Hvor mye er 1341 kr delt på 2?

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Hvor mye er 1341 kr delt på 2?"

Transkript

1 Hvor mye er 1341 kr delt på 2?

2 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall med et helt tall KOPIERINGSORIGINALER 10.1 Felles problemløsing Divisjon 2 75

3 Divisjon som gir rest Her er det ikke like mange hele boller til hver! Nei, men vi kan dele likt likevel! «Det blir ikksnakkeboble Simen: Hvor mye får hvert av barna hvis de deler likt? 2 2 : 4 = : 4 = 5, Hvis en divisjon ikke går opp, sier vi at vi får en rest. Rest 2 Hvis vi vil fordele resten også, gjør vi først om de to enerne til tideler. Det blir 20 tideler. Sett desimaltegnet etter enerne i svaret før du fordeler tidelene. Det betyr at hver av de fire får 5 boller + 0,5 bolle = 5,5 boller. 76

4 1 Regn ut. 9 : 2 = 6 : 4 = 2 Regn ut. 1 7 : 5 = 1 2 : 8 = 3 Regn ut. 4 8 : 5 = 5 8 : 4 = Divisjon 2 77

5 4 Patrik og familien hans har motorbåt. På en tur som tok 5 timer, brukte båten 24 liter bensin. Hvor mange liter bensin brukte båten i gjennomsnitt per time? liter Regn her: 2 4 : 5 = 5 Hvor langt sykler Simen per uke hvis han sykler 148 km på åtte uker? km Regn her: : 8 = 78

6 Hvis et divisjonsstykke ikke går opp når vi deler ut resten, må vi vurdere hvor mange desimaler det er hensiktsmessig å ha i svaret. 1 3 : 7 = 1, Eksempel I dette regnestykket har vi regnet så langt at vi har fått fire desimaler i svaret, uten at stykket har gått opp. Nedenfor ser du hvordan vi kan runde av svaret til tre desimaler, to desimaler eller én desimal: Avrunding til tre desimaler: 1,8571 1,857 Den fjerde desimalen er mindre enn 5. Da runder vi av nedover. Når vi skal ha desimaler i svaret, må vi alltid regne ut én «for mye»! Avrunding til to desimaler: 1,8571 1,86 Den tredje desimalen er større enn 5. Da runder vi av oppover. Avrunding til én desimal: 1,8571 1,9 Den andre desimalen er lik 5. Da runder vi av oppover. Divisjon 2 79

7 6 Rund av til tre desimaler. a) 8,5342 b) 4, Regn ut. Rund av til én desimal i svaret. 1 3 : 3 = 1 9 : 7 = 8 Regn ut. Rund av til to desimaler i svaret. 2 0 : 3 = 1 6 : 7 = 80

8 Hvordan kan vi dele tre sjokolader på fire? Noen ganger blir svaret i en divisjon mindre enn én Det blir mindre enn én på hver! Hvor mye sjokolade får hver? Når vi skal dividere et tall med et tall som er større, blir svaret et desimaltall som er mindre enn 1. 3 : 4 = 0, Vi får først null hele i svaret. Så veksler vi tallet vi skal dele, om til 30 tideler. Da må vi sette desimaltegn etter null i svaret og regne ut hvor mange tideler svaret skal ha. Det blir sju tideler og to tideler til rest. De to tidelene gjør vi om til 20 hundredeler for å finne ut hvor mange hundredeler svaret skal ha. Det blir fem hundredeler. 3 sjokolader : 4 = 0,75 sjokolade Divisjon 2 81

9 9 Regn ut. 1 : 4 = 2 : 5 = c) d) 7 : 6 = 3 : 6 = Det er ikke plass til et rutenett til 82

10 0,246 0,25 Når vi runder av til to desimaler, må vi se på den tredje desimalen 10 Regn ut. Rund av til to desimaler i svaret. 1 : 3 = 1 : 6 = c) d) 1 : 7 = 2 : 3 = Divisjon 2 83

11 0,42 0,4 Når vi runder av til én desimal, må vi se på den andre desimalen 11 Regn ut. Rund av til én desimal i svaret. 3 : 4 = 7 : 9 = c) d) 7 : 8 = 3 : 8 = 84

12 12 Fire elever skal bake boller. De har 3 kg mel som de skal dele likt. Hvor mye mel får hver av dem til deigen sin? Gi svaret med én desimal. kg Regn her: 2 : 5 = Regn her: 1 : 3 = Mia koker 1 liter suppe til seg selv, Julie og Kaja. Hvor mye suppe får de hver? Gi svaret med to desimaler. liter 2 liter saft skal fordeles likt på 3 like store flasker. Hvor mye blir det per flaske? Gi svaret med to desimaler. liter Regn her: 2 : 3 = Divisjon 2 85

13 Vi skal kappe planken i tre like lange deler! Divisjon av desimaltall med et helt tall Hm, planken er 4,8 m lang Hvor lang blir hver del? Når vi skal dividere et desimaltall med et helt tall, må vi sette desimaltegnet etter enerne før vi deler ut tidelene. I dette regnestykket er det resten på 1 hel som gjøres om til tideler. Siden vi har 8 tideler fra før, blir det 18 tideler som skal deles med 3. Det blir 6 tideler. 4, 8 : 3 = 1, Hver del av planken blir 1,6 m lang. Desimaltegnet plasseres alltid mellom enerne og tidelene. 86

14 15 Regn ut. 3, 6 : 2 = 7, 2 : 4 = 16 Regn ut. 2, 5 5 : 5 = 3, 3 6 : 4 = Når jeg deler et tall med et som er større, vet jeg at svaret blir mindre enn 1! Divisjon 2 87

15 Kan jeg? Oppgave 1 Regn ut. 1 1 : 2 = 9 : 5 = Oppgave 2 Regn ut. Rund av til én desimal i svaret. 1 7 : 4 = 2 2 : 8 = 88

16 Oppgave 3 Kaja sparte 150 kr på 7 uker. Hvor mye sparte hun per uke i gjennomsnitt? Rund av svaret til to desimaler. Regn her: : 7 = kr Oppgave 4 Regn ut. 3 : 5 = 3 : 8 = Oppgave 5 Regn ut. Rund av til to desimaler i svaret. 4 : 7 = 5 : 8 = Divisjon 2 89

17 Oppgave 6 Simen har delt en planke på 6,8 m i like lange deler. Hvor lang er hver del? m Regn her: 4, 8 : 4 = Oppgave 7 Sant eller usant? Påstand Sant Usant Enkelte divisjoner går ikke opp. Når en divisjon går opp, får vi 0 til rest. 8 : 9 gir et tall som er større enn 1. 1,35 1,3 med én desimal 1,358 1,4 med én desimal 5,6 : 1,32 > 10 1,575 : 0,75 = 157,5 : 75 1,575 : 0,75 = 1575 : 75 90

18 Jeg regner mer 1 Regn i hodet. a) = c) = b) = d) = 2 Rund av til nærmeste tier og regn i hodet. a) = b) = c) = d) = 3 Regn i hodet. a) 2 4 = b) 5 7 = c) = d) = Det er lurt å tegne en tallinje til hjelp! Divisjon 2 91

19 4 Julie skal lage middag. Hun trenger 2 liter melk til desserten. 4 3 liter melk til lasagnen og 4 a) Hvor mye melk trenger Julie i alt? liter 1 I kjøleskapet står en boks med liter melk. 4 b) Hvor mye melk må Julie å kjøpe for å få nok? liter 5 Regn ut. 2 5 a) c) = = b) + 4 d) = = 2 6 Regn ut. 2 a) c) 4 2= 3 2 = 7 1 b) d) 5 3= 1 4 = 4 7 Utvid brøkene med a) = = c) = = b) = = d) = = 7 92

20 8 Utvid begge brøkene slik at de får samme nevner. a) = = = = = b) = = = = = c) = = = = = 9 Gjør de uekte brøkene om til blandede tall. 15 a) c) 4 = 18 4 = 16 b) d) 3 = = 10 Regn i hodet. a) 40 : 8 = d) 48 : 8 = b) 56 : 7 = e) 63 : 7 = c) 54 : 9 = f) 64 : 8 = 11 Regn i hodet og finn ut hvor mye det blir i rest. a) 7 : 2 = og i rest. b) 9 : 2 = og i rest. c) 8 : 3 = og i rest. d) 10 : 3 = og i rest. Divisjon 2 93

21 12 Simen får 50 kr for å passe søsteren sin, tre timer. a) Hvor mange kroner blir det pr time? kr Regn her: 5 0 : 3 = b) Hvor mye ble det i rest? kr 13 Regn ut. 1 3 : 2 = 1 1 : 2 = 14 Rund av til én desimal. a) 4,53 c) 8,124 b) 6,25 d) 0,459 94

22 : 2 = 2 1 : 2 = 16 Mia skal kjøpe en kasse med 5 kg klementiner til Bestemor. Kassen koster 77 kr. a) Hvor mye koster klementinene per kilogram? kr Regn her: 7 7 : 5 = 17 Regn i hodet. a) 12, = d) 7,8 : 10 = b) 0,45 10 = e) 1, = c) 64 : 100 = f) : 1000 = Divisjon 2 95

23 Oppsummering Divisjon som gir rest Hvis en divisjon ikke går opp, sier vi at vi får en rest. 3 4 : 4 = Rest : 4 = 8, Hvis vi vil dele ut resten også, gjør vi først om enerne til tideler ved å sette til sifferet null. Pass også på å sette desimaltegn etter enerne i svaret. 2 : 8 = 0, Når svaret i en divisjon blir mindre enn 1 Når vi skal dividere et tall med et som er større, blir svaret et desimaltall mindre enn 1. Vi får 0 hele og veksler om tallet til tideler. Det gir 20 tideler. 96

24 Divisjon av desimaltall med et helt tall Når vi skal dividere et desimaltall med et helt tall, må vi passe på å sette desimaltegn etter enerne før vi deler ut tidelene. 5 6 : 4 = 1, , Desimaltegnet plasseres alltid etter enerne! Divisjon 2 97

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr?

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? 4 356 : 10 = Jeg vet om en lur måte å regne på MÅL I dette kapitlet skal du lære om divisjon med 10

Detaljer

Hvor mye må jeg betale for 2 kg appelsiner?

Hvor mye må jeg betale for 2 kg appelsiner? Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon

Detaljer

Hvor mye koster 10 kurver plommer?

Hvor mye koster 10 kurver plommer? Hvor mye koster 10 kurver plommer? 13 Jeg runder av tallene til 50 kr, 200 kr og 350 kr for å se om jeg har nok! Smart, ikke sant!? Kr 48,- Kr 199,- Kr 353,- Hoderegning og avrunding MÅL I dette kapittelet

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

Husker du hele multiplikasjonstabellen?

Husker du hele multiplikasjonstabellen? Husker du hele multiplikasjonstabellen? 3 3 + 3 + 3 + 3 = 4 3 Multiplikasjon MÅL I dette kapitlet skal du lære om multiplikasjon med tall som ender på null multiplikasjon av flersifrede tall multiplikasjon

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

Hvordan kan du skrive det som desimaltall?

Hvordan kan du skrive det som desimaltall? 7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik og Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 200 Materialet i denne publikasjonen er omfattet av åndsverklovens

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

a) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form.

a) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form. 1 Skriv av og sett inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Tegn en tallinje fra 6 til 6. Merk av tallene så nøyaktig som mulig. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Tegn tallinjer og merk av brøkene. 1 3

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter

1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter 1 Tall og enheter KATEGORI 1 1.1 Regnerekkefølge Oppgave 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgave 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgave 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4 Oppgave 1.113

Detaljer

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og

Detaljer

Vet du hva vi kan bruke et regneark på pc-en til?

Vet du hva vi kan bruke et regneark på pc-en til? Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

LDB. Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler

LDB. Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler LÆRERENS D IGITALBOK LDB Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler Et mål for arbeidet med de to første kapitlene er at elevene skal kunne sammenlikne

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Hastigheten til bob-en er 120 km/t. Hva vil det si?

Hastigheten til bob-en er 120 km/t. Hva vil det si? Hastigheten til bob-en er 120 km/t. Hva vil det si? 12 Hm, ett britisk pund koster 11,45 kr! Sammensatte enheter MÅL I dette kapitlet skal du lære om fart priser lønn valuta KOPIERINGSORIGINALER 12.1 Felles

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W. Kristiansen Illustrasjoner: John Thoresen Tusen millioner 4 Oppgavebok Bokmål Oppgaveboka inneholder øvings- og repetisjonsoppgaver til alle kapitlene i grunnbøkene. Øvingsoppgavene

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149 Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +

Detaljer

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet. Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Gange. Hverdagsmatte Del 1 side 34

Gange. Hverdagsmatte Del 1 side 34 Hverdagsmatte Del 1 side 34 Gange Når vi ganger to tall med hverandre, bruker vi gange mellom tallene. Gange skriver vi. Det er også vanlig å bruke x. Miriam er i butikken. Hun kjøper 3 is. En is koster

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

a) 5 5 b) 7 9 c) 1 0 d) 5 10 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8

a) 5 5 b) 7 9 c) 1 0 d) 5 10 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8 1 Skriv av og set inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Teikn tallinjer og merk av brøkane. 1 3 6

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Tre sett med oppgaver for mattebingo for 5. trinn Tips Lett 3,5 12,5 180 1/2 1/4 4/5 250 44,4 40,4

Tre sett med oppgaver for mattebingo for 5. trinn Tips Lett 3,5 12,5 180 1/2 1/4 4/5 250 44,4 40,4 Tre sett med oppgaver for mattebingo for 5. trinn Det er laget 3 sett med oppgaver som skal løses uten penn og papir. Ett sett med oppgaver består av lette spørsmål, ett med middels og det siste settet

Detaljer

Mattelekse uke 42 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet.

Mattelekse uke 42 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet. Mattelekse uke 42 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet. Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1.

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter. Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,

Detaljer

Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen

Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Telle i kor med 0,3 fra 0,3 - transkripsjonen av samtalen Elevene på 7. trinn sitter i lyttekroken. Olaug er lærer. 1 Olaug I dag skal vi telle i kor med 0, 3 i gangen. Før vi begynner å telle så har jeg

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel. Tallregning Mål for Kapittel, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

Terminprøve i matematikk for 8. trinn

Terminprøve i matematikk for 8. trinn Terminprøve i matematikk for 8. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Hjemmelekse i uke44, A

Hjemmelekse i uke44, A Hjemmelekse i uke44, A 1. Klarer du å løse oppgaven 6 8 på to måter? Vis ved å tegne og/eller forklare. Trinn 3: skal kunne multiplisere et ensifret med et tosifret tall. 2. Still opp og regn ut a) 4 34

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt.

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. elever sykler til skolen hver dag, mens 0 tar bussen. går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. 7 Hm, er det så mange satellitter over år?! Statistikk MÅL I dette kapitlet

Detaljer

Inneholder ett oppslag fra hvert hefte:

Inneholder ett oppslag fra hvert hefte: Sett inn støtet er en serie hefter som gir systematisk opplæring og trening i utvalgte tema innenfor matematikk. Heftene har enkle instruksjoner og god progresjon i vanskelighetsgrad. Oppgavene er laget

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 00 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser.

Detaljer

1P Tall og algebra. Tall og algebra Vg1P (utdrag)

1P Tall og algebra. Tall og algebra Vg1P (utdrag) 1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste... 28 1 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter

Detaljer

Multiplikation och division av bråk

Multiplikation och division av bråk Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar

Detaljer

Mattelekse uke 46 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet.

Mattelekse uke 46 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet. Mattelekse uke 46 A Tema: Addisjon av positive tall, subtraksjon og multiplikasjon + matematikk i dagliglivet. Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1.

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Ukemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering

Ukemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering Uke Fagemne (Hentet fra Fagplan) 34 Rutenett og koordinatsystem Ukemål (Konkretiserte mål fra Fagplan) Jeg kan plassere punkter i et koordinatsystem og beregne avstander langs aksene. Læringsstrategier,

Detaljer

Overslag FRA A TIL Å

Overslag FRA A TIL Å Overslag FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overslag 2 2 Grunnleggende om overslag 2 3 Å gjøre overslag 6 4 Forsiktighetsregler 7 4.1 Når overslaget ikke

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Øvingshefte. Multiplikasjon og divisjon

Øvingshefte. Multiplikasjon og divisjon Øvingshefte Matematikk Mellomtrinn Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk M.trinn Multiplikasjon og divisjon 1 Multiplikasjon og divisjon

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten. Kunne avgjøre hvilken brøk som er størst

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver... Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å

Detaljer

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 05.12.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Læringsstøttende prøver. September 2013. Matematikk 5. 10. årstrinn Ressurshefte. Tall og Tallregning. Bokmål

Læringsstøttende prøver. September 2013. Matematikk 5. 10. årstrinn Ressurshefte. Tall og Tallregning. Bokmål Læringsstøttende prøver September 2013 Matematikk 5. 10. årstrinn Ressurshefte Tall og Tallregning Bokmål Innledning...3 Innhold del 1: Analyse av oppgavene i læringsstøttende prøver...4 Tall og tallregning...4

Detaljer

Spill "Til topps" - transkripsjon av samtalen

Spill Til topps - transkripsjon av samtalen Spill "Til topps" - transkripsjon av samtalen Elevene på 6. trinn sitter to og to ved pultene. Thomas er læreren og sier at de skal ha et spill i dag. 1 Thomas Det er slik at dere skal være på lag med

Detaljer

Halvårsplan i matematikk Vår 5. trinn 2011-2012

Halvårsplan i matematikk Vår 5. trinn 2011-2012 Halvårsplan i matematikk Vår 5. trinn 2011-2012 UKE 1 EMNE / PÅ SKOLEN Varmt og kaldt Tallinjen SIDE TALL RØD 12 13 SIDE TALL Gul 22 23 HJEMMELEKSE GRØNN RØD SVART Du skal vite hvordan man setter opp en

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Divisjon med desimaltall

Divisjon med desimaltall Divisjon med desimaltall Mål Generelt: Divisjon med desimaltall. Mønster og sammenhenger i divisjon. Spesielt: Bruke overslag til å vurdere plassering av desimalkomma. Se hva som skjer med kvotienten når

Detaljer

Skal kunne regne med de fire regneartene i både oppstilte stykker og i oppgaver fra dagliglivet.

Skal kunne regne med de fire regneartene i både oppstilte stykker og i oppgaver fra dagliglivet. Mattelekse uke 36 A Vi avsluttet temaet kunnskaper om tall forrige uke, men bruker denne leksen på å fordøye det vi jobbet med i uke 35. Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Øvingshefte. Multiplikasjon og divisjon

Øvingshefte. Multiplikasjon og divisjon Øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon og

Detaljer

Øvingshefte. Velge regneart

Øvingshefte. Velge regneart Øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1 Sett inn riktig regnetegn

Detaljer

Kapittel 2. Tall på standardform

Kapittel 2. Tall på standardform Kapittel 2. Tall på standardform Standardform er en metode som er nyttig for raskt å kunne skrive tall som er mye større enn 1 eller mye mindre enn 1. Du må kunne potensregning for å forstå regning med

Detaljer

Er du i mål? Legg til hundre på 347. Hvilket tall får dere da? Hva er halvparten av 62 minus 1? Hvilket multiplikasjonsstykke er dette?

Er du i mål? Legg til hundre på 347. Hvilket tall får dere da? Hva er halvparten av 62 minus 1? Hvilket multiplikasjonsstykke er dette? På www.gan.aschehoug.no/ressurser kan du laste ned oppgaver til spillet. Spill sammen tre og tre på lag. Hvert lag trenger et kladdepapir og en blyant. For å komme til topps, må dere bruke alt dere har

Detaljer

FAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5

FAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5 FAKTA Likeverdige bröker: BrÖker som har samme verdi. 2 = 2 = 6 = 8 = 0 0 utvide en brök: utvide en brök betyr Ô multiplisere teller og nevner med det samme tallet. BrÖken forandrer da ikke verdi. = 2

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive

Detaljer

Tre sett med oppgaver for mattebingo, småskolen Sett 1

Tre sett med oppgaver for mattebingo, småskolen Sett 1 Tre sett med oppgaver for mattebingo, småskolen Sett 1 Spørsmål Svar 1. Hvor mange hjørner har et kvadrat? 4 2. Hvor mange 50-ører får du for 10 kroner? 20 3. Hva er halvparten av 4? 2 4. Hva er det dobbelte

Detaljer

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller Excel Hva er et regneark? Vi bruker regneark til å sortere data, gjøre beregninger og lage diagrammer. I denne manualen finner du veiledning til hvordan du kan bruke regneark. Et regneark består av celler

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

Veiledning til kapitlene i TM 7A og 7B

Veiledning til kapitlene i TM 7A og 7B Veiledning til kapitlene i TM 7A og 7B Kapittel 1 God start Læreplanen Ifølge Kunnskapsløftet skal elevene etter 4. trinn kunne beskrive plassverdisystemet for de hele tallene, bruke positive og negative

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner Faktor 9 Grunnbok Bokmål Hei til deg som skal bruke Faktor! Dette er Faktor 9 Grunnbok. Til grunnboka hører det en oppgavebok. Her ser du ungdommene

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 3-Feb-07 Dagsoversikt Hvordan styrke

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer