1P Tall og algebra. Tall og algebra Vg1P (utdrag)
|
|
- Kristina Sørensen
- 8 år siden
- Visninger:
Transkript
1 1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste
2 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter melk. Prisen for ett brød er 25 kroner og prisen for melk er 15 kroner per liter Personen som sitter i kassa vil teste dine regneferdigheter. Hun setter opp et regnestykke og ber deg regne ut samlet pris Regnestykket inneholder to regneoperasjoner, du skal legge sammen og du skal gange. Hva skal du gjøre først? Du prøver å legge sammen før du ganger Hvor mye koster ett brød og to liter melk? Du prøver så å gange før du legger sammen Du får to ulike svar. Hvilket svar er riktig? Hva står egentlig tallene i oppgaven for? Tallet 2 står for antall liter med melk og er et tall uten benevning. Tallene 25 og 15 derimot, er priser i kroner og har derfor benevningen kroner. Vi kan sette opp regnestykket med benevning 25 kroner 15 kroner 2 Kanskje blir det nå opplagt at samlet pris er 15 kroner 2 30 kroner for melka pluss 25 kroner for brødet, til sammen 55 kroner. Det betyr at rett regnerekkefølge er å gange (multiplisere) før du legger sammen (adderer). Vi kan lage tilsvarende eksempler hvor vi deler og trekker fra. Du vil da på tilsvarende måte se at rett regnerekkefølge er å gange og dele (dividere) før du legger sammen eller trekker fra (subtraherer). Alle digitale verktøy, for eksempel CAS i GeoGebra, er blitt programmert til å regne på denne måten hvis de ikke spesielt får beskjed om noe annet. 2
3 To personer skal dele 3 pizzaer. To av pizzaene er delt i 3 biter, og den siste er delt i 4 biter. Antall pizzabiter på hver blir da Samlet antall pizzabiter Her må vi altså legge sammen telleren før vi deler. Vi må gi GeoGebra beskjed om å ikke følge vanlig regnerekkefølge. Det gjør vi ved å bruke parenteser. Vi skriver det som står i telleren inne i en parentes. GeoGebra har nemlig fått beskjed om alltid å regne ut det som står inne i parenteser først. Vi skriver (3+3+4)/2 og får riktig svar. Hvis vi glemmer parentesene og skriver 3+3+4/2, gjør GeoGebra det den er programmert til og starter med å dele 4 på 2. Svaret blir 8, og vi ser at det blir feil svar. I CAS i GeoGebra får du ved kommandoknappen sjekket om du har skrevet inn uttrykket riktig. (Linje 1 og 3) For å få samme regneuttrykk i linje 2 som i linje 1, taster du likhetstegn på tastaturet. Ved kommandoknappen Ved kommandoknappen regner du ut tilnærmet verdi. regner du ut eksakt verdi. 3
4 Modul 3: Brøkregning Hva er en brøk? Vi deler en pizza i 8 like store deler. Hvert pizzastykke er da lik én åttendedel av hele pizzaen. Én åttendedel kan skrives som 1: 8. Vi velger en annen skrivemåte som vi kaller brøk. 1: 8 skriver vi som 1. Deletegnet har blitt til brøkstrek, men betyr 8 fortsatt deletegn. Tallet på topp, tallet over brøkstreken, kaller vi teller fordi det «teller opp» antall pizzastykker. Tallet under brøkstreken forteller størrelsen, verdien, på pizzastykkene, og kalles for nevner. På tilsvarende måte som kroner eller euro er benevninger på pengebeløp. Hvis vi har 4 5 av en pizza, betyr det at vi har delt en pizza i fem like store stykker og tatt, telt opp, fire av disse. Hva med 7 3 da? Det må jo bety at vi har delt pizzaen i tre like store stykker og tatt sju av disse. Er det mulig? Ja, det er mulig, men da må vi ha mer enn én pizza! Nedenfor ser du at vi må ha to hele pizzaer og et stykke utenom,
5 Addisjon og subtraksjon med brøker De tre «røde» pizzastykkene på figuren som utgjør 3 8 av pizzaen og det «grønne» stykket som utgjør 1 8 av pizzaen, må til sammen utgjøre 4 åttendedeler av hele pizzaen. Det må bety at Motsatt, når vi fra fire åttendedeler trekker fra én åttendedel, så må vi sitte igjen med tre åttendedeler. Det betyr at Dette betyr at følgende regel må være riktig Når vi legger sammen eller trekker fra brøker med samme nevner, så legger vi sammen eller trekker fra tellerne og beholder nevnerne. Fra figuren ser vi videre at det grønne og de røde pizzastykkene utgjør halve pizzaen. Det må bety at 4 1. Det blir altså riktig om vi i brøken 4 4 : 4 1 deler på 4 i teller og nevner : 4 2 Motsatt blir det også riktig når vi i brøken ganger med 4 i teller og nevner Det er lov i en brøk å gange med samme tall i teller og nevner uten at brøken endrer verdi. Vi kaller det å utvide en brøk. Det er lov i en brøk å dele med samme tall i teller og nevner uten at brøken endrer verdi. Vi kaller det å forkorte en brøk. Vi kan nå legge sammen(addere) og trekke fra(subtrahere) alle slags brøker. Vi skal trekke sammen brøkene Først skriver vi tallet 3 som en brøk. Tallet 3 endrer ikke verdi om vi deler på
6 Så utvider vi alle brøkene slik at de får like nevnere Vi ganger så ut i teller og nevner i alle brøkene og får Nå har brøkene samme nevner, og kan vi trekke sammen tellerne og beholde nevneren Til slutt må vi undersøke om svaret kan skrives på en enklere måte ved å forkorte bøken Det er her ikke mulig siden ingen tall kan dele både 6 og er et primtall. 6
7 Multiplikasjon med brøker Fire pizzastykker som hvert utgjør 1 8 av hele pizzaen utgjør til sammen av hele pizzaen fordi Det må bety at 4. Når vi ganger et helt tall med en brøk, så må 8 8 vi altså gange det hele tallet med telleren for at det skal bli riktig Siden det hele tallet også kan skrives som en brøk, får vi at Vi får riktig svar når vi ganger teller med teller og nevner med nevner. Vi ser også at hvis vi tar halvparten av et pizzastykke som utgjør én tredjedel av en hel pizza, så må vi få én sjettedel av hele pizzaen. Det må bety at følgende regnestykke må være riktig Det betyr at det også her blir riktig når vi ganger teller med teller og nevner med nevner. Regelen blir Vi multipliserer to brøker ved å multiplisere teller med teller og nevner med nevner. Hele tall dividerer vi med 1 slik at de kan oppfattes som brøker. Eksempel : : 2 28 Husk å forkorte svaret! Eksempel Her kan vi ikke forkorte svaret
8 Divisjon med brøker Kari hadde bursdagsselskap og ville servere pizza og brus. Hun kjøpte en svær beholder som inneholdt 10 liter brus. Kari ville helle brusen over i mindre flasker slik at gjestene kunne få én flaske hver. Hun tenkte først å bruke flasker som tok to liter. Hun satte opp et regnestykke og fant at da ble det nok til 5 flasker med brus fordi 10 : 2 5 Det ble ikke nok til alle gjestene, så Kari tenkte derfor å bruke flasker som hver tok 1 2 liter. Hun satte opp tilsvarende regnestykke for å finne ut hvor mange flasker det nå ble 1 10 : 2 Her fikk Kari et problem. Hvordan dele på en brøk? Nå måtte Kari bruke sunn fornuft. Det er klart at 20 flasker som hver inneholder 1 2 liter til sammen må bli lik 10 liter. Svaret på regnestykket er altså 20. Men Kari ga seg ikke. Det må da være mulig å regne seg fram til riktig svar, tenkte hun! Kari fant ut at hvis hun snudde brøken hun skulle dele med, på hodet, og samtidig gjorde deling om til ganging, så fikk hun riktig svar Regelen blir Brøken snus opp ned : 1 2 : Deletegn blir til gangetegn Å dividere med en brøk er det samme som å multiplisere med den omvendte brøken. Eksempel :
9 Modul 10: Prosentregning Prosent betyr hundredel 1 1 % 0, Alle tall kan skrives som «prosent». Dette er fordi alle tall kan skrives som en brøk med 1 i nevneren. Vi kan så utvide brøken slik at vi får 100 i nevner. Prisene er satt ned med Å skrive tall som «prosent». Noen eksempler % , ,34 34 % , , % Å skrive prosent som tall. Noen eksempler % 0, ,23 1,23 % 0, % 0,
10 Hva utgjør prosentandelen Eksempel 1 Å beregne skattetrekk Linda har sommerjobb og tjener så mye at arbeidsgiveren må trekke 15 % av lønna i skatt. Hvor mye må Linda betale i skatt når hun tjener 3000 kroner? Løsning Vi går «veien om 1». 100 % av lønna utgjør kr 1% av lønna blir da 3000 kr 30 kr % blir da 30kr kr Vi regner gjerne slik: kr kr 100 Linda må betale 450 kroner i skatt. I GeoGebra Eksempel 2 Å finne salgspris Et par sko koster 540 kroner. Skoene settes ned med 40%. Hva blir salgsprisen på skoene? Løsning Vi går «veien om 1». 1% av prisen blir 540 kr 100 5,40 kr 40% blir da 5,40 kr kr Ofte regner vi slik: 54 0 kr kr 10
11 Salgsprisen blir da 540 kr 216 kr 324 kr. Ved GeoGebra Eksempel 3 I en klasse er det 15 elever. 40 % av elevene kan regne med å bli trukket ut til eksamen i matematikk. Hvor mange elever kan regne med å bli trukket ut? Løsning Antall elever som kan regne med å bli trukket ut er elever kan regne med å bli trukket ut. 6 11
12 Å finne opprinnelig verdi Eksempel 1 En dongerijakke selges med 30% rabatt. Prisen etter at rabatten er trukket fra, er 420 kroner. Hva var den opprinnelige prisen? Løsning 30% rabatt betyr at 420 kroner svarer til 100% 30% 70% av den opprinnelige prisen. Vi går «veien om 1». 1% av prisen blir 420kr 6 kr % blir da 6 kr kr Den opprinnelige prisen var 600 kroner. 12
13 Eksempel 2 I en matematikklasse ble seks elever trukket ut til eksamen. Disse seks elevene utgjorde 40 % av elevene i klassen. Hvor mange elever var det i klassen? Løsning Siden 40 % av elevene utgjør 6 elever, så må 1 % utgjøre 6 elever 0,15 elever % blir da 0, elever. Det var 15 elever i klassen. Hvor mange prosent? Når vi skal finne hvor mange prosent én størrelse utgjør av en annen størrelse, er det ofte enklest å sette opp forholdet mellom størrelsene som en brøk. Da kan vi videre skrive brøken som et desimaltall og omgjøre desimaltallet til et prosenttall som vi viste innledningsvis. Eksempel 1 Niels Henrik og Mary Ann skal dele en pizza. Pizzaen er delt i fem like store stykker. Niels Henrik spiser tre pizzastykker og Mary Ann spiser to. Hvor mange prosent av pizzaen spiser Niels Henrik? Løsning Niels Henrik sin andel er ,6 60 % Vi regner altså brøken om til desimaltall og finner prosenttallet Eksempel 2 Pettersen selger moreller. Et år øker han prisen på en kurv moreller fra 35 kroner til 40 kroner. Hvor mange prosent øker prisen med? Løsning Vi finner forholdet mellom prisøkning og gammel pris. Dette forholdstallet gjør vi om til prosent ,143 14,3 % 35 13
14 Tekst og eksempler Stein Aanensen og Olav Kristensen Bildeliste Melk Foto: Frode Hansen/VG/Scanpix Brød Foto: Trond Solberg/VG/Scanpix Tankefull kvinne Berit Roald, NTB Scanpix To ungdommer spiser pizza Mirko Iannace, Pixtal, NTB Scanpix Pinlig situasjon Berit Roald, NTB Scanpix Dongeribukse Foto: Nina Ruud/VG/Scanpix Penger Foto: Kerstin Mertens/Samfoto/Scanpix Veie epler Maskot, NTB Scanpix Smågodt Foto: Science Photo Library/Scanpix Frustrert elev DPA, NTB Scanpix Magiker sager en dame i to Bernd Vogel, Corbis, NTB Scanpix Vannflasker 14
15 Science Photo Library, NTB Scanpix Kjærester Sara Johannessen, NTB Scanpix Fargeprøver og malingsspann Pixtal, NTB Scanpix Kart Foto: Espen Sjølingstad Hoen/VG/Scanpix Valuta Foto: Henrik Montgomery/Scanpix Sweden Fengselsmurer Dan Petter Neergaard, Aftenposten, NTB Scanpix Arbeid på bærbar pc Corbis, NTB Scanpix Buss Morten Holm, NTB Scanpix Balansert vektstang med pære og eple Matthias Kulka, Corbis, NTB Scanpix Sør Arena Foto: Vegard Grøtt/Scanpix Termometer Rafael Ben-Ari, AGE fotostock, NTB Scanpix Sko Foto: James Veysey/Camera Press/Scanpix Dongerijakke Foto: Werner Juvik/VG/Scanpix Pizza Margherita Magnar Kirknes, VG, NTB Scanpix 15
16 Salg Foto: Ingar Storfjell/Aftenposten/Scanpix Kvinne i klesbutikk Shannon Fagan, Image Source, NTB Scanpix Vareutvalget i sportsbutikker Ingar Storfjell, Aftenposten, NTB scanpix Politiske partier - kommunevalg 2011 Hege Røyert 16
gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene og vurdere hvor rimelige de er
1P Tall og algebra Kompetansemåla i læreplanen for Vg1P... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 4 Modul 3: Brøkregning... 8 Modul 4: Koordinatsystemet... 13 Modul
Detaljer1 Tall og algebra i praksis
1 Tall og algebra i praksis Innhold Kompetansemål Tall og algebra i praksis, VgP... 1 Modul 1: Potenser... Modul : Tall på standardform... 6 Modul : Prosentregning... 10 Modul 4: Vekstfaktor... 15 Modul
DetaljerBrøker med samme verdi
Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere
DetaljerBrøk Vi på vindusrekka
Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14
DetaljerTall og enheter. Mål. for opplæringen er at eleven skal kunne
8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen
DetaljerVerktøyopplæring i kalkulator for elever
Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator
DetaljerMultiplikation och division av bråk
Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar
DetaljerTall og formler MÅL. for opplæringen er at eleven skal kunne
8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerTallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerVerktøyopplæring i kalkulator
Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet
Detaljerwww.skoletorget.no Tall og algebra Matematikk Side 1 av 6
Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp
DetaljerOversikt over aktuelle temaer til matematikkprøve onsdag 28. november
Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november 1. Algebra 1.1 Innsetting av tallverdier i bokstavuttrykk Eksempel 1: Sett inn a = 2 og regn ut verdien til uttrykket 4a 3 4a 3 = 4
DetaljerEmnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
DetaljerARBEIDSHEFTE I MATEMATIKK
ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret
Detaljer1.1 Tall- og bokstavregning, parenteser
MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.
DetaljerINNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...
Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å
DetaljerHvordan kan du skrive det som desimaltall?
7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
DetaljerKapittel 1 Tall og tallregning
Kapittel 1 Tall og tallregning Enkel kalkulator I en del situasjoner er tallregningen så tidkrevende at det kan være fornuftig å bruke kalkulator. I andre situasjoner kan vi bruke kalkulatoren til å kontrollere
DetaljerFAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5
FAKTA Likeverdige bröker: BrÖker som har samme verdi. 2 = 2 = 6 = 8 = 0 0 utvide en brök: utvide en brök betyr Ô multiplisere teller og nevner med det samme tallet. BrÖken forandrer da ikke verdi. = 2
DetaljerPosisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
DetaljerRegning med tall og bokstaver
Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1
DetaljerADDISJON FRA A TIL Å
ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger
DetaljerHvor mye er 1341 kr delt på 2?
Hvor mye er 1341 kr delt på 2? 10 1 4 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall
DetaljerMultiplikasjon og divisjon av brøk
Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi
DetaljerLøsninger. Tall og algebra i praksis Vg2P
Tall og algebra i praksis VgP Løsninger Modul 1: Potenser... 1 Modul : Tall på standardform... Modul : Prosentregning... 1 Modul 4: Vekstfaktor... 17 Modul : Eksponentiell vekst... 1 Bildeliste... 4 1
DetaljerTall og algebra Vg1P MATEMATIKK
Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale
DetaljerSensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av
DetaljerTre sett med oppgaver for mattebingo for 5. trinn Tips Lett 3,5 12,5 180 1/2 1/4 4/5 250 44,4 40,4
Tre sett med oppgaver for mattebingo for 5. trinn Det er laget 3 sett med oppgaver som skal løses uten penn og papir. Ett sett med oppgaver består av lette spørsmål, ett med middels og det siste settet
DetaljerMatematikk med familien. Lofsrud skole 20.01.2016
Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen
DetaljerForberedelseskurs i matematikk
Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger
DetaljerOppgaver. Tall og algebra i praksis Vg2P
Oppgaver Modul 1: Potenser... 1 Modul : Tall på standardform... 5 Modul : Prosentregning... 9 Modul : Vekstfaktor... 1 Modul 5: Eksponentiell vekst... 1 Bildeliste... 16 1 Modul 1: Potenser 1.1 Regn ut.
DetaljerAlle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen
Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor
DetaljerStudentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform
1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller
DetaljerLDB. Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler
LÆRERENS D IGITALBOK LDB Flere oppgaver Løsningsforslag Kapittelprøve Verktøyopplæring Twig-arbeidsark Kopioriginaler Et mål for arbeidet med de to første kapitlene er at elevene skal kunne sammenlikne
Detaljerfor opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor
46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger
DetaljerSpill "Til topps" - transkripsjon av samtalen
Spill "Til topps" - transkripsjon av samtalen Elevene på 6. trinn sitter to og to ved pultene. Thomas er læreren og sier at de skal ha et spill i dag. 1 Thomas Det er slik at dere skal være på lag med
DetaljerØvingshefte. Velge regneart
Øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1 Sett inn riktig regnetegn
Detaljer2 Likninger. 2.1 Førstegradslikninger med én ukjent
MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerAlgebra Vi på vindusrekka
Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...
DetaljerVerktøyopplæring i kalkulator
Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk
DetaljerCAS GeoGebra. Innhold. Matematikk for ungdomstrinnet
CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...
DetaljerNASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.
Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,
DetaljerMålark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall
Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og
DetaljerSAMMENDRAG OG FORMLER
SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen
DetaljerKapittel 1. Potensregning
Kapittel. Potensregning I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Dette kapitlet handler blant annet om: Betydningen av potenser som har negativ eksponent
DetaljerØvingshefte. Addisjon og subtraksjon
Øvingshefte Matematikk Mellomtrinn Addisjon og subtraksjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Addisjon og subtraksjon 1 Addisjon og subtraksjon
DetaljerEtter en lang ferie er det en del regneferdigheter vi må friske opp:
Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler
DetaljerSpill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.
Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man
DetaljerKAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.
KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom
DetaljerØvingshefte. Addisjon og subtraksjon
Øvingshefte Matematikk Ungdomstrinn/VGS Addisjon og subtraksjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Addisjon og subtraksjon 1 Addisjon og subtraksjon
DetaljerTerminprøve i matematikk for 8. trinn
Terminprøve i matematikk for 8. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:
DetaljerRonny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk
Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er
DetaljerKapittel 8. Potensregning og tall på standardform
Kapittel 8. Potensregning og tall på standardform I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Standardform er en metode som er nyttig for raskt å kunne skrive
DetaljerMATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017
UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative
DetaljerTallinjen FRA A TIL Å
Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen
DetaljerMisoppfatninger knyttet til tallregning
Misoppfatninger knyttet til tallregning 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 FJERNE OG LEGGE TIL NULLER... 4 OPPGAVER...
DetaljerEksempelsett 2P, Høsten 2010
Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.
DetaljerØvingshefte. Ligninger
Øvingshefte Matematikk Ungdomstrinn/VGS Ligninger Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Ligninger 1 Ligninger Seksjon 1 Oppgave 1.1 Skriv tallet
DetaljerProsent- og renteregning
FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra
DetaljerTest, Algebra (1P) 1.1 Tallregning. 1) Addere betyr x legge sammen trekke fra gange dele. 2) Subtrahere betyr legge sammen x trekke fra gange dele
Test, Algebra (1P) 1.1 Tallregning 1) Addere betyr x legge sammen trekke fra gange dele 2) Subtrahere betyr legge sammen x trekke fra gange dele 3) Multiplisere betyr legge sammen trekke fra x gange dele
DetaljerEksempeloppgave 2 2009
Eksempeloppgave 2 2009 MAT0010 Matematikk Elever (10. årstrinn) Eksamen våren 2009 Del 1 Bilde: Utdanningsdirektoratet Skole: Elevnummer: Del 1 + ark fra del 2 Bokmål Bokmål Eksamensinformasjon til Del
DetaljerAddisjon og subtraksjon i fire kategorier
Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.
DetaljerPresentasjon av Multi
Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige
DetaljerTallregning Vi på vindusrekka
Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...
Detaljeroppgaver fra abels hjørne i dagbladet
oppgaver fra abels hjørne i dagbladet sett 45 dag 1 1. På et bord står to beholdere som begge inneholder litt vann. Uansett hvilken beholder du velger, og så heller halvparten av innholdet over i den andre
Detaljer5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri
5. kurskveld på Ila. Måling, prosentregning og grunnleggende geometri Målinger finnes naturlig i hverdagen vår. Denne kurskvelden skal vi forsøke å møte de ulike begrepene slik som ungene møter dem og
DetaljerOppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn
Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U
DetaljerINNHOLD SAMMENDRAG TALL OG TALLREGNING
SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4
DetaljerMisoppfatninger knyttet til brøk
Misoppfatninger knyttet til brøk 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NEVNER REPRESENTERER ANTALL DELER - UAVHENGIG
DetaljerSensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 05.12.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
DetaljerKapittel 3. Prosentregning
Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
DetaljerØvingshefte. Velge regneart
Øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1
DetaljerGODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012
Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke
Detaljer1 Tall og algebra. Innhold. Tall og algebra Vg1P
1 Tall og algebra Innhold Kompetansemålene i læreplanen for Vg1P... 2 1.1 Tallregning... 3 Tallene våre... 3 Det matematiske språket... 4 Hoderegning med naturlige tall... 5 Overslagsregning... 9 Negative
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave
Detaljer90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?
90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis
DetaljerEnkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015
Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8
Detaljer2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?
2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent
DetaljerEksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerLøsninger. Innhold. Tall og algebra Vg1P
Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 11 Modul 4: Koordinatsystemet... 14 Modul 5: Forhold... 18 Modul 6: Proporsjonale
Detaljer1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at
Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8
DetaljerTall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)
Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil
DetaljerOm 8 minutter kommer du til å smile som disse gjør! De neste 8 minuttene vil forandre ditt liv!
Om 8 minutter kommer du til å smile som disse gjør! De neste 8 minuttene vil forandre ditt liv! Er du klar? Bruk de neste 8 minuttene til å lese denne presentasjonen nøye! 1 Vi vet alle at store tall alltid
DetaljerDette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.
SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver
DetaljerOrdenes makt. Første kapittel
Første kapittel Ordenes makt De sier et ord i fjernsynet, et ord jeg ikke forstår. Det er en kvinne som sier det, langsomt og tydelig, sånn at alle skal være med. Det gjør det bare verre, for det hun sier,
DetaljerDesimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
DetaljerMATEMATIKK 1, 4MX15-10E1 A
Skriftlig eksamen i MATEMATIKK 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 20. desember 2010. Sensur faller innen 11. januar 2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter
DetaljerEmnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig
Sensurveiledning Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgaveteksten: Oppgave 1 I en klasse med åtte gutter og tolv
Detaljermisunnelig diskokuler innimellom
Kapittel 5 Trond og Trine hadde virkelig gjort en god jobb med å lage et stilig diskotek. De hadde fått tak i diskokuler til å ha i taket. Dansegulvet var passe stort med bord rundt hvor de kunne sitte
DetaljerVet du hva vi kan bruke et regneark på pc-en til?
Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger
Detaljer