ) = = ( ) ( ) Lokus NETTINNHOLD Stifinner: side 1 Oppgave 1.15 Regn ut. 5 a c Oppgave 1.16 Regn ut. a c 5 6 ( ) 5 Oppgave 1.17 Regn ut. a b c b d b d ( ) ( ) ( ) ( ) ( ) 1 6 ( ) 5

18 18 Tall og algebra 1. I 1. skal du lære å bruke standardform til å regne med store og små tall. 1. STORE OG SMÅ TALL. STANDARDFORM Avstanden fra jorda til sola er ca. 19,6 millioner kilometer = m. Ugelstad-kuler, med en diameter på 0, m, brukes til å behandle enkelte typer kreft. (Professor John Ugelstad ( ) ble berømt for å ha funnet opp en metode til å lage fullstendig like plastkuler.) Når vi skal skrive svært store og svært små tall, blir tallene ofte «lange». Vi trenger en mer praktisk skrivemåte. Det får vi ved å bruke potenser av tallet 10. Tierpotenser 0 10 = = = = = = 1000 Ser du sammenhengen mellom eksponenten i tierpotensen og antall nuller i tallet? Hva blir 10 6? = = = , = = = , = = = , 001 Ser du sammenhengen mellom eksponentene og antall nuller her? Hva blir 10 5? Oppgave 1.18 Skriv som potens med 10 som grunntall. a b c 0,001 d 0, e 0, Oppgave 1.19 Skriv på vanlig måte. a 10 5 b 10 9 c 10 d 10 8

19 Tall og algebra Standardform Avstanden mellom to fjelltopper er målt til meter. Med tierpotenser kan denne avstanden skrives på flere måter: m = m = 1 10 m = 1, 10 m Helt til høyre er avstanden skrevet på standardform. n Når et tall er skrevet på formen a 10, der a er et tall mellom 1 og 10, og n er et helt tall, sier vi at tallet er skrevet på standardform. Eksempel 1 Standardform eller ikke standardform? 0 10,, 10, og 10 er tre ulike måter å skrive tallet 0,00 på. Men det er bare den midterste skrivemåten som viser tallet på standardform. Eksempel Omforming til standardform = 6, = 6, = 5, 100 = 5, 10 0 = 10 = , 0 = 0, 01 = 10 0, 00 =, 0, 001 =, = 6, plasser mot venstre 0,00 =, 10 plasser mot høyre Når vi ser nærmere på omformingene i eksempel, får vi disse huskereglene: Når vi skal gjøre om til standardform, teller vi antall plasser vi må flytte komma for å få et tall mellom 1 og 10. Flytter vi komma mot venstre, blir tiereksponenten positiv. Flytter vi komma mot høyre, blir tiereksponenten negativ. Tall større enn 10 får positiv tiereksponent. Tall mellom 0 og 1 får negativ tiereksponent. Oppgave 1.0 Skriv tallene på standardform. a b c 00 d 0,00 e 0, f 0,0 Oppgave 1.1 Skriv tallene på vanlig måte. a , b 7, 10 c , d, 5 10

20 0 Tall og algebra 1. Store og små tall med digitalt verktøy Digitale verktøy viser store og små på tall på forskjellige måter. Regn ut med ditt digitale verktøy. På noen Casio- og Texas-lommeregnere får vi: CASIO TEXAS E+11 og E11 betyr en potens med 10 som grunntall og 11 som eksponent..5e11 betyr altså, Legg merke til at vi får svaret på standardform. Noen digitale verktøy viser svaret som Hva gjør ditt? Regn ut 0, ,00. Svaret blir, Hvordan vises svaret på ditt digitale verktøy? Vi lister opp noen varianter, som alle betyr, : E *10^-07 Hvis vi skal taste inn tall på standardform på lommeregneren, har vi flere muligheter. Vi kan bruke potenstasten, vi kan bruke tasten EXP eller EE, og vi kan bruke tasten 10 x. Vi regner ut Først bruker vi potenstasten: CASIO TEXAS Legg merke til at vi må sette parentes rundt nevneren. Hvorfor?

21 Tall og algebra 1. 1 Bruker vi EXP - eller EE -tasten, taster vi slik: CASIO 8 EXP 5 EXP ( ) 9 EXE TEXAS 8 EE 5 EE ( ) 9 ENTER Legg merke til at hvis vi bruker EXP - eller EE -tasten, skal vi ikke taste inn multiplikasjon med grunntallet 10, og i vårt eksempel trenger vi heller ikke å legge inn parentes rundt nevneren. EXP eller EE er «forkortelser» for grunntall 10. Lommeregneren oppfatter 5 EXP ( ) 9og5 EE ( ) 9 som ett tall. Lokus VERKTØYOPPLÆRING Vi overlater til deg å finne ut hvordan 10 x -tasten virker. På nettstedet på Lokus finner du en oppskrift på hvordan du kan stille inn noen digitale verktøy slik at de gir svaret på standardform. Oppgave 1. Regn ut med digitalt verktøy. Oppgi svaret på standardform. 5 6 a, b 50 8, 10 0, c, , d π ( 10 ) 5 10 Eksempel Regning med store og små tall uten å bruke digitalt verktøy Regn ut , 00 uten å bruke digitalt verktøy og skriv svaret på standardform , 00 Vi får altså at = 10 Først skriver vi alle tallene på standardform. = Vi regner sammen tallene og tierpotensene hver for seg = 10 = ( ) 10 = 1 10 = Til slutt må vi skrive svaret på standardform. Det gjør vi slik: = 1, = 1, 10 = 1, , = 1, 10 11

22 Tall og algebra Oppgave 1. Regn ut uten digitalt verktøy. Oppgi svaret på standardform. Kontroller svaret med digitalt verktøy. a c ,00 10 d b Oppgave 1. En dag før jul ble det foretatt 5,6 millioner betalinger med kort. Hver betaling var i gjennomsnitt på 00 kr. a b 500, , 10,1 10 Skriv tallet 5,6 millioner på standardform. Hvor mye var kortbetalingene på til sammen denne dagen? Finn svaret både med og uten bruk av digitalt verktøy. Oppgi svaret på standardform, i millioner kroner og i milliarder kroner. 6 Lokus NETTINNHOLD Stifinner: side 1 Oppgave 1.5 En bestemt type sandkorn har en diameter på 0,15 mm. a Skriv diameteren på standardform med meter som enhet. b Vi tenker oss at vi legger sandkornene etter hverandre. Hvor mange sandkorn får vi plass til på én meter? Oppgave 1.6 I tidsrommet fra til 01.0 natta til 1. januar 010 ble det i gjennomsnitt sendt 1110 SMS-er per sekund. Hvor mange SMS-er ble det til sammen sendt i dette tidsrommet? Oppgi svaret på standardform. I 1. skal du lære å skrive tall på ulike måter. 1. TALLSYSTEMER Alle som kan telle, kan bli enige om at det er femten kyr på et jorde. Hvordan vi teller og eventuelt skriver femten, kan være ulikt alt etter hvilken kultur vi tilhører. Vi tenker «fem mer enn ti», andre kan tenke «tre femmere», «tre mer enn tolv» eller kanskje «én mindre enn seksten». Tallsystemer handler om måten vi teller på, og om hvordan vi skriver tallene. I dette underkapitlet skal vi se nærmere på vårt tallsystem, titallsystemet. Du skal også lære om andre tallsystemer, og om hvordan vi skriver det samme tallet i forskjellige tallsystemer.

23 Tall og algebra 1. Utvidet form Titallsystemet et plassverdisystem I titallsystemet bruker vi ti talltegn, som vi kaller sifre: 0, 1,,, 9. Vi sier at ti er grunntallet i tallsystemet. Vårt titallsystem er et plassverdisystem eller et posisjonssystem. Sifferet 5 betyr noe helt annet i tallet 51 enn i tallet 15. Vi tar for oss tallet 65. Tallet har fire sifre. Sifferet 5 står på siste plass og forteller oss at tallet har 5 enere. 6 står på nest siste plass og forteller oss at tallet har 6 tiere. står på tredje siste plass og forteller oss at tallet har hundreder. står på fjerde siste plass og forteller oss at tallet har tusener. Når vi leser tallet, sier vi sifrene i motsatt rekkefølge av den vi brukte ovenfor: «To tusen tre hundre og sekstifem.» Når vi skriver et tall på utvidet form, skriver vi tallet som en sum av hvert siffer ganget med posisjonens tierpotens. Vi skriver tallet 65 på utvidet form slik: = Denne skrivemåten bruker vi blant annet når vi gjør om mellom ulike tallsystemer. Eksempel 1 Vi skriver tall på utvidet form Vi skal skrive tallene 708 og 6080 på utvidet form. 708 betyr syv hundreder, null tiere og åtte enere. 708 = = betyr seks tusener, ingen hundreder, åtte tiere og ingen enere = = Oppgave 1.7 Skriv tallene på utvidet form. a 76 b c d 7005 Oppgave 1.8 Skriv tallene på vanlig form. a b c

24 Tall og algebra 1. Romerske tallsymboler: I 1 V 5 X 10 L 50 C 100 D 500 M 1000 Romertall et additivt tallsystem I et additivt tallsystem legger vi sammen verdien til de enkelte symbolene for å finne tallets verdi. Plassen eller rekkefølgen til symbolene spiller ingen rolle. De ti sifrene 0, 1,,, 9 kalles arabiske tall, men vi burde kalle dem indisk-arabiske tall, fordi de stammer fra India. De kom til Europa med araberne rundt år 100. I Europa var romertallene i vanlig bruk. De utviklet seg fra et additivt system til et system hvor det også er subtraksjon. Dersom et mindre tall står foran (til venstre) for et større, skal det lille tallet trekkes fra det store. Eksempel Romertall XV = 15. Vi legger sammen, fordi V står for et mindre tall enn X. IX = 9. Her står det lille tallet til venstre for det større, og da skal vi trekke det lille fra det store. XIX = 19. X = 10, og IX = 9. Legg merke til at vi skriver XIX og ikke XVIIII. Oppgave 1.9 a Skriv alderen din med romertall. b Skriv 010 med romertall. c Harald er LXIV år. Skriv alderen til Harald med indisk-arabiske tall. Vanens makt er stor, så det tok lang tid før de indisk-arabiske tallene vant over romertallene, enda de er overlegne i praktisk bruk. Det ser du hvis du uten andre hjelpemidler enn blyant og papir prøver å multiplisere CLX XV med romertall, og så den samme multiplikasjonen med indisk-arabiske tall. Fortsatt kan vi finne rester av tallsystemer med grunntall tolv, tjue og seksti: Inndelingen av timer i 60 minutter og inndelingen av sirkelbuen i 60 grader stammer fra babylonernes sekstitallsystem. Fortsatt bruker vi av og til ordet dusin, som betyr 1. Tallene 50, 60, 70, 80 og 90 heter på dansk halvtres, tres, halvfirs, firs og halvfems. Tres er en forkortelse for tresindstyve eller tre ganger tjue. Hva firs og fems er forkortelse for, kan du vel gjette selv? I dansk er det altså sterke spor etter tjuetallsystemet.

25 Tall og algebra 1. 5 Titallsystemet 10 - plass 10 - plass Åttetallsystemet 8 - plass 8 - plass plass plass plass plass plass plass Andre plassverdisystemer enn titallsystemet Har du tenkt over hvorfor vi bruker et tallsystem med 10 som grunntall? Forklaringen er sannsynligvis så enkel som at vi har 10 fingre. Mayaindianerne brukte 0 som grunntall i sitt tallsystem. Det var nok fordi de gikk barbeint. Tenk deg at vi hadde åtte fingre. Da hadde vi kanskje hatt et posisjonssystem med 8 som grunntall, et åttetallsystem med sifrene 0, 1,,,, 5, 6 og 7. I titallsystemet forteller det bakerste sifferet antall 10 0 (antall enere), det nest bakerste sifferet antall 10 1 (antall tiere), osv. I åttetallsystemet forteller det bakerste sifferet antall 8 0 (antall enere), det nest bakerste sifferet antall 8 1 (antall åttere), osv. Vi setter på indeks 8 når tallet er skrevet i åttetallsystemet. Tallet 8 er altså skrevet i åttetallsystemet. Sifferet står på siste plass og forteller oss at tallet har enere. Sifferet står på nest siste plass forteller oss at tallet har åttere. Siffer og posisjon sier oss at tallet er summen av åttere og enere. På utvidet form kan vi skrive tallet slik: 1 0 = = = 16 + = 19 8 i åttetallsystemet er dermed det samme som 19 i titallsystemet. Legg merke til at vi vanligvis ikke skriver 10 som indeks på tall i titallsystemet. Firetallsystemet - plass - plass 1 - plass 0 - plass I et plassverdisystem med grunntall bruker vi sifrene 0, 1, og. Plassene fra høyre mot venstre heter enerplassen ( 0 ), firerplassen ( 1 ), sekstenplassen ( ) og sekstifirerplassen ( ). Vi setter på indeks når tallet er skrevet i firetallsystemet. For alle plassverdisystemer er det slik at plassen sifferet står på, bestemmer potensen av grunntallet sifferet bestemmer antall slike potenser

26 6 Tall og algebra 1. Grunntall 1000? Eksempel Fra firetallsystemet til titallsystemet Tallet 1 er skrevet i firetallsystemet. Hvilket tall er dette i titallsystemet? -plassen -plassen 1 -plassen 0 -plassen 6-plassen 16-plassen -plassen 1-plassen Sifferet står bakerst, på 0 -plassen, og forteller oss at tallet har enere. Sifferet 1 står på 1 -plassen og forteller oss at tallet har 1 firer. Sifferet står på -plassen og forteller oss at tallet har sekstenere. 1 = = = + + = 9 1 er det samme som 9. Oppgave 1.0 a Tallet 1 er skrevet i firetallsystemet. Hvilket tall er dette i titallsystemet? b Tallet 100 er skrevet i firetallsystemet. Hvilket tall er dette i titallsystemet? Oppgave april blir det bestemt at tretallsystemet skal innføres i Norge. a Hva er grunntallet i dette systemet, og hvilke sifre kan vi bruke? b Hva heter plassene fra høyre mot venstre i tretallsystemet? c Hvordan skriver du disse tallene i titallsystemet? 1 10

27 Tall og algebra Oppgave 1. a Hva er galt med å skrive 6 5? b Hvilken verdi har den plassen sifferet står på i tallet nn når 1 = 6 n = 16 c Hva er det største tresifrede tallet i firetallsystemet? Skriv tallet i titallsystemet. I 1.5 skal du lære å gjøre om mellom femtallsystemet og titallsystemet. 1.5 FEMTALLSYSTEMET For å bli bedre kjent med plassverdisystemer tar vi for oss femtallsystemet. Sifrene er 0, 1,, og. Plassene heter enerplassen, femmerplassen, tjuefemmerplassen, hundreogtjuefemmerplassen, osv. Hundreogtjuefemmerplassen Tjuefemmerplassen Femmerplassen Enerplassen Eksempel 1 Fra femtallsystemet til titallsystemet Hvilket tall i titallsystemet er det som skrives 0 i femtallsystemet? 5 -plassen 5 -plassen 5 1 -plassen 5 0 -plassen 0 Ved hjelp av utvidet form og tabellen ovenfor får vi = = = er det samme som 5. Oppgave 1. Hvordan skriver du disse tallene i titallsystemet? a 1 5 b 0 5 c Oppgave 1. a Hvilke tall skrives på samme måte i femtallsystemet og titallsystemet? b Hva heter plassen til sifferet i tallet 1 5? c Hvor mye bidrar sifferet med til tallets totale verdi i de to tallene 1 10 og 1 5?

28 8 Tall og algebra fingre Oppgave er det minste tresifrede tallet i titallsystemet. Det største er 999. Skriv det minste og det største tresifrede tallet i femtallsystemet. Skriv deretter de to tallene i titallsystemet. Fra titallsystemet til femtallsystemet I femtallsystemet bruker vi sifrene 0, 1,, og. Når vi skal gjøre om fra titallsystemet til femtallsystemet, får vi bruk for en oversikt over plassverdiene i femtallsystemet Hvordan skriver vi tallet 9 i femtallsystemet? 9= 5+, altså én femmer og fire enere. Det kan vi skrive slik: plass plass = = Det skal altså stå 1 på 5 1 -plassen og på 5 0 -plassen. Vi får at 9 = 1 5.

29 Tall og algebra Eksempel Fra titallsystemet til femtallsystemet Hvordan skriver vi 8 i femtallsystemet? Vi bruker tabellen på forrige side og ser at 8 = 5 +, altså én tjuefemmer, ingen femmere og tre enere. Det kan vi skrive slik: 8 = 5 + = Det skal altså stå 1 på 5 -plassen, 0 på 5 1 -plassen og på 5 0 -plassen. 8 er det samme som Oppgave Ved hjelp av tabellen kan vi skrive 1 = Skriv disse tallene på tilsvarende måte: a 8 b 19 c d 6 Oppgave 1.7 Hva blir disse tallene i femtallsystemet? a 7 b 11 c 0 d Oppgave 1.8 Hva blir disse tallene i femtallsystemet? a 7 b 5 c 57 d 159 Vi kan skrive om alle tall til femtallsystemet ved å bruke metoden fra eksempel. Når vi skal skrive om store tall, kan det være greit å ha en annen metode for det. Vi skal vise en slik metode, største potens-metoden. Når vi bruker denne metoden, får vi bruk for heltallsdivisjon. Hva heltallsdivisjon er, viser vi i det neste eksemplet. Eksempel Heltallsdivisjon Divisjonen : 8 går opp. Svaret, eller kvotienten, blir. : 8 = Da har vi at = 8. Divisjonen 9 : 8 går ikke opp. 9 : 8 =,65 Kvotienten (eller heltallskvotienten) blir. Resten er 9 8 = 5 Vi skriver 9 = Hva blir kvotienten og resten i divisjonen 11 : 5?

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Sinus 2P > Potenser og prosenter

Sinus 2P > Potenser og prosenter 1 8 BOOK Sinus P.indb 8 Sinus P > Potenser og prosenter 01-06-17 1:7:0 Potenser og prosenter MÅL for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Eksamen 2P, Høsten 2011

Eksamen 2P, Høsten 2011 Eksamen P, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder 9 11

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co. MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 1 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent.

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Eksamen 2P, Våren 2011

Eksamen 2P, Våren 2011 Eksamen 2P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 36200 3,62

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Binære tall og andre morsomheter

Binære tall og andre morsomheter Lærerveiledning Binære tall og andre morsomheter Passer for: Varighet: Vg1T og Vg2P 90 minutter Binære tall og andre morsomheter er et skoleprogram hvor elevene får en annerledes tilnærming til totallsystemet,

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

1.2 Posisjonssystemer

1.2 Posisjonssystemer MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) 1993 3) År 2000. 1.2 Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner Faktor 9 Grunnbok Bokmål Hei til deg som skal bruke Faktor! Dette er Faktor 9 Grunnbok. Til grunnboka hører det en oppgavebok. Her ser du ungdommene

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logaritmer 9.1 Potenser Regneregler 2 3 ¼ 2 2 2 Vi kaller 2 3 for en potens. 2 kaller vi for potensens grunntall og 3 for eksponenten. En potens er per definisjon produktet av like store tall.

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 2. Tall på standardform

Kapittel 2. Tall på standardform Kapittel 2. Tall på standardform Standardform er en metode som er nyttig for raskt å kunne skrive tall som er mye større enn 1 eller mye mindre enn 1. Du må kunne potensregning for å forstå regning med

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

1.8 Binære tall EKSEMPEL

1.8 Binære tall EKSEMPEL 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 2) 0,000 642 3) 53 millioner 4) 0,034 10 2 b) Tegn av tabellen nedenfor i besvarelsen din og fyll inn det som mangler. Prosentvis

Detaljer

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Lærerveiledning Passer for: Varighet: Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Full fart med funksjoner, prosent og potens er et skoleprogram hvor elevene går fra

Detaljer

Inneholder ett oppslag fra hvert hefte:

Inneholder ett oppslag fra hvert hefte: Sett inn støtet er en serie hefter som gir systematisk opplæring og trening i utvalgte tema innenfor matematikk. Heftene har enkle instruksjoner og god progresjon i vanskelighetsgrad. Oppgavene er laget

Detaljer

Innføring av potenser og standardform

Innføring av potenser og standardform side 1 Innføring av potenser og standardform Dette er et forslag til et undervisningsopplegg der elevene skal komme fram til skrivemåter for potenser og tall på standardform. Tanken med opplegget er at

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Sinus 1P > Tallregning og algebra

Sinus 1P > Tallregning og algebra 1 Book Sinus 1P.indb Sinus 1P > Tallregning og algebra 01-0- 1:: Tallregning og algebra MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver Potenser og tallsystemer KATEGORI. Potenser Oppgave.0 a) b) c) d) Oppgave. a) 0 b) ( ) c) ( ) d) ( ) Oppgave. Skriv uttrykkene som én potens. a) b) 7 c) d). Potensene a 0 og a n Oppgave.0 a) 7

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Anne-Lise Gjerdrum Espen Skovdahl. I llus t ras joner : Anne Holt og J ohn Thor esen. Tusen millioner. n nb. u r 2B. Bokmål.

Anne-Lise Gjerdrum Espen Skovdahl. I llus t ras joner : Anne Holt og J ohn Thor esen. Tusen millioner. n nb. u r 2B. Bokmål. Anne-Lise Gjerdrum Espen Skovdahl I llus t ras joner : Anne Holt og J ohn Thor esen n nb u r 2B ok G Tusen millioner Bokmål Tusen millioner snøfnugg daler, lever tusen millioner virvler rundt og svever

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

Sinus 1P Y > Tall og mengde

Sinus 1P Y > Tall og mengde 1 Book Sinus 1P-Y.indb Sinus 1P Y > Tall og mengde 2014-07-2 14:47:09 Tall og mengde MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale

Detaljer

Matematikk 2P. det digitale verktøyet. Kristen Nastad

Matematikk 2P. det digitale verktøyet. Kristen Nastad Matematikk 2P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver 1 Potenser og tallsystemer KATEGORI 1 1.1 Potenser Oppgave 1.110 3 b) 3 c) 4 d) 4 Oppgave 1.111 10 3 b) ( 5) c) ( ) 3 d) ( ) 4 Oppgave 1.11 Skriv uttrykkene som én potens. 3 4 b) 5 3 c) 5 3 5

Detaljer

6.2 Eksponentiell modell

6.2 Eksponentiell modell Oppgave 6.14 Du arbeider i 7. 8. klasse og du vil bruke oppgave 6.13 til å arbeide med formalisering. Lag en oppgavetekst der du først lar eleven regne ut lønn etterhvert som du varierer antall brosjyrer.

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Eksempelsett 2P, Høsten 2010

Eksempelsett 2P, Høsten 2010 Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 37 Tema: Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal ( ) og tal

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgaveteksten: Oppgave 1 I en klasse med åtte gutter og tolv

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Fagstoff til eksamen. Matematikk Vg2P

Fagstoff til eksamen. Matematikk Vg2P Matematikk Vg2P Fagstoff til eksamen Innhold på ndla.no er nå tilgjengelig i PDF- eller epub-format som hjelpemidler til eksamen. Disse filene kan lagres på egen datamaskin og leses i digitalt format,

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, så regner symbolsk. Det vil si at

Detaljer

Sinus 1T > Tallregning og algebra

Sinus 1T > Tallregning og algebra 8 Sinus T book.indb 8 Sinus T > Tallregning og algebra 04-0- 6:7:0 Tallregning og algebra MÅL for opplæringen er at eleven skal kunne regne med rotuttrykk, potenser med rasjonal eksponent og tall på standardform,

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W. Kristiansen Illustrasjoner: John Thoresen Tusen millioner 4 Oppgavebok Bokmål Oppgaveboka inneholder øvings- og repetisjonsoppgaver til alle kapitlene i grunnbøkene. Øvingsoppgavene

Detaljer

Kapittel 1. Potensregning

Kapittel 1. Potensregning Kapittel. Potensregning I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Dette kapitlet handler blant annet om: Betydningen av potenser som har negativ eksponent

Detaljer

Årsplan i matematikk 4.klasse, 2015-2016

Årsplan i matematikk 4.klasse, 2015-2016 Årsplan i matematikk 4.klasse, 2015-2016 Antall timer pr uke: 5. timer Lærere: Marte Fjelddalen, Helene V. Foss, Evelyn Haugen Læreverk: Multi Gyldendal Grunnbok 4A og 4B + Oppgavebok 4 Nettstedet: www.gyldendal.no/multi

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Tusen millioner. Grunnbok A Grunnbok B Oppgavebok. B ok m ål

Tusen millioner. Grunnbok A Grunnbok B Oppgavebok. B ok m ål An n e R as ch-h alv o rs e n O d d v ar Aa s e n Tusen millioner Fasit Grunnbok A Grunnbok B Oppgavebok B ok m ål CAPPELEN DAMM AS, 0 ISBN 98-8-0--. utgave,. opplag 0 Materialet i denne publikasjonen

Detaljer

3 52 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 52 2014-10-14 15:08:14

3 52 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 52 2014-10-14 15:08:14 5 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 5 014-10-14 15:08:14 Algebra MÅL for opplæringa er at eleven skal kunne forenkle fleirledda uttrykk og løyse likningar av første grad og enkle potenslikningar

Detaljer

Matematikk 2P-Y. Hellerud videregående skole

Matematikk 2P-Y. Hellerud videregående skole Matematikk 2P-Y Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 2P-Y. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: Anne Holt og John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: Anne Holt og John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W Kristiansen Illustrasjoner: Anne Holt og John Thoresen Tusen millioner B Grunnbok Bokmål Tusen millioner barn kan være venner tusen millioner fra nær og fjerne strender venn

Detaljer

TIN15. Tømme, rette og tilbakestille w. Displayindikatorer. Generell informasjon. Grunnleggende operasjoner. Bla i displayet "!

TIN15. Tømme, rette og tilbakestille w. Displayindikatorer. Generell informasjon. Grunnleggende operasjoner. Bla i displayet ! TIN15 Kalkulator og regnetrener Texas Instruments 7800 Banner Dr. Dallas, TX 75251 U.S.A. Texas Instruments Holland B.V. Rutherfordweg 102 542 CG Utrecht - The Netherlands ¾ www.ti.com/calc Opphavsrett

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

Årsplan i 7. klasse matematikk 2016-2106

Årsplan i 7. klasse matematikk 2016-2106 Årsplan i 7. klasse matematikk 2016-2106 Antall timer pr : 4 Lærere: Marianne Fjose Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter:

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer