Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Størrelse: px
Begynne med side:

Download "Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?"

Transkript

1 side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger ved introduksjon av likninger og eksempler på konkrete øvelser til første del av arbeidet med likninger. Det er lagt vekt på prinsipper, slik at eksemplene på likninger er enkle, ofte enklere enn det elevene vil og bør møte innen en måned etter at likninger først blir introdusert. Kompetansemål 10. årstrinn Eleven skal kunne løyse likningar og ulikskapar av første grad og enkle likningssystem med to ukjende I veiledningen knyttes dette kompetansemålet til emnet Algebra. Veiledningen knytter ulike læringsmål til kompetansemålene. Dette undervisningsopplegget tar utgangspunkt i to læringsmål som i veiledningen er lagt til 8. årstrinn. Læringsmål 8. årstrinn eleven skal kunne løse likninger av første grad med en ukjent eleven skal kunne sette opp likninger ut fra en praktisk situasjon, løse dem, tolke løsningen og sette prøve Mål for dette undervisningsopplegget Elevene skal kunne løse likninger som for eksempel: A: x+3 = 5 B: 7-x = 3 C: 14 = 3-x D: 3x-53 = 16 E: 3+2x = 1 F: 5x+2 = 4 G: 3x-4 = x+5 H: kunne sette opp en likning for å løse problemet: Anna og Per er tilsammen 7 år. Anna er 3 år, hvor gammel er Per? I: kunne sette opp en likning for å løse problemet: En trekant med areal lik 6 cm 2 har høyde lik 4 cm. Hvor lang er grunnlinja? J: kunne sette opp en likning for å løse problemet: Tenk på et tall, legg til 4, multipliser med 2, trekk fra 5 og si hva du får til en medelev. Be medeleven finne tallet som du tenkte på. Forutsetninger

2 side 2 Noen forutsetninger er nøvdvendige hos elevene før man setter i gang undervisningsopplegget. Det kan være flere forutsetninger for en introduksjon til likninger, men punktene nedenfor er blant de viktigste. Enkle felles øvelser eller individuelle øvelser kan avdekke om forutsetningene er tilstede, eller hvilke som mangler. Om elevene har problemer med å regne med likninger kan listen med forutsetninger hjelpe lærer og elev til å finne årsaken til problemene. Punktene 1-3 er relativt generelle, og kompetansen til elevene vil variere. Valg av likninger som man regner på kan tilpasses kompetansen til elevene, med likninger av varierende vanskelighetsgrad i samme gruppe elever. Punktene 4-6 går mer spesifikt på likninger. Punkt 4 og 6 kan delvis sammenfattes i en øvelse der man skal sette et tall i en boks for å gjøre en påstand eller likning sann. Denne type øvelse legger vekt på hva en likning og løsning av en likning er. Øvelsene er laget slik at man ved prøving og feiling og hoderegning skal kunne finne løsningen. Punkt 5 dreier seg om den logiske strukturen i en likning. Elevene bør kunne: 1. de fire regningsartene med hele tall I første omgang er det naturlig at alle tallene som inngår i likningen er hele tall. Alle de fire regningsartene vil naturlig komme til bruk. I eksemplene A-E over er det heltallsløsninger, så heltallsregning er tilstrekkelig for å finne løsning. 2. uttrykke rasjonale tall som brøk eller desimaltall Selv om det bare er hele tall som inngår i likningen, trenger ikke løsningen være et helt tall. Eksempel F har et rasjonalt tall som ikke er heltall som løsning, så her må eleven kunne uttrykke 2 : 5 som en brøk eller desimaltall. 3. bruke riktig rekkefølge mellom regneoperasjonene Multiplikasjon og divisjon har prioritet foran addisjon og subtraksjon, så =2+15 =17. Dersom man setter parentes rundt 2+3 har det som står inne i parentesen prioritet: ( 2 + 3) 5 = 5 5 = løse oppgaver som: "Hvilket tall må stå i boksen for at likheten 4+ =7 skal bli sann?" Når man skal finne verdien til et sammensatt uttrykk så må man vite hvilken rekkefølge som gjelder. 5. finne verdien til uttrykket ved innsetting

3 side 3 I en likning er hver side av likhetstegnet et uttrykk. Et uttrykk kan være et enkelt tall. Det kan og være satt sammen av flere tall ved hjelp av regneoperasjoner eller det kan være satt sammen av tall og bokstaver eller variabler ved hjelp av regneoperasjoner. Dersom det bare er tall som inngår i uttrykket så representerer det ett tall, som kalles verdien til uttrykket. 2+3 har verdien 5. Tallet 4 har verdien 4. Uttrykket har verdien 13. Når uttrykket også inneholder en variabel har uttrykket ingen bestemt verdi. Ved å sette inn et tall for variabelen får imidlertid uttrykket en verdi. For å finne denne verdien er det en nyttig øvelse å lese uttrykket med ord og få fram alle regneoperasjonene som inngår. Uttrykket 3x+5 leses som tre ganger x pluss fem. Selv om man ikke skriver gangetegn mellom 3 og x bør man lese det for å tydeliggjøre hvilken operasjon som gjelder. For å løse en likning må eleven kunne finne verdien til venstre side og høyre side i likningen ved innsetting av tall. Nyttige øvelser: Finn verdien til uttrykket 3x+4, når x=1,2,4,5. Finn verdien til uttrykket 6-2x, når x=1,2,3,5. Denne øvelsen er også nyttig når man senere skal lage graf til lineære funksjoner. 6. lese en likhet som en setning Et vanlig regnestykke 2+3=5 kan leses som en setning eller påstand: to pluss tre er lik fem. Et uttrykk kan ikke leses som en setning: To pluss tre eller tre pluss x er ikke en setning. En likning derimot kan leses som en setning. 2x+3=5 leses som to ganger x pluss tre er lik fem. Å kunne lese likningen på denne måten er en forutsetning for å forstå hva en løsning er. Nyttig øvelse: Les = 13, 4-5 = -1, 2 + x = 4, 5-2x =1, 3 = 4x 1 Ved mer kompliserte likninger må eleven kunne 7. Brøkregning (for eksempel likningen ½ x+2=5) 8. Parentesregning (for eksempel likningen (1+3x)/4=2) Hva er nytt? - symbolbruk - den ukjente x i likninger - bruk av likhetstegnet - begrepet løsning - metoder for å finne en løsning

4 side 4 Symbolbruk Elever på årstrinn sliter ofte med å forstå symbolbruk, faste og variable størrelser. For å bevisstgjøre elevene på dette, kan de få erfaringer gjennom lek med tall. Tallek kan elevene også gjøre på tidligere årstrinn, men på årstrinn er det tid for å formalisere og generalisere dette. Det kan lærer gjøre ved å introdusere bokstavsymboler for variable eller ukjente størrelser. Lærer instruerer og elevene gjør det læreren sier: 1. Tenk på et hvilket som helst tall 2. Legg til 3 3. Multipliser med 2 4. Trekk fra tallet du tenkte på 5. Legg til 4 6. Si meg hvilket tall du fikk Læreren kan si hvilket tall eleven tenkte på ved å trekke 10 fra tallet eleven oppgir. Nå kan elevene få i oppdrag å finne ut hvordan læreren kunne vite hva de tenkte på. Del ut tellebrikker (som skal symbolisere det tallet de tenkte på) og enhetskuber eller enhetspinner. Skriv opp instruksjonene 1 til 6 på tavla. Læreren kan gi dette oppdraget til elevene: Gjennomfør algoritmen med det konkrete utstyret og beskriv hva som skjer. Dokumenter det i matematikkbøkene deres. Etter at elevene har arbeidet med dette en stund, er det viktig å ta en felles samtale i klassen. Sammen kan elever og lærere gjennomføre prosedyren, med tellebrikker og kuber, og skrive hva som skjer ved hjelp av symboler. Det kan være omtrent slik: 1. Tenker på et tall. Hvilket som helst. 2. Legger til 3 3. Multipliserer med 2

5 side 5 4. Trekker fra tallet jeg tenkte på 5. Legger til 4 6. Når du sier meg hva du får til svar, kan jeg regne ut tallet du tenkte på ved å trekke fra 10. Egentlig har jeg løst likningen x + 10 = a, som gir x = 10 - a Utfordring: Når elevene har løst det, kan de gjøre liknende trolleri med tall med hverandre. De kan også skrive det med symboler. I likningen 4 + x = 7 spiller den ukjente x rollen til boksen i 4 + = 7 og representerer et hvilket som helst tall. Setter man inn et tall for x, får man en setning som er sann eller usann. I oppgave A får man ved å sette inn x=1,2,3: A: (x=1) 1+3=5, (x=2) 2+3=5, (x=3) 3+3=5 Den første og siste er usann, mens den midterste 2+3=5 er sann. Likhetstegnet er ofte brukt i oppgaver som et skilletegn uten at betydningen er avgjørende for å løse oppgaven. For eksempel, regn ut 43-11= I en likning skiller likhetstegnet mellom to uttrykk. Betydningen av likhetstegnet er avgjørende for når man skal løse en likning. En løsning i en likning er det tallet som innsatt for x gir en sann påstand. Det vil si det tallet x som gir de to sidene av likhetstegnet samme verdi. Eksemplene på likninger i begynnelsen av dette opplegget, er satt opp med progresjon fra oppgave A til G. Progresjonen ligger i hvor vanskelig det er å finne

6 side 6 løsningen, selv om vanskelighetsgraden kan være vanskelig å gradere etter hvilke metoder man bruker. Oppgave H representerer et første steg i modellering med likninger. Å finne en løsning Når man skal løse en likning, er prøving og feiling ved innsetting en viktig øvelse. Ved prøving og feiling velger man et tall for x, og finner verdien til de to sidene av likhetstegnet når dette tallet er innsatt for x. Er verdiene like, er det valgte tallet for x en løsning for likningen. Når man løser en likning er det viktigst å finne løsningen, og kunne overbevise seg selv ved innsetting at løsningen er riktig. Hvilken metode man har brukt er mindre viktig. For kompliserte uttrykk er det ofte tilfeldig om prøving og feiling fører fram, så det er behov for en effektiv strategi. Hoderegning er ofte nok til å finne løsning til de enkleste likningene. Faktisk er dette en veldig god øvelse, både i regningsartene og i å forstå hva en likning og en løsning av denne er. Løsningsstrategier Det finnes mange strategier for å løse likninger. En strategi kan fungere for en bestemt likning, for likninger som er på en bestemt form, eller for ligninger generelt. En bestemt strategi kan også ha elementer i seg som gjør det lettere å forstå hva en likning er og hva en løsning er. Ved at læreren viser ulike strategier eller at elevene foreslår strategier, kan man åpne opp for diskusjon og utdypende læring av de sentrale begrepene for likninger. En effektiv strategi for å finne en løsning Nedenfor vises en tradisjonell løsningsstrategi. Den kan brukes på alle lineære likninger, er effektiv og bygger på det enkle prinsippet om likevekt på begge sider av likhetstegnet. Strategien som vises her forandrer uttrykkene på begge sider av likhetstegnet slik at verdiene til de to sidene ved innsetting endrer seg like mye. Ved å forandre utrykkene til så enkle uttrykk som mulig finner man til slutt det tallet som gir de to sidene samme verdi. Man kan sammenlikne likningen med en vektstang. For at likevekten skal bevares må endringer i verdi på den ene siden følges av tilsvarende endringer på den andre siden. Denne likevekten kalles for likhetsprinsippet for likningen. Sammenlikningen kan godt gjøres med en skålvekt. Samme prinsipp kan overføres til en likning. Eksempel: Løs likningen 2x+5=9.

7 side 7 Forandre venstre side til det bare står den ukjente igjen. Pass på å forandre høyre side like mye. 2x+5=9 2x+5-5=9-5 (begge sider er redusert med 5 i verdi) 2x=4 (forenkling i uttrykk uten å endre verdi) 2x/2=4/2 (begge sider er halvert i verdi) x=2 (begge sider er forenklet i uttrykk uten å endre verdi) I den forenklede likningen er det bare når 2 innsettes for x at de to sidene har samme verdi. Ved å lese likningen x er lik 2 sier man nettopp dette. Derfor sier man at x=2 er løsningen til likningen. Det betyr at hvis man setter inn x=2 i den opprinnelig likningen, så har høyre og venstre side av likhetstegnet samme verdi. Sette prøve Når man har funnet løsningen skal man sette prøve. Det vil si å finne verdien til de to sidene i den opprinnelige likningen når man setter inn løsningen for den variable x. Bare hvis man får samme verdi på begge sider er løsningen riktig. Ved feil bør man gå tilbake i forenklingen av likningen og undersøke om man har brutt likhetsprinsippet. I eksempelet er venstresiden =9, mens høyresiden er 9, så løsningen x=2 er riktig. Undervisningsforløp 1. Sjekk forutsetninger, heltallsregning og multiplikasjon av brøk med nevner. 2. Motiver introduksjon av likninger med ulike problemer som i eksemplene H, I og J. Noen av disse kan og bør selvsagt løses uten likninger, men ved å lage mer kompliserte eksempler av samme type vil behovet for et verktøy som likninger auke. 3. Øv med enkle oppgaver av type Introduser variabel x, og finn verdien til uttrykket på venstre side ved å sette inn tall for x. Elevene kan gjøre dette hver for seg og i felleskap. Elevene kan gjøre dette muntlig. 5. Les likninger i felleskap. 6. Finn løsning til enkle likninger (A-E) i felleskap. Her kan man godt oppmuntre til hoderegning. 7. Øv på enkle likninger hver for seg. 8. Løs likning som for eksempel F i felleskap. 9. Introduser strategi på oppgaver som likner F og G. Bruk strategien på F først. Legg merke til at likningen G har en ukjent på begge sider av likhetstegnet. Denne krever derfor ekstra oppmerksomhet. Diskuter gjerne oppgaven i felleskap før strategien blir introdusert.

8 side Vis samme strategi for oppgaver A-E. 11. Øv på likninger med variert vanskelighetsgrad. 12. Introduser likning for oppgaver av type H,I og J. Til slike tekstoppgaver kan man lage eksempler på ulike likninger og la elevene argumentere for hviken likning som passer med oppgaven 13. Øv på å sette opp likning for oppgaver av type H, I og J. Grunnleggende ferdigheter Likninger må leses som hele setninger for å gi mening. Det å kunne lese symbolene og sette dem sammen til en setning er derfor en forutsetning for å kunne løse en likning. For å kunne gjennomføre en effektiv strategi for å løse en likning, må man kunne skrive opp, linje for linje, likninger som har samme løsning som den opprinnelige. Å lese likninger høyt og diskutere løsninger av likninger muntlig forsterker både forståelsen av likninger og hvordan de kan brukes i enkle modelleringsoppgaver. Verdien til et uttrykk ved innsetting av ulike tall for den ukjente kan gjøres med og uten digitale verktøy, for eksempel kalkulator. Avanserte kalkulatorer kan løse likninger direkte. Dette har begrenset nytte når man skal lære å løse likninger, og når man skal øve på ulike strategier. Hva kommer etter denne introduksjonen til likninger? Etter denne introduksjonen til likninger, kommer likninger der koeffisientene er store heltall, brøker eller desimaltall. For eksempel: 340x - 45 = 231 x = 2 x 3 3,4 +2,1x = 4-0,3x Andre tema er: Bruke likninger i modellering. Fra et praktisk problem sette opp en relevant likning, løse denne og tolke svaret i forhold til det opprinnelige problemet Løse ulikheter av første orden Løse likning med en ukjent grafisk Løse to likninger med med to ukjente Løse andregradslikninger av typen x 2 =4

9 side 9 Vurdering I vurdering av arbeid med likninger er det viktig å verdsette alle stegene som er nødvendig for å kunne løse likninger, og for å bruke likninger til å løse problemer ved modellering. Tabellen viser en mulig beskrivelse av måloppnåelse etter 10. årstrinn (sluttvurdering med karakter): En mulig beskrivelse av måloppnåelse for kompetansemålet etter 10. trinn (sluttvurdering): Lav måloppnåelse Middels måloppnåelse Høy måloppnåelse Eleven kan finne løsning til likninger av typen: Eleven kan finne løsning av likninger av typen: Eleven kan finne løsning av en likning av typen 3x+11=27 Eleven kan avgjøre ved innsetting om et tall er løsning av en likning av typen: 3x+11=7-2x Eleven kan avgjøre om en likning løser uoppsatte oppgaver av typene H, I,J, og kan forklare forskjellen på en likning og et utrykk. 3x+11=7-2x Eleven kan finne en likning som løser en oppgave av typene H,I,J. Eleven kan avgjøre ved innsetting om et tall er løsning av en likning av typen 3(x + 5) = 2x 3 4 Eleven kan avgjøre hvordan en finner løsningen til en likning med grafen til denne. Eleven kan forklare hva en løsning i en likning er. 3(x + 5) = 2x 3 4 Eleven kan finne en likning som løser en uoppstilt oppgave av høyere vanskelighetsgrad enn H,I,J Eleven kan løse likninger grafisk. Eleven kan formulere en strategi for å løse en lineær likning.

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Lærerveiledning Versjon 1.0

Lærerveiledning Versjon 1.0 Lærerveiledning Versjon 1.0 F orord Jeg jobbet som mattelærer i fem år, og har sett hvor mange unge barn som sliter med matte. Det er veldig lett for elevene å miste motivasjonen og gi opp, og de blir

Detaljer

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Addisjon og subtraksjon av brøker finne fellesnevner

Addisjon og subtraksjon av brøker finne fellesnevner side 1 Detaljert eksempel om Addisjon og subtraksjon av brøker finne fellesnevner Dette er et forslag til undervisningsopplegg der elevene skal finne fellesnevner ved hjelp av addisjon og subtraksjon av

Detaljer

Årsplan i 7. klasse matematikk 2016-2106

Årsplan i 7. klasse matematikk 2016-2106 Årsplan i 7. klasse matematikk 2016-2106 Antall timer pr : 4 Lærere: Marianne Fjose Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter:

Detaljer

Eksempel fra veiledning til læreplan i matematikk. Se skolenettet.no/veiledninger

Eksempel fra veiledning til læreplan i matematikk. Se skolenettet.no/veiledninger side 1 Detaljert eksempel om Matematikk i restaurant- og matfag Dette forslaget til undervisningsopplegg viser hvordan kompetansemål fra læreplan i matematikk kan knyttes til kompetansemål i felles programfag

Detaljer

Årsplan matematikk 1. trinn skoleåret 15/16

Årsplan matematikk 1. trinn skoleåret 15/16 Årsplan matematikk 1. trinn skoleåret 15/16 FAG Den lokale læreplanen for faget må: Sees i sammenheng med det aktuelle trinn Sikre at skolen jobber med alle kompetansemål i faget Aktuelle elementer fra

Detaljer

Tall og algebra 10. årstrinn

Tall og algebra 10. årstrinn side 1 Tall og algebra 10. årstrinn Veiledningen fordeler kompetansemålene i hovedområdet tall og algebra på tre gjennomgående emner: tallforståelse, de fire regneartene og algebra. Veiledningen tar også

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Revidert veiledning til matematikk fellesfag. May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14.

Revidert veiledning til matematikk fellesfag. May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14. Revidert veiledning til matematikk fellesfag May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14.oktober 2013 Hvorfor ny veiledning Revidert læreplan matematikk fellesfag

Detaljer

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no Nummer 8-10 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no Hvorfor styrker man algebra i skolen? Det klages over at begynnerstudenter ved ulike høgskoler/universiteter har

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

Årsplan i matematikk ved Blussuvoll skole.

Årsplan i matematikk ved Blussuvoll skole. Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 37 Tema: Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal ( ) og tal

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Matematisk julekalender for 8.-10. trinn, 2013

Matematisk julekalender for 8.-10. trinn, 2013 Matematisk julekalender for 8.-10. trinn, 2013 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Årsplan i matematikk for 10. trinn

Årsplan i matematikk for 10. trinn Årsplan i matematikk for 10. trinn Uke 34-40 Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar og bruke eigenskapane i samband med konstruksjonar og berekningar Begreper. Utregning

Detaljer

Lokal læreplan i Matematikk Trinn 8

Lokal læreplan i Matematikk Trinn 8 Lokal læreplan i Matematikk Trinn 8 1 Trinn 8 Hovedtema 1 og 2 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner:

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner: På reise Nivå: 8. og 9. klasse Formål: Arbeide med lineære funksjoner og verktøyprogram Program: Regneark, kurvetegningsprogram Henvisning til plan: 8. klasse Matematikk i dagliglivet: registrere og formulere

Detaljer

Tall og algebra Vg1 og Vg2

Tall og algebra Vg1 og Vg2 side 1 Tall og algebra Vg1 og Vg2 Veiledningen fordeler kompetansemålene i hovedområdet tall og algebra på tre gjennomgående emner: tallforståelse, de fire regneartene og algebra. Veiledningen tar også

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Matematikk fellesfag veiledning til læreplanene

Matematikk fellesfag veiledning til læreplanene Matematikk fellesfag veiledning til læreplanene Denne veiledningen gir praktiske eksempler på hvordan du som lærer kan arbeide med læreplanene i matematikk fellesfag og matematikk 2P/2T. Veiledning Publisert:

Detaljer

Innhold. 1 Innledning. Søk SØK. Du er her: Forside Læring og trivsel Læreplanverket Matematikk fellesfag - veiledning til læreplaner.

Innhold. 1 Innledning. Søk SØK. Du er her: Forside Læring og trivsel Læreplanverket Matematikk fellesfag - veiledning til læreplaner. Søk SØK SØK MENY Du er her: Forside Læring og trivsel Læreplanverket Matematikk fellesfag - veiledning til læreplaner Innhold 1 Innledning 2 Fagets egenart 3 Yrkesretting av fellesfaget matematikk 4 Praktiske

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Algebraiske morsomheter Vg1-Vg3 90 minutter

Algebraiske morsomheter Vg1-Vg3 90 minutter Lærerveiledning Passer for: Varighet: Algebraiske morsomheter Vg1-Vg3 90 minutter Algebraiske morsomheter er et skoleprogram hvor elevene kan bruke forskjellige matematiske modeller i praktiske undersøkende

Detaljer

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter

Detaljer

Lokal læreplan i Matematikk Trinn 9

Lokal læreplan i Matematikk Trinn 9 Lokal læreplan i Matematikk Trinn 9 1 9. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Innføring av potenser og standardform

Innføring av potenser og standardform side 1 Innføring av potenser og standardform Dette er et forslag til et undervisningsopplegg der elevene skal komme fram til skrivemåter for potenser og tall på standardform. Tanken med opplegget er at

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

ÅRSPLAN I MATEMATIKK 10. TRINN 2014 / 2015

ÅRSPLAN I MATEMATIKK 10. TRINN 2014 / 2015 Læreverk: : Faktor 3 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 08.09.2014 Faglærer:

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING Tall

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING Tall ÅRSPLAN I MATEMATIKK FOR 7 TRINN 2015/2016 Utarbeidet av: Britt G. Reigstad Læreverk: Multi 7a, 7b, Oppgavebok, Parallellbok og Multi kopiperm, Multi`s hjemmeside, kikora UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Moro med matematikk 5. - 7. trinn 90 minutter

Moro med matematikk 5. - 7. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med matematikk 5. - 7. trinn 90 minutter Moro med matematikk er et skoleprogram i matematikk hvor elevene får jobbe variert med problemløsingsoppgaver, spill

Detaljer

Matematikk i ulike tekster - eksempler fra privat, offentlig økonomi og fra varedeklarasjoner

Matematikk i ulike tekster - eksempler fra privat, offentlig økonomi og fra varedeklarasjoner side 1 Detaljert eksempel om Matematikk i ulike tekster - eksempler fra privat, offentlig økonomi og fra varedeklarasjoner Dette er et forslag til undervisningsopplegg der elevene gjennom arbeid med matematikk

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Magisk Matematikk. 75 minutter. Passer for: Varighet:

Magisk Matematikk. 75 minutter. Passer for: Varighet: Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som enkelt avsløres med algebra,

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn)

Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn) Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn) Hoved- områder Tall og Algebra Fokus (læringsmål) Tall Addere, subtrahere, multiplisere og dividere med heltall, flersifrete tall og desimaltall

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Veiledning til læreplanene i matematikk fellesfag

Veiledning til læreplanene i matematikk fellesfag 1 Veiledning til læreplanene i matematikk fellesfag Kapittel 1: Innledning Denne veiledningen gir praktiske eksempler på hvordan du som lærer kan arbeide med læreplanene i matematikk fellesfag og matematikk

Detaljer

ÅRSPLAN I MATEMATIKK 10. TRINN 2015 / 2016. Uke Fagemne Delmål Arbeidsmetoder Mål fra Kunnskapsløftet Vurdering

ÅRSPLAN I MATEMATIKK 10. TRINN 2015 / 2016. Uke Fagemne Delmål Arbeidsmetoder Mål fra Kunnskapsløftet Vurdering trinn 2015 /2016 ÅRSPLAN I MATEMATIKK 10. TRINN 2015 / 2016 Læreverk: : Faktor 3 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen,

Detaljer

DAG 4 HAMAR NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

DAG 4 HAMAR NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF DAG 4 HAMAR NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Nærmest 24 10 % av det vi leser 20 % av det vi hører 30 % av det vi ser 50 % av det vi ser og hører

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Åssiden videregående skole Lokalt tilpasset læreplan. Fag: Matematikk Hovedområde: Geometri 1PY Undervisningstimer/år:84

Åssiden videregående skole Lokalt tilpasset læreplan. Fag: Matematikk Hovedområde: Geometri 1PY Undervisningstimer/år:84 Åssiden videregående skole Lokalt tilpasset læreplan Fag: Matematikk Hovedområde: Geometri 1PY Undervisningstimer/år:84 Kompetansemål: tolke og bruke formler som brukes i dagligliv, yrkesliv og programområde

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

Sinus 1P > Tallregning og algebra

Sinus 1P > Tallregning og algebra 1 Book Sinus 1P.indb Sinus 1P > Tallregning og algebra 01-0- 1:: Tallregning og algebra MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier er lure måter å tenke på som gjør at det blir enklere å regne. Bruk av hoderegning påvirker elevenes

Detaljer

Algebra for alle. Gunnar Nordberg

Algebra for alle. Gunnar Nordberg Algebra for alle Gunnar Nordberg 1 Om dette verkstedet Fra konkreter til tall Fra tall til variabler(bokstaver) Kan algebraen bli meningsfull Å undervise i algebraisk forståelse Ideer til gode oppgaver

Detaljer

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: 8A og 8B Grunnleggende ferdigheter i faget: Munnlege ferdigheiter i matematikk inneber

Detaljer

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 20.08.2015 Faglærere:

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Sinus 1T > Tallregning og algebra

Sinus 1T > Tallregning og algebra 8 Sinus T book.indb 8 Sinus T > Tallregning og algebra 04-0- 6:7:0 Tallregning og algebra MÅL for opplæringen er at eleven skal kunne regne med rotuttrykk, potenser med rasjonal eksponent og tall på standardform,

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 18.08.2014 Faglærere:

Detaljer

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE FORSLAG TIL FAGPLAN I MATEMATIKK 8. KLASSE- Justert 27.09.2011 Periode Tema Kompetansemål Aktiviteter/innhold Kilder Vurdering August og September (ca. 6 uker) Tall og

Detaljer

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi Lokal læreplan Lærebok: Gruntall Antall uker 34-37 Tall -lære de fire regneartene i hele tall, desimaltall og negative tall og i hoderegning og overslagsregning. -lære å bruke lommeregner og regneark -kjenne

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

Stegark i matematikk PRAKTISK BRUK AV STEGARKENE

Stegark i matematikk PRAKTISK BRUK AV STEGARKENE Stegark i matematikk PRAKTISK BRUK AV STEGARKENE OM STEGMETODEN Stegmetodens styrke Stegarkene angir en stige hvor eleven selv kan ta et medansvar for hva han/hun bør arbeide med. De fleste lærere har

Detaljer

Årsplan i matematikk for 6. klasse 2015-16

Årsplan i matematikk for 6. klasse 2015-16 Antall timer pr uke: 3,5 Lærer: Randi Minnesjord Læreverk: Multi 6 a og 6 b Gyldendal Nettstedene: www.moava.org og kikkora Grunnleggjande ferdigheiter (fra Kunnskapsløftet): Grunnleggjande ferdigheiter

Detaljer

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng.

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng. REGNING DE FIRE REGNINGSARTENE: Når tallbegrepet er godt innarbeidet, og elevene forstår posisjonssystemet, begynner arbeidet med de fire regningsartene: sum (+), differens (-), multiplikasjon ( ) og divisjon(:).

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Læreplan i matematikk. Kompetansemål etter 10. årstrinn

Læreplan i matematikk. Kompetansemål etter 10. årstrinn Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med

Detaljer

Årsplan matematikk 9. klasse skoleåret 2015/2016

Årsplan matematikk 9. klasse skoleåret 2015/2016 Årsplan matematikk 9. klasse skoleåret 01/01 Læreverk: Faglærer: Grunntall, Elektronisk Undervisningsforlag AS Heidi Angelsen Arbeidsmåter Skriftlig oppgaveløsing, individuelt og i gruppe Muntlig bruk

Detaljer

Undervisningsopplegg for ungdomstrinnet om likningar og annan algebra

Undervisningsopplegg for ungdomstrinnet om likningar og annan algebra Undervisningsopplegg for ungdomstrinnet om likningar og annan algebra Kjelde: www.clipart.com 1 Likningar og annan algebra. Læraren sitt ark Kva seier læreplanen? Tal og algebra Mål for opplæringa er at

Detaljer

Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning.

Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning. MATEMATIKK 8. KLASSE ÅRSPLAN Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE 34 35 36 Kapittel 1 Naturlige tall Primtall Faktorisering Hoderegning Tall og algebra punkt: 1, 2, 3 og 4 37 38 Tall og tallforståelse

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Vurderingskriterier kjennetegn på måloppnåelse

Vurderingskriterier kjennetegn på måloppnåelse Kompetansemål 1.trinn Mål for opplæringen er at Eleven skal kunne: 1. Telle til 50, dele og sette sammen mengder opp til 10 2. Gjøre overslag over mengder, telle opp, sammenligne tall og tallstørrelser

Detaljer

Matematikk 7. trinn 2014/2015

Matematikk 7. trinn 2014/2015 Matematikk 7. trinn 2014/2015 Tid Emne Kompetansemål Delmål Arbeidsmåte Vurdering 34- Tall 39 - beskrive for desimaltall, rekne med positive og negative heile tal, desimaltall, brøker og prosent, og plassere

Detaljer

Match Learner. Lek og lær

Match Learner. Lek og lær Match Learner Lek og lær Fax Sparebanken Pluss, Post-box 200 Account No: 3000.19.54756 2 Match Learner Lek og Lær Match er kvalitetsspill for alle barn fra to år og oppover. Spillene kan brukes hver for

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer