INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER"

Transkript

1 INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER... 3 POTENSUTTRYKK... 3 KVADRATRØTTER... 4 KVADRATSETNINGENE... 4 BRUK AV KVADRATSETNINGENE TIL FAKTORISERING... 4 FUNKSJONER... 5 LINEÆRE FUNKSJONER... 5 PROPORSJONALITET... 6 BRØKFUNKSJON... 6 OMVENDT PROPORSJONALITET... 7 ANDREGRADSFUNKSJON... 7 EKSPONENTIALFUNKSJON... 7 ULIKE REPRESENTASJONER AV FUNKSJONER... 8 LIKNINGER LØST VED «HOLD OVER» METODEN... 8 LIKNINGER LØST VED «GJETT OG SJEKK» METODEN... 8 LIKNINGER LØST VED ALGEBRAISK METODE... 8 SETTE PRØVE PÅ LIKNINGER... 9 ANDREGRADSLIKNINGER... 9 Å LØSE ET PROBLEM VED Å SETTE OPP LIKNING... 9 Å LØSE EN LIKNING MED HENSYN PÅ EN VARIABEL LIKNINGSSYSTEMER LØST VED INNSETTINGSMETODEN LIKNINGSSYSTEMER LØST VED ADDISJONSMETODEN LIKNINGSSYSTEMER LØST VED GRAFISK METODE ULIKHETER H. Aschehoug & Co. Side 1

2 ALGEBRA OG FUNKSJONER PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først. USYNLIGE PARENTESER For å gjøre algebraiske uttrykk enklere å lese, har matematikerne funnet på reglene om regnerekkefølge: Potenser skal regnes ut først, så multiplikasjoner og divisjoner og til slutt addisjoner og subtraksjoner i regneuttrykk der bare disse regneartene forekommer. Dette betyr at det er usynlige parenteser rundt potenser, multiplikasjoner og divisjoner. USYNLIGE MULTIPLIKASJONSTEGN Hvis en bokstav eller en parentes skal multipliseres med et parentesuttrykk, en brøk eller et tall, kan du la være å skrive multiplikasjonstegnet. Det gjør formelen kortere. DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE Disse ti lovene er regler matematikerne har funnet ut at gjelder for regning med tall. Uansett hvilke tall a, b, c og d er, får du samme svar om du regner ut høyre side og venstre side i hver lov. Lov 1ab = ba Lov a(b + c) = ab + ac Lov 3 a(b c) = ab ac Lov 4 a(bc) = (ab)c Eksempel Lov 5 til lov 4 a (b + c) = a b c Lov 6 a (b c) = a b + c H. Aschehoug & Co. Side

3 REGNEUTTRYKK INNSATT FOR VARIABLER Bokstavene som inngår i algebraiske lover kalles variabler, fordi vi kan sette inn ulike tall for dem. Vi kan også sette inn regneuttrykk med en synlig eller usynlig parentes rundt for variablene. Disse regneuttrykkene kan inneholde tall, bokstaver eller begge deler. Hvis vi skal forenkle formelen kan vi bruke loven med, og til å få SETTE OPP FORMLER En formel uttrykker en sammenheng mellom størrelser.. Magdi kjøper et Toyotaklistremerke til kr 0 hver dag. Pengesummen Pn han har brukt på klistremerker etter n dager er da gitt ved formelen Pn = 0 n POTENSUTTRYKK Et potensuttrykk er på formen n a Tallet a kalles grunntallet, og tallet n kalles eksponenten. Definisjon: n a a a a a (n faktorer) Regler man kan bevise: Følgende definisjoner er valgt fordi de passer med reglene ovenfor: H. Aschehoug & Co. Side 3

