Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235"

Transkript

1 Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og to tideler b Fem tiere, to enere, fem tideler, tre hundredeler og sju tusendeler c Tre tusener, fem tiere, 3 enere, to tideler, fire hundredeler d Tre hundrere, åtte enere, to hundredeler e Fire tiere, fem hundredeler, seks tusendeler Oppgave 3 Hvilket tall er størst 3,425 3,0425 3,0525 3,45 3,52 Oppgave 4 Du har sifrene 0,1,3,5,7,9 og et desimalkomma. Lag tall hvor du bruker alle sifrene og desimalkommaet. a Lag ett tall som er nærmest 1 b Lag ett tall som er nærmest 100 c Lag ett tall som er nærmest 2 d Lag ett tall som er nærmest 6 Oppgave 5 Plasser tallene på ei tallinje. Lag en tallinje til hver oppgave. a 9, 5, 3, 12, 8, 4 b 210, 80, 70, 160, 110, 20 c 12, 32, 18, 6, 24 H. Aschehoug & Co Side 1

2 Oppgave 6 Skriv tallene i rekkefølge etter størrelse. Begynn med det miste tallet. a 3,78, 3, 178, 3, 0871 b 2,56, 2,057, 2, 156 c 1,36, 1,136, 1,0362 Oppgave 7 Bruk hoderegning og tenk gjennom hvilken strategi du bruker. a d g 200 : 25 b e 7 70 h 160 : 40 c f 8 25 i 90 : 15 Oppgave 8 a d g 1260 : 30 b e h c f 560 : 8 i 624 : 24 Oppgave 9 Du skal kjøpe ei jakke som koster 680 kr. Du har spart 590 kr. Resten må du låne fra foreldrene dine. Hvor mye må du låne? Oppgave 10 a Hva er summen av 2450 og 345? b Hva er differansen mellom 1020 og 300? c Hva er produktet av 12 og 6? d Hva er svaret i divisjonsstykket 240 : 40? e Vet du hva vi kaller svaret i et divisjonsstykke? f Forklar begrepene sum, differanse og produkt. Oppgave 11 a ( 4) + 7 e ( 5) ( 4) i ( 18) : 6 b ( 8) 2 f ( 6) 5 j 16 : ( 4) c 5 ( 3) g 4 ( 8) k ( 54) : 6 d 12 + ( 9) h ( 12) ( 3) l ( 96) : ( 12) H. Aschehoug & Co Side 2

3 Oppgave 12 a d ( 8) + ( 8) g ( 8) 8 b 8 + ( 8) e 8 8 h ( 8) ( 8) c ( 8) + 8 f 8 (8) i Oppgave 13 a 8 8 d ( 8) ( 8) g 8: ( 8) b 8 ( 8) e 8 : 8 h ( 8) : ( 8) c ( 8) 8 f ( 8) : 8 Oppgave 14 a d g b e h c f i Oppgave 15 a (6 + 8) 5 d 4 (5 + 3) g (5 + 3) : (16 8) b (12 4) 5 e 6 (18 12) h (15 3): (2 + 4) c (10 3) (4 + 3) f (14 + 2) (12 8) i (24 6) (12 9) Oppgave 16 Sett inn parenteser der de mangler slik at svarene blir riktige. a = 84 d = 23 g = 60 b = 88 e = 60 h = 49 c = 120 f = 30 i = 70 H. Aschehoug & Co Side 3

4 Oppgave 17 Faktoriser tallene i to faktorer. Vis ved hjelp av rutenett. Hvor mange muligheter finns det? a 36 d 45 g 128 b 24 e 64 h 144 c 81 f 75 i 121 Oppgave 18 Primtallsfaktoriser tallene. a 36 d 45 g 128 b 24 e 64 h 144 c 81 f 75 i 121 Oppgave 19 a Hva betyr det at et tall er delelig med et tall? b Hvilke av tallene er delelig med 3: 93, 91, 84, 81, 74, 54, 120? c Hvilke av disse tallene i oppgave b har 3 som faktor? d Ser du en sammenheng mellom oppgave b og c? Oppgave 20 Forklar og vis ved et eksempel hva de ulike begrepene er: a sammensatt tall b primtall c oddetall d partall e primtallsfaktorisering f delelighet g faktorisering h tverrsum H. Aschehoug & Co Side 4

5 Flere utfordringer Oppgave 1 Du har sifrene A og B Ved å bruke tre av sifrene i enten A eller B skal du lage ett tall så nærme 500 som mulig. Du kan bare bruke ett siffer én gang. a Hvilket tall kommer nærmest? b Hvilket tall kommer nærmest 600? c Hvilket tall kommer nærmest 5000 ved å bruke fire sifre fra enten A eller B? d Hvilket tall kommer nærmest 6000 ved å bruke fire sifre fra enten A eller B? Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr Dette kan igjen skrives som Vi har nå skrevet tallet på utviklet form. Basisen her er 10. 4, 3, 2 og 1 angir hvor mange av de enkelte tierpotensene vi har. Skriv tallene på utviklet form a 2783 b 2904 c 5610 d 1020 Oppgave 3 Tenk deg at du grupperer tallene i femmere. Da blir basisen 5. Da trenger vi bare symbolene 0, 1, 2, 3 og 4. Skriv tallene med base fem på utviklet form. a b c d 2341 fem 1420 fem 3412 fem Hvis hvert av tallene over angir hvor mange perler det er i tre ulike krukker, hvor mange perler er det i hver av krukkene? Oppgave 4 I et plassverdisystem med basis to, trenger vi bare to symboler, bare 0 og 1. Vi kaller dette for det binære tallsystemet. Hvilken verdi står tallet to for? H. Aschehoug & Co Side 5

6 Oppgave 5 Skriv tallet 450 i plassverdisystem der basisen er a 5 c 2 b 3 d 12 Oppgave 6 a c seks + 1 b fem + 1 d to + 1 Oppgave 7 Det fortelles at oppfinneren av sjakkspillet var en fattig inder. Han fikk tilbud om å ønske seg det han ville som takk for spillet. Han sendte bud om sitt ønske: 1 riskorn for den første ruta, to riskorn for den andre ruta, 4 for den tredje, 8 for den fjerde ruta osv. for alle de 64 rutene på brettet. Hvor mange riskorn ønsket han seg? Oppgave 8 a 8 ( 4) 7 + ( 3) ( 8) + ( 9) + 9 d ( 2) ( 3) + ( 6) ( 4) 6 + ( 9) b 19 ( 5) ( 2) + ( 11) ( 1) e 4 ( 4) ( 3) ( 9) c ( 15) +( 6) 8 ( 7) ( 8) f ( 11) + 2 ( 8) + ( 3) ( 4) + 8 Oppgave 9 Multiplikasjonstabellen i vårt periodesystem med basis ti ser slik ut H. Aschehoug & Co Side 6

7 Skriv av og fyll ut den lille multiplikasjonstabellen i basis fem Oppgave 10 Norge er ikke lenger noe sted å bo for oss, så vi har reist til Sjulandet for å søke asyl der. Vi blir godt mottatt i passkontrollen, men før vi slipper gjennom, må vi dokumentere at vi kan regne i deres tallsystem, et posisjonssystem med base 7. Oppgavene er å regne ut i sjutallsystemet. a 235 sju sju b c d e 316 sju 135 sju 326 sju 244 sju 4061 sju : 50 sju Kontroller svarene ved å regne alle tall i 10 tallssystemet. Oppgave 11 Du har divisjonsstykket 7730 : 23 eller skrevet som brøk Her ser du fire måter som er tenkt for å finne omtrentlig svar , , , a b c d Hvordan vil du forklare framgangsmåtene? Hva blir de ulike overslagene? Regn ut hva det nøyaktige svaret blir. Hvilken av overslagene var nærmest det nøyaktige svaret? Oppgave kroner blir delt likt mellom 34 stykker. Hvilket overslag vil du foreslå slik at du kommer mest mulig nærmest det eksakte svaret? H. Aschehoug & Co Side 7

8 Oppgave 13 Her er en gammel multiplikasjonsoppstilling. Den kalles gittermetoden eller gelosiametoden (italiensk). Her har vi multiplisert 174 med 14. Svaret blir Slik vil multiplikasjonen regnes ut etter denne metoden: a Finn ut hvordan og hvorfor metoden virker. b Prøv metoden på og Oppgave 14 Et tall som er uendret når det skrives omvendt kalles palindromtall. Eksempler er 454 og a Hvorfor er et firesifret palindromtall delelig med 11? b Hva med et femsifret palindromtall? c Enn et sekssifret palindromtall? Oppgave 15 Tallet 12 har faktorene 1, 2, 3, 4, 6 og 12. Tallet 12 har altså 6 faktorer. a b 18 har også seks faktorer. Hvilke? Finn andre tall med seks faktorer. Har disse tallene noen likhetstrekk? Utforsk dette så langt du kan. Oppgave 16 2 a 52 er faktorisert lik eller Finn alle faktorene i 52. b Hvordan kan du ved hjelp av primtallsfaktoriseringen av 52, forklare at det fins seks faktorer? c Finn på samme måten alle faktorene i 220 ved først å primtallsfaktorisere. H. Aschehoug & Co Side 8

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

Øvingshefte. Tall tallsystemet vårt

Øvingshefte. Tall tallsystemet vårt Øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt 1 Tall tallsystemet vårt Seksjon 1 Oppgave

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten. Kunne avgjøre hvilken brøk som er størst

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Kapittel 1 Tall og tallregning

Kapittel 1 Tall og tallregning Kapittel 1 Tall og tallregning Enkel kalkulator I en del situasjoner er tallregningen så tidkrevende at det kan være fornuftig å bruke kalkulator. I andre situasjoner kan vi bruke kalkulatoren til å kontrollere

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b. TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og

Detaljer

Årsplan i Matematikk 7. trinn

Årsplan i Matematikk 7. trinn Årsplan i Matematikk 7. trinn 2016-2017 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Tall og tallforståelse Uke 34-35/36 Brøk Uke 36-39 Kunne beskrive plassverdisystemet

Detaljer

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2%

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2% Brøk-, desimalog prosentplater = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0,0 0,0 00 =,% = : = 0,0 0,0 00

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Årsplan i Matematikk 7. trinn

Årsplan i Matematikk 7. trinn Årsplan i Matematikk 7. trinn 2017-2018 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Eleven skal: Eleven skal: Brøk Uke 34-35 - Kunne regne med brøk og plassere

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Multiplikasjon 1. Introduksjonsoppgave:

Multiplikasjon 1. Introduksjonsoppgave: Multiplikasjon 1 Multiplikasjon er en av de fire regneartene som i mange tilfeller er en effektiv måte å skrive og regne ut gjentatt addisjon på. Svaret i et multiplikasjonsstykke kalles produkt, og tallene

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2017/2018 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4.TRINN

ÅRSPLAN I MATEMATIKK FOR 4.TRINN Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 4.TRINN 2017-18 *Vi bruker læreverket Multi 4. Oppgaveboka

Detaljer

Veiledning til kapitlene i TM 7A og 7B

Veiledning til kapitlene i TM 7A og 7B Veiledning til kapitlene i TM 7A og 7B Kapittel 1 God start Læreplanen Ifølge Kunnskapsløftet skal elevene etter 4. trinn kunne beskrive plassverdisystemet for de hele tallene, bruke positive og negative

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver

Detaljer

FAKTORISERING FRA A TIL Å

FAKTORISERING FRA A TIL Å FAKTORISERING FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til faktorisering F - 2 2 Grunnleggende om faktorisering F - 2 3 Fremgangsmåter F - 3 3.1 Den grunnleggende

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik og Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 200 Materialet i denne publikasjonen er omfattet av åndsverklovens

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL

Detaljer

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på?

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på? 3. kurskveld Gjennomgang av hjemmeleksa Hvilke tall tenker jeg på? Læreren tenker på to etterfølgende tall mellom 1 og 10. To elever får en lapp med hvert sitt av de to tallene. Elev A: Jeg vet ikke hvilket

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok.

ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok. Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand

Detaljer

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet. Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man

Detaljer

Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret

Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Årsplan matematikk 4. klasse, 2016-2017 Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Uke Kompetansemål (K06) Tema Arbeidsmåter Vurdering 34-35 Lese av, plassere og beskrive posisjoner i rutenett,

Detaljer

Tiervenner erteposegjemsel

Tiervenner erteposegjemsel Telle til 10 Mål: Elevene skal kunne rekketelle til 10, i stigende og synkende rekkefølge. Antall elever: minst 10 elever. Kjegler med tallene 1 til 10. (Bruk kjegleovertrekk på 0-kjeglen og skriv lapp

Detaljer

Divisjon med desimaltall

Divisjon med desimaltall Divisjon med desimaltall Mål Generelt: Divisjon med desimaltall. Mønster og sammenhenger i divisjon. Spesielt: Bruke overslag til å vurdere plassering av desimalkomma. Se hva som skjer med kvotienten når

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1

7. TRINN MATEMATIKK PERIODEPLAN 1 1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

Kyrkjekrinsen skole Årsplan for perioden:

Kyrkjekrinsen skole Årsplan for perioden: Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År:2012-2013 Trinn og gruppe: 4. trinn Lærer: Henriette Hjorth Røen og Katrine Skaale Johansen Uke Årshjul Hovedtema Kompetansemål Delmål

Detaljer

ÅRSPLAN. Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen. Karl Johans Minne skole

ÅRSPLAN. Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen. Karl Johans Minne skole ÅRSPLAN Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse August/september -utvikle, bruke og samtale om

Detaljer

Lokal læreplan matematikk 3. trinn

Lokal læreplan matematikk 3. trinn Lokal læreplan matematikk 3. trinn Lærebok: Multi 3 Antall uker Tema: (Statistikk) 2 Data og statistikk Multi grunnbok 3a s.2-15. Oppgavebok s. 2-7. Nettoppgave 2, nivå 1 og 3. Bruke legoklosser, knapper,

Detaljer

A) 13 B) 15 C) 18 D) 23 E) 24

A) 13 B) 15 C) 18 D) 23 E) 24 SETT 35 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En digital klokke viser tiden i timer og minutter. Av og til er klokkeslettet det samme om man leser det baklengs, for eksempel klokken 02:20 eller

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Hvor mye er 1341 kr delt på 2?

Hvor mye er 1341 kr delt på 2? Hvor mye er 1341 kr delt på 2? 10 1 4 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall

Detaljer

-utvikle og bruke ulike regnemetoder for addisjon og. subtraksjon av flersifrede tall både i hodet og på papiret.

-utvikle og bruke ulike regnemetoder for addisjon og. subtraksjon av flersifrede tall både i hodet og på papiret. Årsplan for 3.trinn matematikk 2016-2017 U 35 Telle og regne Tallene 0-100 36 Telle og regne med tallene 0-100 Stille opp addisjonsstykker uten/med veksling Grunntall 3A kap. 1 Grunntall 3A kap. 1 OMPTANSMÅL

Detaljer

Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann.

Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann. Mayafolkets tallsystem Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann. Mayafolket hadde null. Kun tre tegn. En prikk (stein)

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr?

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? 4 356 : 10 = Jeg vet om en lur måte å regne på MÅL I dette kapitlet skal du lære om divisjon med 10

Detaljer

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver Årsplan i matematikk for 3. trinn 2015/2016 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 T.M s. 4-21 tallene, bruke positive

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Eksamensoppgave i LGU51014 MATEMATIKK 1 (5-10), EMNE 1

Eksamensoppgave i LGU51014 MATEMATIKK 1 (5-10), EMNE 1 Institutt for grunnskolelærerutdanning 5.-0. og bachelor i tegnspråk og tolking Eksamensoppgave i LGU504 MATEMATIKK (5-0), EMNE Faglig kontakt under eksamen: Øyvind Andersen Lundeby Tlf.: 95776288 / 7342628

Detaljer

Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness

Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Figur 1. Standardalgoritme for divisjon. Jeg underviser i matematikk for lærerstudenter og opplever år etter år at de færreste

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Ukemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering

Ukemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering Uke Fagemne (Hentet fra Fagplan) 34 Rutenett og koordinatsystem Ukemål (Konkretiserte mål fra Fagplan) Jeg kan plassere punkter i et koordinatsystem og beregne avstander langs aksene. Læringsstrategier,

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 1

5. TRINN MATEMATIKK PERIODEPLAN 1 1 5. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

1.2 Posisjonssystemer

1.2 Posisjonssystemer MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) 1993 3) År 2000. 1.2 Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive

Detaljer

ÅRSPLAN I MATEMATIKK 17/18

ÅRSPLAN I MATEMATIKK 17/18 Tall KOMPETANSEMÅL PERIODE ARBEIDSMETODE DIGITALT VERKTØY Forstå plassverdisystemet for hele tall og, alt fra tusendeler til millioner og så med brøker og prosent. De skal også forstå utvidelsen til negative

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

Realfagsglede VG2 80 minutter

Realfagsglede VG2 80 minutter Lærerveiledning: Passer for: Varighet: Realfagsglede VG2 80 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no «Realfagsglede»

Detaljer

ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017. Høst 2016

ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017. Høst 2016 ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017 Dette er en tenkt plan. Den vil bli blir fortløpende revidert gjennom året. Høst 2016 Ekstra fokusområde for høsten: Regnestrategier Uke Kompetansemål Innhold Arbeidsmåte

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

Kompetansemål etter 7. årstrinn.

Kompetansemål etter 7. årstrinn. Kompetansemål etter 7. årstrinn. Tall og algebra: 1. Beskrive plassverdisystem for desimaltall, rene med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje. 2.

Detaljer

Årsplan i matematikk for 6.klasse

Årsplan i matematikk for 6.klasse Antall timer pr uke: 3,5 Lærere: Laila Helene Ween, Åse-Gunn Viumdal og Torild Varhaug Læreverk: og 6b Nettstedene: www.moava.org og salaby.no Årsplan i matematikk for 6.klasse 2016-2017 Grunnleggjande

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

ÅRSPLAN I MATEMATIKK

ÅRSPLAN I MATEMATIKK ÅRSPLAN I MATEMATIKK FOR 6. TRINN 2017/2018 Grunnleggende ferdigheter Grunnleggende ferdigheter er integrert i kompetansemålene, der de bidrar til utvikling av og er en del av fagkompetansen. I matikk

Detaljer

Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk

Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar samle, sortere, notere samle inn data 33-34 Data og statistikk Grunnbok 3a og illustrere

Detaljer

Løsninger kapittel 1. Oppgave 1.3 a. Oppgave 1.4 a. H. Aschehoug & Co. Side 1

Løsninger kapittel 1. Oppgave 1.3 a. Oppgave 1.4 a. H. Aschehoug & Co.  Side 1 KAPITTEL 1 LØSNINGSFORSLAG Oppgave 1.3 a b Oppgave 1.4 a H. Aschehoug & Co. www.lokus.no Side 1 b Oppgave 1.12 a 19 b 55 c 610 d 31 e 12300 f 75 Oppgave 1.14 a Overslag: 420 270 3200 b Eksakt verdi: 413

Detaljer

Her lager du mål du kan kopiere inn på ukebrev. Her skriver stikkord om hva elevene skal gjøre. Det kan holde med plenum + arbeidsoppgaver

Her lager du mål du kan kopiere inn på ukebrev. Her skriver stikkord om hva elevene skal gjøre. Det kan holde med plenum + arbeidsoppgaver Dette blir som en innholdsfortegnelse. Finn riktig mål fra kunnskapsløftet: kopier inn fra udir.no. 34 35 Hele tall, Titallssystemet Avrunding Beskrive og bruke plassverdisystemet for desimaltal, rekne

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Årsplan. Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier. Vurdering (i alle perioder)

Årsplan. Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier. Vurdering (i alle perioder) Årsplan Trinn: 7 Fag: Matematikk Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier Vurdering (i alle perioder) 34(1. -Titallsystemet -Add og sub med hele tall beskrive og bruke plassverdisystemet

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Hvorfor blir det tull med tall? - grunnleggende tallforståelse Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 16-Oct-13 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken

Detaljer

Årsplan. Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier. Vurdering (i alle perioder)

Årsplan. Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier. Vurdering (i alle perioder) Årsplan Trinn: 7 Fag: Matematikk Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier Vurdering (i alle perioder) 34(1. -Titallsystemet -Add og sub med hele tall beskrive og bruke plassverdisystemet

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

ÅRSPLAN I MATEMATIKK

ÅRSPLAN I MATEMATIKK ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2017/2018 Grunnleggende ferdigheter Grunnleggende ferdigheter er integrert i kompetansemålene, der de bidrar til utvikling av og er en del av fagkompetansen. I matikk

Detaljer

Årsplan Matematikk 3.trinn

Årsplan Matematikk 3.trinn Årsplan Matematikk 3.trinn 2016-2017 Uke Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 34 35 Kap. 1 Data og statistikk Samle og sortere objekter i passende kategorier. Illustrere

Detaljer

Fagplan Matte, 3. trinn, 2010/2011

Fagplan Matte, 3. trinn, 2010/2011 Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og

Detaljer

siffer og desimal Grunnleggende begreper plass antall retning størrelse forandring

siffer og desimal Grunnleggende begreper plass antall retning størrelse forandring siffer og desimal Matematisk verktøy for læring av: Grunnleggende begreper plass antall retning størrelse forandring Fagbegreper siffer hele tall desimaler titallsystemet posisjonssystemet desimaltall

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Læringsmål for trinnet Hovedområde Læremidler og lærebøker, lokalt lærestoff Lære: Plassverdisystemet, oppdeling av tall i tusenere,

Læringsmål for trinnet Hovedområde Læremidler og lærebøker, lokalt lærestoff Lære: Plassverdisystemet, oppdeling av tall i tusenere, LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE FAG: Matematikk TRINN: 6. Timefordeling på trinnet: 4 Grunnleggende ferdigheter i regning, lesing, skriving og digitale ferdigheter. Uke 33-34 Kompetansemål

Detaljer

Kompetansemål etter 2. trinn

Kompetansemål etter 2. trinn Kompetansemål etter 2. trinn Tall: 1. telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2. bruke tallinjen til beregninger og å angi tallstørrelser 3. gjøre overslag

Detaljer