4 KVADRATRØTTER Kvadratroten av tallet a skrives a Per definisjon skal a ikke være negativ, og vi skal ha ( a) ( a) a 16 4 fordi Regler man kan bevise: Hvis a er et naturlig tall og ikke er et helt tall, så er et irrasjonalt tall. Eksempler: og KVADRATSETNINGENE Første kvadratsetning: ( a b) a ab b Andre kvadratsetning: ( a b) a ab b Konjugatsetningen: ( a b)( a b) a b Første kvadratsetning er illustrert til høyre. BRUK AV KVADRATSETNINGENE TIL FAKTORISERING Bruk konjugatsetningen til å faktorisere uttrykket x 1 Bruk første kvadratsetning til å faktorisere uttrykket x xy y Bruk andre kvadratsetning til å faktorisere 9x 6x 1 H. Aschehoug & Co. Side 4

5 Her er et eksempel hvor konjugatsetningen brukes sammen med algebraisk lov 9. FUNKSJONER Når en størrelse x bestemmer en annen størrelse y entydig, sier vi at y er en funksjon av x og skriver y f() x LINEÆRE FUNKSJONER Lineære funksjoner er på formen f( x) ax b Stigningstall: a Skjæring med y-aksen: b Marie tar bussen til butikken for å kjøpe x kg epler. Bussen koster 30 kr tur retur, og eplene koster 15 kr per kg. Da er f(x) utgiftene hennes. f(x) = 15x + 30 H. Aschehoug & Co. Side 5

6 PROPORSJONALITET En proporsjonalitet er på formen f( x) ax Stigningstall: a Skjæring med y-aksen: b 0 Det koster kr per minutt å parkere i det nye flotte parkeringshuset i byen. Da er f( x) x prisen for å parkere x minutter. BRØKFUNKSJON a f( x) b x 000 fx ( ) 75 x 10. trinnselevene leier et lokale til avslutningen. Det koster 000 kr. I tillegg må elevene betale 75 kr hver for pizza. Da er f(x) prisen hver elev må betale. H. Aschehoug & Co. Side 6

7 OMVENDT PROPORSJONALITET a fx () x 8 fx () x Et rektangel har areal 8 cm, og bredde x. Da er f(x) lengden. ANDREGRADSFUNKSJON f(x) = ax + bx + c 100 x f( x) x x(50 x) x 50x Et rektangel har omkrets 100 cm, og bredde x. Da er f(x) arealet av rektangelet. EKSPONENTIALFUNKSJON f(x) = k a x f(x) = ,03 x Mons setter 5000 kr inn i banken. Renten er 3 %. Da er f(x) beløpet han har på konto etter x år. H. Aschehoug & Co. Side 7

8 ULIKE REPRESENTASJONER AV FUNKSJONER Funksjoner kan representeres på ulike måter. Vi har sett på fire slike måter. Overgangene mellom disse fire satte vi opp i en Janviertabell. LIKNINGER LØST VED «HOLD OVER» METODEN Denne metoden passer ofte når den ukjente x fins bare ett sted i likningen. Vi tenker at vi holder fingeren over et uttrykk der x er med. Her holder vi over x +, og ser at denne må være 5. Altså x = 3. LIKNINGER LØST VED «GJETT OG SJEKK» METODEN Denne metoden går ut på å gjette en verdi for x, sette inn i likningen, og se om den passer. Her passer LIKNINGER LØST VED ALGEBRAISK METODE Ved algebraisk løsningsmetode kan vi enten gjøre samme regneoperasjon på begge sider av likningen, eller vi kan bruke algebraiske lover til å skrive om uttrykket på den ene siden. H. Aschehoug & Co. Side 8

9 SETTE PRØVE PÅ LIKNINGER Når du skal sette prøve på en likning, setter du inn x-verdien du har funnet i likningen, og regner ut venstre og høyre side hver for seg. Vi setter prøve på likningen over. Venstre side (VS) Høyre side (HS) Vi ser at vi får samme svar på venstre og høyre side. Det betyr at vi har funnet riktig verdi for x. ANDREGRADSLIKNINGER En andregradslikning kan skrives på formen ax bx c 0 der x er den ukjente og a, b, c er gitte tall. Vi kan løse slike likninger f.eks. ved GeoGebra. Vi kan løse likningen i GeoGebra ved å bruke kommandoen Nullpunkt på andregradsfunksjonen f(x) = x 5x + 6 Å LØSE ET PROBLEM VED Å SETTE OPP LIKNING I en klasse har 1 3 av elevene valgt spansk, 1 av elevene har valgt fransk og 5 har valgt noe annet. Hvor mange elever er det i klassen? Den ukjente er antall elever i klassen. Dette antallet kaller vi x. Da er 1 1 x x 5 x 3 H. Aschehoug & Co. Side 9

10 Å LØSE EN LIKNING MED HENSYN PÅ EN VARIABEL Volumet V av en kjegle er gitt ved 1 V Gh 3 Vi skal finne h, altså løse likningen med hensyn på h: 3V Gh 3V h G LIKNINGSSYSTEMER LØST VED INNSETTINGSMETODEN I x y 5 II x y 1 Likning II gir x 1 y Innsatt i likning I gir dette (1 y) y 5 y y 5 3y 3 y 1 Likning II gir da x 1 1 LIKNINGSSYSTEMER LØST VED ADDISJONSMETODEN I x y 5 II x y 1 I + II: 3x 0y 6.Dette gir x =. Likning II gir da y 1, altså y = 1. H. Aschehoug & Co. Side 10

11 LIKNINGSSYSTEMER LØST VED GRAFISK METODE I x y 5 II x y 1 ULIKHETER Du kan løse ulikheter algebraisk på samme måte som du løser likninger, bortsett fra at du må snu ulikhetstegnet når du multipliserer eller dividerer begge sider med et negativt tall. Se eksempel. Vi skal løse ulikheten H. Aschehoug & Co. Side 11

PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først.

PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først. Smmedrg kpittel SAMMENDRAG Dette er et smmedrg v det du hr rbeidet med om lgebr i Nummer 8, Nummer 9 og Nummer 10. Hvis du treger mer treig utover oppgvee i Nummer 10, fier du ekstr oppgver på elevettstedet.

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

GeoGebra-opplæring i Matematikk 1T

GeoGebra-opplæring i Matematikk 1T GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Algebra. Mål. for opplæringen er at eleven skal kunne

Algebra. Mål. for opplæringen er at eleven skal kunne 8 1 Algebra Mål for opplæringen er at eleven skal kunne regne med potenser, formler, parentesuttrykk og rasjonale og kvadratiske uttrykk med tall og bokstaver omforme en praktisk problemstilling til en

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

Regning med tall og algebra

Regning med tall og algebra Regning med tall og algebra Dette er en variert samling av oppgaver. De kan alle løses ved algebraisk, men det fins også andre måter å løse dem på. Man kan bruke kvadratsetningene, potensregning, prosentregning

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Kapittel 1 Tall og tallregning

Kapittel 1 Tall og tallregning Kapittel 1 Tall og tallregning Enkel kalkulator I en del situasjoner er tallregningen så tidkrevende at det kan være fornuftig å bruke kalkulator. I andre situasjoner kan vi bruke kalkulatoren til å kontrollere

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Årsplan Matematikk 9B 2017/2018

Årsplan Matematikk 9B 2017/2018 Årsplan Matematikk 9B 2017/2018 Uke Grunntall 9 Side Kunnskapsmål: Læringsmål: Jeg : 35 36 37 38 Kap. 1 Tall Regneartene - Addisjon - Subtraksjon - Multiplikasjon - Divisjon Vi multipliserer og dividerer

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Kompendium til MATH001 - Forkurs i matematikk

Kompendium til MATH001 - Forkurs i matematikk Kompendium til MATH001 - Forkurs i matematikk Høst 017, NMBU Kine Josefine Aurland-Bredesen, e-post: kine.josefine.aurland-bredesen@nmbu.no f (x) = 1 x Kompendiumet gir en rask gjennomgang av grunnleggende

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

E.1: Lage et uttrykk som viser sammenhengen mellom to variabler hvor nødvendige opplysninger gis eksplisitt E.2: Faktorisere flerleddet

E.1: Lage et uttrykk som viser sammenhengen mellom to variabler hvor nødvendige opplysninger gis eksplisitt E.2: Faktorisere flerleddet 1. november 2013 INNHOLD INNHOLD... 2 INNLEDNING... 4 STEGARK... 5 NIVÅ A: POSITIVE UTTRYKK MED SAMME VARIABEL... 5 NIVÅ B: TREKKE SAMMEN POSITIVE OG NEGATIVE UTTRYKK, INNSETTING AV POSITIVE VERDIER...

Detaljer

Innledning. Mål. for opplæringen er at eleven skal kunne

Innledning. Mål. for opplæringen er at eleven skal kunne 8 1 Innledning Mål for opplæringen er at eleven skal kunne løse likninger, ulikheter og likningssystemer av første og andre grad og enkle likninger med eksponential- og logaritme funksjoner, både ved regning

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

REPETISJON, 10A, VÅR 2017.

REPETISJON, 10A, VÅR 2017. REPETISJON, 10A, VÅR 2017. Jeg har satt opp en sjekkliste som kan benyttes som hjelp til repetisjon før heldagsprøva, 23.03.17, og eksamen. Bruk lærebokas oppsummeringskapittel, utdelte hefter og diverse

Detaljer

Årsplan matematikk 9.klasse 2017/2018

Årsplan matematikk 9.klasse 2017/2018 Årsplan matematikk 9. klasse 017/018 Læreverk: Grunntall 9, Elektronisk Undervisningsforlag AS Hefte fra Grunntall om Geogebra (deler av det) Hefte fra Grunntall om Excel (deler av det) Hefte fra Grunntall

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Årsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole

Årsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole Årsplan i matematikk Trinn 9 Skoleåret 2016-2017 Tids rom 3 Kompetansemål Hva skal vi lære? (Læringsmål) Hvordan jobber vi? (Metoder) sammenligne og regne tall på standardform og uttrykke slike tall på

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Kapittel 1 Tall...

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Kapittel 1 Tall...

Detaljer

Løsninger kapittel 1. Oppgave 1.3 a. Oppgave 1.4 a. H. Aschehoug & Co. Side 1

Løsninger kapittel 1. Oppgave 1.3 a. Oppgave 1.4 a. H. Aschehoug & Co.  Side 1 KAPITTEL 1 LØSNINGSFORSLAG Oppgave 1.3 a b Oppgave 1.4 a H. Aschehoug & Co. www.lokus.no Side 1 b Oppgave 1.12 a 19 b 55 c 610 d 31 e 12300 f 75 Oppgave 1.14 a Overslag: 420 270 3200 b Eksakt verdi: 413

Detaljer

Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her,

Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her, Oppgave 1 b 3b Hva er 3a 8a b hvis a 2? A 5 B 7 C 8 D 24 E 70 Er det nødvendig å finne tall for a og b? Hvor i uttrykket finnes a b? b Hva blir verdien av første ledd når a 2? Skriv om potensen i andre

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter.

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter. Algebra Variabel Konstant trekke sammen Algebra er bokstavregning. Det er et verktöy som forenkler regneoperasjonene i forskjellige omrôder av matematikken. Bokstavene er symboler for tall og skal behandles

Detaljer

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet)

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet) Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

Regning med variabler

Regning med variabler Regning med variabler???? (x y) (x y) Hvordan kan Herman regne ut uttrykket på tavla? Når vi skal regne ut bokstavuttrykk med parenteser, må vi løse opp parentesene først. Hvis det står et tall eller et

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29 Kapittel. Algebra Algebra kalles populært for bokstavregning. Det er ikke mye algebra i Matematikk P-Y. Det viktigste er å kunne løse enkle likninger og regne med formler. Kapittel. Algebra Side 9 1. Forenkling

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

1T kapittel 4 Likningssystemer og ulikheter

1T kapittel 4 Likningssystemer og ulikheter T kapittel 4 Likningssystemer og ulikheter Løsninger til oppgavene i oka Oppgave 4. a Vi tegner grafene til y = og y = + 3 i samme koordinatsystem. Skjæringspunktet mellom grafene har koordinatene (, ).

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

Formler, likninger og ulikheter

Formler, likninger og ulikheter 58 3 Formler, likninger og ulikheter Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Litt enkel matematikk for SOS3003. Om matematikk. Litt om kva vi treng. Erling Berge

Litt enkel matematikk for SOS3003. Om matematikk. Litt om kva vi treng. Erling Berge Litt enkel matematikk for SOS3003 Erling Berge 31 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

Faktorisering og multiplisering med konjugatsetningen

Faktorisering og multiplisering med konjugatsetningen Faktorisering og multiplisering med konjugatsetningen De følgende oppgavene er øvinger i faktorisering og multiplisering ved hjelp av konjugatsetningen /3. kvadratsetning. Gjennom oppgavene gir vi elevene

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

Årsplan matematikk 9. klasse skoleåret 2015/2016

Årsplan matematikk 9. klasse skoleåret 2015/2016 Årsplan matematikk 9. klasse skoleåret 01/01 Læreverk: Faglærer: Grunntall, Elektronisk Undervisningsforlag AS Heidi Angelsen Arbeidsmåter Skriftlig oppgaveløsing, individuelt og i gruppe Muntlig bruk

Detaljer

Innlevering i FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 19. september 2014 kl. 14:00 Antall oppgaver: 18

Innlevering i FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 19. september 2014 kl. 14:00 Antall oppgaver: 18 Innlevering i FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag 9. september 04 kl. 4:00 Antall oppgaver: 8 Løsningsforslag Skriv som en brøk (eller et heltall) + 3/4 +

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Årsplan matematikk 8. trinn

Årsplan matematikk 8. trinn Kompetansemål Delmål/læringsmål (settes på ukeplan) Lærestoff Grunnleggende 34 36 Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal, brøkar, prosent, promille og tal på standardform,

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge 24 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2017-2018 Side 1 av 8 Periode 1: UKE 33-39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere faste

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver

Detaljer

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no Nummer 8-10 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no Hvorfor styrker man algebra i skolen? Det klages over at begynnerstudenter ved ulike høgskoler/universiteter har

Detaljer

PROSJEKT MÅLOPPNÅELSE

PROSJEKT MÅLOPPNÅELSE PROSJEKT MÅLOPPNÅELSE EMNE 1 TALL OG ALGEBRA Sammenligne og regne om hele tall, desimaltall, brøker, prosent, promille og tall på standardform, og uttrykke slike tall på varierte måter. DE FIRE REGNINGSARTENE

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Tenk det! Utforsking, forståelse og samarbeid i matematikkundervisningen

Tenk det! Utforsking, forståelse og samarbeid i matematikkundervisningen Tenk det! Utforsking, forståelse og samarbeid i matematikkundervisningen 27.11.14 Lisbet Karlsen 02.12.2014 HØGSKOLEN I BUSKERUD OG VESTFOLD PROFESJONSHØGSKOLEN 1 Verksted 90 min Bygge opp rike utforskingsopplegg

Detaljer

Andregradslikninger. x 2 =d hvor d = c a

Andregradslikninger. x 2 =d hvor d = c a Andregradslikninger En andregradslikning har form ax bx c=0 hvor x er ukjent. Den enkelste er når b=0. Vi har då x =d hvor d = c a Denne likning kan løses med å ta rot. Eksempel 1. Vi løser x =11 Vi ønsker

Detaljer

Men han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir.

Men han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir. 3.0 Variabler Peder har en stor eplehage og selger epler i hele kasser. En dag selger han 3 kasser og den neste 5 kasser. Han vil finne ut hvor mange epler han har solgt til sammen når det er 50 epler

Detaljer

Matematikk 01 - Matematikk for data- og grafiske fag.

Matematikk 01 - Matematikk for data- og grafiske fag. Høgskolen i Gjøvik Avdeling for teknologi Versjon per. juni 004 Matematikk 0 - Matematikk for data- og grafiske fag. y x Hans Petter Hornæs hans.hornaes@hig.no Forord Dette kompendiet er skrevet for faget

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene.

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene. Oppgave I Likninger og ulikheter a) Løs likningen: x + 2 a. + (3x + 4) 3 6 2 ( x + 2)6 6 6 + (3x + 4) 3 6 2 2x + 4 + 9x + 2 2x 9x 2 5 x b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig),

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1

Detaljer

Innhold. 1 Kvinner og matematikk 1 2 Tall er kanskje mer enn du tror Tall og tallsystem 4. 3 Negative tall 31. 4 Brøk 40

Innhold. 1 Kvinner og matematikk 1 2 Tall er kanskje mer enn du tror Tall og tallsystem 4. 3 Negative tall 31. 4 Brøk 40 Innhold Kapittel Side 1 Kvinner og matematikk 1 2 Tall er kanskje mer enn du tror Tall og tallsystem 4 Titallsystemet 6 Totallsystemet 8 Sekstitallsystemet 10 Generelt om posisjonssystem 12 Romertall 14

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge Fall 2009 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære og å lese Det kan vere litt vanskelegare

Detaljer

Kommentar til eksempeloppgaven i MAT0010 Matematikk for eksamen våren 2015. Særlig om bruk av graftegner på datamaskin

Kommentar til eksempeloppgaven i MAT0010 Matematikk for eksamen våren 2015. Særlig om bruk av graftegner på datamaskin Kommentar til eksempeloppgaven i MAT0010 Matematikk for eksamen våren 2015. Særlig om bruk av graftegner på datamaskin Eksempeloppgaven kan inneholde flere oppgaver i forhold til en ordinær eksamensoppgave.

Detaljer

Forkurshefte i matematikk variant 1

Forkurshefte i matematikk variant 1 Forkurshefte i matematikk variant 1 2014 Inger Christin Borge Matematisk institutt, UiO (Plan for kurset: se side 3) Forord Velkommen til Universitetet i Oslo (UiO), og til forkurs i matematikk! Dette

Detaljer

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

Sandefjordskolen LOKALE KJENNETEGN FOR MÅLOPPNÅELSE

Sandefjordskolen LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK. -. Trinn KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne TALL OG ALGEBRA sammenligne og omregne hele tall, desimaltall, brøker, prosent, promille og tall på

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

1. trinn. 2. trinn 3. trinn 4. trinn 5. trinn 6. trinn 7. trinn

1. trinn. 2. trinn 3. trinn 4. trinn 5. trinn 6. trinn 7. trinn 1 Levanger kommune, læreplaner NY LÆREPLAN 2006: Matematikk Grunnleggende ferdigheter: - å kunne uttrykke seg muntlig i matematikk - å kunne uttrykke seg skriftlig i matematikk - å kunne lese i matematikk

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 102 - løsningsforslag BOKMÅL Emnekode: MAT102 Ordinær prøve Tid: 5 timer Dato: 2.6.2015 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Nett, Notodden Antall sider:

Detaljer

GeoGebra-opplæring i 2P-Y

GeoGebra-opplæring i 2P-Y GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere

Detaljer

K O M P E T A N S E M Å L

K O M P E T A N S E M Å L K O M P E T A N S E M Å L T A L L O G A L G E B R A G E O M T E R I M Å L I N G S T A T I S T I K K, S A N N Y S N L I G H E T O G K O M B I N A T O R I K K F U N K S J O N E R D E L M Å L / V U R D E

Detaljer

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: 4MX230UM1 Emnenavn: Matematikk 2 (5-10) KfK, emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgave 1 I denne oppgaven får du oppgitt tre situasjoner som

Detaljer

Algebraiske morsomheter Vg1-Vg3 90 minutter

Algebraiske morsomheter Vg1-Vg3 90 minutter Lærerveiledning Passer for: Varighet: Algebraiske morsomheter Vg1-Vg3 90 minutter Algebraiske morsomheter er et skoleprogram hvor elevene kan bruke forskjellige matematiske modeller i praktiske undersøkende

Detaljer

Lokal læreplan i Matematikk Trinn 9

Lokal læreplan i Matematikk Trinn 9 Lokal læreplan i Matematikk Trinn 9 1 9. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer