Vet du hva vi kan bruke et regneark på pc-en til?

Størrelse: px
Begynne med side:

Download "Vet du hva vi kan bruke et regneark på pc-en til?"

Transkript

1 Vet du hva vi kan bruke et regneark på pc-en til?

2 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger i et regneark hvordan du kan redusere antall desimaler i et tall hvordan du kan summere innholdet i celler Regneark 167

3 Det er lett å summere mange tall i regnearket! Hva er et regneark? Jeg vil lære å bruke formler! Hva kan vi bruke et regneark til? Et regneark er et program som kan brukes til å lage oversiktlige oppsett, for eksempel for regnskap og budsjett. Vi kan også bruke det til avanserte matematiske beregninger og til å lage diagrammer. Siden mange i dag bruker Microsoft Excel, har vi valgt å bruke dette programmet i Tusen millioner. Skjermbildet av et regneark kan se slik ut: rad kolonne formellinje celle 168

4 Regnearket er delt i et rutenett av loddrette kolonner og horisontale rader. Over hver kolonne står det en bokstav og foran hver rad et tall. Hver rute i regnearket kalles en celle. Over rutenettet ligger en linje om viser innholdet til en avmerket celle. Denne linja kalles formellinje. I regnearket kan vi skrive tekst, tall eller regnearkformler. Når vi vil skrive i en celle, setter vi musepekeren i denne cellen og venstreklikker. Da markerer vi cellen. Her ser du de viktigste regnetegnene vi bruker i et regneark: Addisjon: + Subtraksjon: Multiplikasjon: Divisjon: / Når vi vil at regnearket skal gjøre en utregning, skriver vi en formel, det vil si at vi lager en slags kommando. Vi starter alltid en formel med å skrive et likhetstegn først. Eksempel Hvis vi skal addere tallene 12 og 14, kan vi skrive tallet 12 i celle B2, og tallet 14 i celle B3. Så skriver vi formelen =B2+B3 i celle B4. Når vi nå trykker på linjeskifttasten, vises summen i celle B4. Regneark 169

5 Utfør regnestykkene i et regneark. Husk å skrive likhetstegnet foran formlene og bruke riktig regnetegn! 1 a) = b) = 2 a) = b) = 3 a) 9 12 = b) = 4 a) 144 : 8 = b) 238 : 34 = Justere antallet desimaler Vi kan velge hvor mange desimaler regnearket skal vise i hver celle. Oppsettet nedenfor viser hvor mye 4 brød til 13,65 kr per stykk koster til sammen. Vi ser at regnearket oppgir summen 54,60 kr som 54,6. Hvis vi ønsker å ha med to desimaler i summen, som er vanlig når vi regner,0 med penger, trykker vi på knappen,00. For hver gang vi trykker på denne tasten, legges det til én desimal. På samme måte kan vi trykke på knappen desimaler.,00,0 når vi ønsker færre 170

6 5 1 kg pærer koster 13,45 kr. Lag en oppstilling i et regneark som viser hvor mye 3 kg pærer koster. Juster svaret til to desimaler. 6 En pose med fire epler koster 12,65 kr. Lag en oppstilling i et regneark som viser hvor mye ett eple koster. Juster svaret til to desimaler. 7 Skriv inn tallene nedenfor i et regneark.,0,00 Bruk knappene eller slik at tallene får to desimaler.,00,0 a) 2,1 c) 24 e) 100 b) 13,475 d) 200,1275 f) 3, Budsjett og regnskap Vi kan bruke et regneark til å sette opp budsjett og regnskap. Regnearket gjør alle utregningene for oss. Eksempel Du skal arrangere en fest og vil kjøpe inn varene nedenfor. 8 flasker brus til 18,50 kr per stykk 12 pizzaer til 21,50 kr per stykk 2 pakker servietter til 13,80 kr per stykk 4 lys til 14,50 kr per stykk Først lager du en oppstilling i et regneark som viser hvor mye varene koster i alt. Du bestemmer at det skal være én kolonne for vare, én kolonne for antall, én kolonne for pris og én kolonne for sum per vare. Så legger du inn overskriftene i regnearket og skriver navnet på varene, antallet varer og hva varene koster. Regneark 171

7 Du skal nå regne ut summen per vare og starter med brusen. Når du skriver =B2 C2 i celle D2 og trykker på linjeskifttasten, regner programmet ut summen. Brusen koster 148 kr i alt. For å regne ut summen av de andre varene, klikker du i celle D2 og plasserer markøren på den lille firkanten i nederste høyre hjørne slik at denne forandres til et kryss. Hold så venstre museknapp inne og trekk krysset nedover til alle cellene fra D2 til D5 er merket. Når du slipper museknappen, har regnearket regnet ut summen for hver enkelt vare. Nå skal du legge sammen prisene for alle varene. Det gjør du ved å merke alle cellene som skal legges sammen, pluss en ekstra celle. Trykk på, og summen vises i den ekstra cellen. Det går også an å klikke på celle D6 og skrive formelen =SUMMER(D2:D5) direkte i cellen. 172

8 Summen vises i celle D6! En av de største fordelene med regneark er at det er lett å gjøre forandringer. Tenk deg at du vil kjøpe inn 6 flasker brus i stedet for 8. Du kan da forandre tallet i celle B2 fra 8 til 6 ved å dobbeltklikke i celle B2 og forandre tallet til 6. Når du gjør forandringen og trykker linjeskifttasten, ser du at flere av tallene i oppsettet ditt forandres. Disse tallene er merket med rødt under. Når vi gjør en forandring i oppsettet, vil programmet automatisk forandre informasjonen i de andre cellene som henger sammen med den cellen der vi gjorde forandringen. Vi ser at programmet sparer oss for mye arbeid. Regneark 173

9 8 Julie skal handle mat. På lappen hennes står følgende: 2 brød til 8,90 kr per stykk 3 liter melk til 9,40 kr per liter 1 boks leverpostei til 11,60 kr 1 pakke ris til 22,80 kr 2 kyllinger til 29,90 kr per stykk 1 pakke saus til 6,90 kr a) Før opp varene med priser i et regneark. b) Skriv inn en formel for hvor mye brødene koster til sammen. c) Kopier formelen over til de andre varene på denne måten: Plasser markøren på den lille firkanten i nederste høyre hjørne av cellen som viser hvor mye brødene koster til sammen. Firkanten gjøres om til et kryss. Hold venstre museknapp inne og trekk krysset nedover til alle cellene er merket. Når du slipper museknappen, har programmet regnet ut summen for de andre varene. d) Varene Julie vil kjøpe, koster i alt 147,50 kr, men hun har bare med seg 120 kr. Forandre på antall varer slik at summen ikke blir høyere enn 120 kr. Ser du at summen endrer seg? 174

10 9 Patrik ønsker høyere ukelønn og må gjøre mer husarbeid. Han har laget en oppstilling i et regneark som viser regnskapet for husarbeid i én uke: a) Lag en tilsvarende oppstilling i et regneark. b) Du ønsker nå at regnearket skal regne ut lønna for en hel uke automatisk. Trykk på eller skriv inn formelen =SUM- MER(B2:B8) i celle B9. Regneark 175

11 10 Julie setter opp et regnskap i et regneark. Regnskapet viser hvilke aktiviteter og innkjøp hun planlegger i neste uke. 11 a) Skriv det samme regnskapet inn i et regneark. b) Hvilken formel må stå i celle D9 for at regnearket skal regne ut summen av utgiftene automatisk? 12 Du skal endre på utgiftene til Julie i oppgave 16 slik at de til sammen ikke blir høyere enn a) 30 kr b) 40 kr c) 50 kr 176

12 Å lage diagrammer Hvis vi skriver inn resultatene fra en undersøkelse i et regneark, kan vi lage diagrammer som viser resultatet av undersøkelsen. Eksempel Kaja har undersøkt hvilke fritidsaktiviteter elevene i gruppa hennes liker best. Nedenfor ser du resultatet av undersøkelsen. Nå ønsker hun å lage et diagram som viser resultatet av undersøkelsen. Hun merker da hele tabellen og klikker på det diagrammet hun ønsker. Hvis hun trykker på stolpediagram, får hun dette diagrammet: Regneark 177

13 Hvis hun klikker på sektordiagram, får hun dette diagrammet: 13 Jon har undersøkt hvordan elevene i gruppa hans kommer til skolen. Her ser du resultatet av undersøkelsen: Til skolen Antall elever Går 15 Sykler 4 Tar bussen 5 Blir kjørt 2 Lagre diagrammene, og skriv dem ut på en skriver. a) Skriv inn i tabellen i et regneark. b) Lag et stolpediagram. c) Lag et sektordiagram. 178

14 Kan jeg? Ta utskrift av oppgavene. Oppgave 1 Før regnestykkene inn i et regneark, og lag formler for utregning av svarene. a) = c) 38 4 = b) = d) 378 : 12 = Oppgave 2 a) Skriv tallet 3,465 inn i en celle i et regneark. Reduser antall desimaler til to. b) Skriv tallet 3,4 inn i en celle i et regneark. Øk antall desimaler til fire. Oppgave 3 Du skal handle disse varene: 3 blader til 24,50 kr per stk. 5 penner til 9,90 kr per stk. 4 bøker til 79,50 kr per stk. a) Lag en oppstilling i et regneark som viser summen for hver vare og hva varene koster i alt. b) Juster antall blader til 6 og antall bøker til 2. Hvor mye koster varene i alt nå? Oppgave 4 Julie har notert fargen på bilene på en parkeringsplass. Her ser du hva hun noterte: a) Skriv inn i tabellen i et regneark. b) Lag et stolpediagram. c) Lag et sektordiagram. Farge Antall biler Rød 10 Grønn 12 Blå 14 Andre 8 Regneark 179

15 Litt av hvert 1 Trekk pil fra tallene til riktig plass på tallinja > Skriv som brøk. a) 0,5 = b) 0,8 = c) 0,2 = 3 Regn i hodet. a) = b) = 4 Julie observerer temperaturen over en periode på 14 dager om sommeren. Her ser du resultatet av undersøkelsen: 14 C 16 C 15 C 18 C 16 C 19 C 22 C 18 C 15 C 22 C 24 C 25 C 22 C 19 C a) Hva er den høyeste observasjonen? C 180

16 b) Hva var gjennomsnittstemperaturen? (Bruk kalkulator) Regn her: c) Hva er typetallet for observasjonene? C 5 Regn ut. Kontroller svarene med kalkulator. a) b) Regn i hodet. a) 24 : 4 8 : 4 = c) 45 : : 8 = b) 28 : : 4 = d) 56 : 8 36 : 6 = 6 Julie arbeider noen timer hver uke hos en skredder. Den første uka arbeider hun 5 timer og får utbetalt 120 kr. Hvor stor er timelønna denne uka? Regn her: Regneark 181

17 7 Regn ut. a) b) : 8 = : 1 4 = 8 Skriv som brøk og som desimaltall. a) 25 % = = 10 % = = 0, b) 56 % = = c) 4 % = = d) 99 % = = 182

18 9 Hvor mye er 1 % av a) 300 kr? kr d) 800 kr? kr b) 100 kr? kr e) 600 kr? kr c) 400 kr? kr f) 1000 kr? kr 10 Hvor mye er 50 % av a) 100 kr? kr d) 9 kr? kr b) 1200 kr? kr e) 35 kr? kr c) 450 kr? kr f) 1424 kr? kr 11 Julie, Mia og Kaja arrangerer lotteri. Av 300 lodd er det 30 som gir gevinst. Hvor mange prosent av loddene er vinnerlodd? Regn her: 14 Simen vil kjøpe en gitarbok. Den koster 258 kr, men prisen er nå satt ned med 25 %. Hvor stort er avslaget? Regn her: Regneark 183

19 Oppsummering Hva er et regneark? Et regneark er et program som kan brukes til å lage oversiktlige oppsett, for eksempel for regnskap og budsjett. Det kan også brukes til avanserte matematiske beregninger og til å lage diagrammer. rad kolonne formellinje celle Regnearket er delt i et rutenett av loddrette kolonner og horisontale rader. Over hver kolonne står det en bokstav og foran hver rad et tall. Hver rute i regnearket kalles en celle. Over rutenettet har vi en linje med forskjellige symboler. Denne linja kalles formellinje og er nyttig når vi bruker regneark. Å gjøre utregninger Her er de viktigste regnetegnene vi bruker i et regneark: Addisjon + Subtraksjon Multiplikasjon Divisjon / Når vi vil at regnearket skal gjøre en utregning, skriver vi en formel. Vi starter alltid en formel med likhetstegnet. Eksempel Formelen =B2+C2 regner ut summen av celle B2 og C2. 184

20 Å summere celler Merk cellene du vil summere, pluss en ekstra celle, og trykk på. Nå vil regnearket summere innholdet i cellene. Eksempel Justering av antall desimaler Vi kan justere antall desimaler i et tall ved å klikke på knappene,00 og.,0,00,0 Å lage diagrammer Vi kan lage stolpediagram og sektordiagram i et regneark ved å merke cellene vi vil vise, og så klikke på symbolet for riktig diagram. Eksempel søylediagram Tusen millioner takk for denne gang! Regneark 185

Skriv teksten «Ukelønn» i celle A1 (kolonne A, rad 1) og 60 i celle B1 (kolonne B, rad 1). Løsning

Skriv teksten «Ukelønn» i celle A1 (kolonne A, rad 1) og 60 i celle B1 (kolonne B, rad 1). Løsning Hva er et regneark? Vi bruker regneark til å sortere data, gjøre beregninger og lage diagrammer. I denne manualen finner du veiledning til hvordan du kan bruke regneark. Et regneark består av celler som

Detaljer

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller Excel Hva er et regneark? Vi bruker regneark til å sortere data, gjøre beregninger og lage diagrammer. I denne manualen finner du veiledning til hvordan du kan bruke regneark. Et regneark består av celler

Detaljer

Innføring i OOcalc Side 1. OOcalc

Innføring i OOcalc Side 1. OOcalc Innføring i OOcalc Side 1 OOcalc Hva er et regneark? Et regneark kan sammenlignes med et vanlig ruteark, hvor tall skrives inn og beregninger utføres. På et vanlig ruteark må man selv utføre beregningen.

Detaljer

18.07.2013 Manual til Excel. For mellomtrinnet. Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

18.07.2013 Manual til Excel. For mellomtrinnet. Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 18.07.2013 Manual til Excel 2010 For mellomtrinnet Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Husk... 2 1. Det kan bare være tall i cellene som skal brukes i formelen.... 2 2. En

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal Veiledning og oppgaver til OpenOffice Calc Regneark 1 Grunnskolen i Nittedal Regneark 1 Når du er ferdig med heftet skal du kunne: Vite hva et regneark er. Oppstart og avslutning av OpenOffice Calc. Flytting

Detaljer

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og Ei innføring i Calc 1 Innledning Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og noe av hva det kan brukes til. OpenOffice Calc er brukt som mønster her, men

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

Kommentarer til boka Regneark for barnetrinnet 1

Kommentarer til boka Regneark for barnetrinnet 1 Kommentarer til boka Regneark for barnetrinnet (Ideen er den samme, men skjermbildene noe forskjellige i ulike versjoner av Excel) Arket Om regneark Endre cellebredden Plasser markøren midt mellom to kolonner.

Detaljer

Hvor mye må jeg betale for 2 kg appelsiner?

Hvor mye må jeg betale for 2 kg appelsiner? Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon

Detaljer

a) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form.

a) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form. 1 Skriv av og sett inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Tegn en tallinje fra 6 til 6. Merk av tallene så nøyaktig som mulig. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Tegn tallinjer og merk av brøkene. 1 3

Detaljer

Grunnleggende. Excel

Grunnleggende. Excel Grunnleggende Excel Grunnleggende begreper Regneark: Basert på gamle bokføringsbilag, men med mange automatiske funksjoner som gjør utregninger enklere å utføre og oppdatere Rad: horisontal (overskrift

Detaljer

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr?

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? 4 356 : 10 = Jeg vet om en lur måte å regne på MÅL I dette kapitlet skal du lære om divisjon med 10

Detaljer

Hvor mye er 1341 kr delt på 2?

Hvor mye er 1341 kr delt på 2? Hvor mye er 1341 kr delt på 2? 10 1 4 = 1 : 4 Divisjon 2 MÅL I dette kapitlet skal du lære om divisjon som gir rest divisjon der svaret er et desimaltall avrunding av desimaler divisjon av desimaltall

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Formellinje. Nytt ark

Formellinje. Nytt ark 1 Bli kjent med regnearket Et regnearkdokument er bygd opp som ei arbeidsbok med flere ark. Du gir arbeidsboka navn når du lagrer filen. Du kan legge til flere ark og du kan gi arkene navn som sier noe

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Excel. Kursopplegg for SKUP-konferansen 2015. Laget av trond.sundnes@dn.no

Excel. Kursopplegg for SKUP-konferansen 2015. Laget av trond.sundnes@dn.no Excel Kursopplegg for SKUP-konferansen 2015 Laget av trond.sundnes@dn.no 1 Konseptet bak Excel er referansepunkter bestående av ett tall og en bokstav. Et regneark består av loddrette kolonner (bokstav)

Detaljer

September 2003 MATEMATIKK IKT. Innføring i bruk av regneark i matematikk på ungdomstrinnet

September 2003 MATEMATIKK IKT. Innføring i bruk av regneark i matematikk på ungdomstrinnet September 2003 MATEMATIKK OG IKT Innføring i bruk av regneark i matematikk på ungdomstrinnet 1 Forord Heftet er utarbeidet av Benedikte Grongstad og Ketil Tveito, Sandgotna skole, Bergen på oppdrag fra

Detaljer

Øvingshefte. Multiplikasjon og divisjon

Øvingshefte. Multiplikasjon og divisjon Øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon og

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Multiplikasjon og divisjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Multiplikasjon og divisjon 1 Multiplikasjon

Detaljer

Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co Side 1

Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co  Side 1 Repetisjon fra kapittel 2: Summere mange tall, funksjonen SUMMER() Regnearket inneholder en mengde innebygde funksjoner. Vi skal her se på en av de funksjonene vi oftest bruker. Funksjonen SUMMER() legger

Detaljer

Husker du hele multiplikasjonstabellen?

Husker du hele multiplikasjonstabellen? Husker du hele multiplikasjonstabellen? 3 3 + 3 + 3 + 3 = 4 3 Multiplikasjon MÅL I dette kapitlet skal du lære om multiplikasjon med tall som ender på null multiplikasjon av flersifrede tall multiplikasjon

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

Oppgaver der du bruker regneark Forslag på oppgaver: 8.trinn

Oppgaver der du bruker regneark Forslag på oppgaver: 8.trinn Oppgave 1: Lotte har satt opp utstyr som hun kan måle nedbørsmengden med. Hun målte nedbøren hver dag en uke i april. Resultatet av målingene ser du nedenfor. Ukedag Nedbør (mm) Søndag 10 Mandag 15 Tirsdag

Detaljer

Bruk av OpenOffice.org 3 Writer

Bruk av OpenOffice.org 3 Writer Bruk av OpenOffice.org 3 Writer OpenOffice.org 3 er et gratis og bra alternativ til Microsoft Office (Word, Excel, Power Point osv.). 1 Oppstart av OpenOffice.org Trykk på Start etterfulgt av Programmer

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt.

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. elever sykler til skolen hver dag, mens 0 tar bussen. går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. 7 Hm, er det så mange satellitter over år?! Statistikk MÅL I dette kapitlet

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1

7. TRINN MATEMATIKK PERIODEPLAN 1 1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

Excel Dan S. Lagergren

Excel Dan S. Lagergren Excel 2007 Dan S. Lagergren 1 Temaer for dagen Automatiske lister Formatering av regneark Sortering og filtrering Formelbruk Grafer Utskrift 2 Har du hentet eksempelfila? Gå til: http://www.ntnu.no/lynkurs/09/excel

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING OM REGNEARK... 4 ØVELSE 1. PRESENTASJON

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

c) Hundreplassen d) Titusenplassen e) Tierplassen 9 a) c) b) d)

c) Hundreplassen d) Titusenplassen e) Tierplassen 9 a) c) b) d) Grunnbok B Kapittel 8 Tall og algebra Ett tusen to hundre og femtitre b) Tjueen tusen to hundre og femtitre c) Fire hundre og tjueen tusen to hundre og femtitre d) Sju millioner fire hundre og tjueen tusen

Detaljer

Simulering - Sannsynlighet

Simulering - Sannsynlighet Simulering - Sannsynlighet Når regnearket skal brukes til simulering, er det et par grunninnstillinger som må endres i Excel. Hvis du får feilmelding om 'sirkulær programmering', betyr det vanligvis at

Detaljer

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016/2017 Læreverk: Multi 5a og b Lærer: Ruben Elias Austnes Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING - Finne verdien av et siffer HELE TALL Titallsystemet Tallinjer

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Hvor mye koster 10 kurver plommer?

Hvor mye koster 10 kurver plommer? Hvor mye koster 10 kurver plommer? 13 Jeg runder av tallene til 50 kr, 200 kr og 350 kr for å se om jeg har nok! Smart, ikke sant!? Kr 48,- Kr 199,- Kr 353,- Hoderegning og avrunding MÅL I dette kapittelet

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2010-versjon) Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2010-versjon) Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 Grunnleggende Excel-øvelser (2010-versjon) Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING OM REGNEARK... 4 ØVELSE 1. PRESENTASJON

Detaljer

Communicate SymWriter: R1 Lage en tavle

Communicate SymWriter: R1 Lage en tavle Communicate SymWriter: R1 Lage en tavle I denne delen beskrives egenskaper som kan brukes for å lage en tavle til å skrive med. Stort sett vil du bare ha bruk for en del av dette når du lager skrivemiljøer.

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Hva er regneark?... 4 Bli kjent med regnearket... 5 Rader, kolonner, celler... 5 Organisering av regnearkmodellen... 6 Regning i regneark... 7 Formler... 7 Vise formler, utskrift... 11 Utskrift

Detaljer

ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017

ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 Faglærer: Dorthea Ledang Fagbøker/lærestoff: Radius 3a grunnbok og Radius 3b grunnbok. Mnd August Læreplanmål (kunnskapsløftet) Delmål Tema/emne Kunne dele hele

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 00 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser.

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

Heftet tar utgangspunkt i Excel 2013. Prinsippene vil være de samme i andre regneark.

Heftet tar utgangspunkt i Excel 2013. Prinsippene vil være de samme i andre regneark. Heftet tar utgangspunkt i Excel 2013. Prinsippene vil være de samme i andre regneark. Det vil være en stor fordel om du har tilgang til regneark hjemme. Du må regne med å få oppgaver som må løses hjemme

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

FORELESING KVELD 9. IT For medisinsk sekretær Fredrikstad

FORELESING KVELD 9. IT For medisinsk sekretær Fredrikstad FORELESING KVELD 9 IT For medisinsk sekretær Fredrikstad Kai Hagali FØRST OG FREMST Litt repitisjon Relativ referanse? Absolutt referanse? Brukes ved? HVA SKJER HER? GJØR HVA? HVA BLIR INNHOLDET I CELLEN

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Regneark med Excel. Geir Maribu, TISIP

Regneark med Excel. Geir Maribu, TISIP Regneark med Excel Geir Maribu, TISIP Kursleksjonene er forfatters eiendom. Som kursdeltaker kan du fritt bruke leksjonene til eget personlig bruk. Kursdeltakere som ønsker å bruke leksjonene f.eks til

Detaljer

Simulering på regneark

Simulering på regneark Anne Berit Fuglestad Simulering på regneark Trille terninger eller kaste mynter er eksempler som går igjen i sannsynlighetsregningen. Ofte kunne vi trenge flere forsøk for å se en klar sammenheng og få

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING OM REGNEARK... 4 ØVELSE 1. PRESENTASJON

Detaljer

Tallinjen FRA A TIL Å

Tallinjen FRA A TIL Å Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen

Detaljer

a) 5 5 b) 7 9 c) 1 0 d) 5 10 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8

a) 5 5 b) 7 9 c) 1 0 d) 5 10 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8 1 Skriv av og set inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Teikn ei tallinje frå 6 til 6. Merk av tala så nøyaktig som mogleg. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Teikn tallinjer og merk av brøkane. 1 3 6

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Bli kjent med regnearket... 2 Rader, kolonner, celler... 2 Organisering av regnearkmodellen... 3 Regning i regneark... 4 Formler... 4 Vise formler, utskrift... 7 Utskrift av regnearket... 7 Kopiere

Detaljer

Fag: Matematikk Skoleåret:

Fag: Matematikk Skoleåret: Fag: Matematikk Skoleåret: 2016-17 Klassetrinn: 6.klasse Lærer: Brita L. Sørensen Uke Emne Kompetansemål Læremål Grunnleggende Ferdigheter Metoder Vurder for lær 34-35 God start - Beskrive og bruke plassverdisystemet

Detaljer

Årsplan i matematikk 6.trinn 2016/2017

Årsplan i matematikk 6.trinn 2016/2017 Årsplan i matematikk 6.trinn 2016/2017 Faglærere: Anne Kristin Helland og Marte Hegg Hellebø Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /37 Tall og tallforståelse

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Analyse av innkjøpsdata i excel veiledning i hvordan du vasker data og benytter pivot for å sette sammen tabeller i excel.

Analyse av innkjøpsdata i excel veiledning i hvordan du vasker data og benytter pivot for å sette sammen tabeller i excel. Analyse av innkjøpsdata i excel veiledning i hvordan du vasker data og benytter pivot for å sette sammen tabeller i excel. Innhold 1. Hvordan få tilgang til data?...2 2. Hvordan vaske dataene?...3 3. Formater

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Kompendium Excel 2007

Kompendium Excel 2007 Kompendium Excel 2007 Utarbeidet av: Magnus Nohr (2001), oppdatert av Lars Vemund Solerød (2007) Fag: Excel Avdeling: Avdeling for lærerutdanning, 2007 Kompendium til internt bruk fremstilt av Høgskolen

Detaljer

ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk

ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk ÅRSPLAN for skoleåret 2015 /-2016 i Matematikk Faglærer: Nina Gausdal Fagbøker/lærestoff: Grunntall 6a og 6b Uke 35-36 Læreplanmål (kunnskapsløftet) Delmål Tema/emne Addere tall med addere to tall ved

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

HR analysen. Ny versjon 2009. Brukermal. Administratorer

HR analysen. Ny versjon 2009. Brukermal. Administratorer HR analysen Ny versjon 2009 Brukermal Administratorer 1) Som administrator Det første bildet en kommer inn på når en har logget seg inn er: A) Legg merke til den hvite boksen på høyre side der det står

Detaljer

Utvidet brukerveiledning

Utvidet brukerveiledning Utvidet brukerveiledning for Akershus fylkeskommunes statistikkverktøy http://statistikk.akershus-fk.no Utarbeidet av Cathrine Bergjordet, analysestaben, AFK Sist oppdatert 14/3 2014 Viktige begreper og

Detaljer

Lesing i matematikk - med modelltegning som hjelp til å løse oppgavene. Ann-Christin Arnås ann-christin.arnas@gyldendal.no

Lesing i matematikk - med modelltegning som hjelp til å løse oppgavene. Ann-Christin Arnås ann-christin.arnas@gyldendal.no Lesing i matematikk - med modelltegning som hjelp til å løse oppgavene Ann-Christin Arnås ann-christin.arnas@gyldendal.no Hva sier læreplanen om lesing i matematikk? Å kunne lese i matematikk inneber å

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Øvingshefte. Velge regneart

Øvingshefte. Velge regneart Øvingshefte Matematikk Mellomtrinn Velge regneart Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1 Sett inn riktig regnetegn

Detaljer

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE FORSLAG TIL FAGPLAN I MATEMATIKK 8. KLASSE- Justert 27.09.2011 Periode Tema Kompetansemål Aktiviteter/innhold Kilder Vurdering August og September (ca. 6 uker) Tall og

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Hastigheten til bob-en er 120 km/t. Hva vil det si?

Hastigheten til bob-en er 120 km/t. Hva vil det si? Hastigheten til bob-en er 120 km/t. Hva vil det si? 12 Hm, ett britisk pund koster 11,45 kr! Sammensatte enheter MÅL I dette kapitlet skal du lære om fart priser lønn valuta KOPIERINGSORIGINALER 12.1 Felles

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik og Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 200 Materialet i denne publikasjonen er omfattet av åndsverklovens

Detaljer

Nr. Forklaring 1 Skriv BASELINE i kolonne A og TILTAK i kolonne B. "Baseline" vil bli fase A på grafen, mens "Tiltak" blir fase B 2 Legg inn verdiene

Nr. Forklaring 1 Skriv BASELINE i kolonne A og TILTAK i kolonne B. Baseline vil bli fase A på grafen, mens Tiltak blir fase B 2 Legg inn verdiene Nr. Forklaring 1 Skriv BASELINE i kolonne A og TILTAK i kolonne B. "Baseline" vil bli fase A på grafen, mens "Tiltak" blir fase B 2 Legg inn verdiene fra basislinjen under BASELINE og legg inn verdiene

Detaljer

16 Excel triks det er smart å kunne

16 Excel triks det er smart å kunne 16 Excel triks det er smart å kunne Viste du at: Det er mer en 300 funksjoner i Excel. Den første versjonen av Excel ble laget til Macintosh i 1985 Det er mer en 200 hurtigtaster i Excel ProCloud sammen

Detaljer

Stolpediagragram og histogram med regneark

Stolpediagragram og histogram med regneark Stolpediagragram og histogram med regneark I underkapittel 4C i læreboka for Matematikk 2P forklarer vi hvordan du går fram når du skal tegne stolpediagram og histogram. Her viser vi hvordan du kan bruke

Detaljer

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver Årsplan i matematikk for 3. trinn 2015/2016 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 T.M s. 4-21 tallene, bruke positive

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Gange. Hverdagsmatte Del 1 side 34

Gange. Hverdagsmatte Del 1 side 34 Hverdagsmatte Del 1 side 34 Gange Når vi ganger to tall med hverandre, bruker vi gange mellom tallene. Gange skriver vi. Det er også vanlig å bruke x. Miriam er i butikken. Hun kjøper 3 is. En is koster

Detaljer

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på?

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på? 3. kurskveld Gjennomgang av hjemmeleksa Hvilke tall tenker jeg på? Læreren tenker på to etterfølgende tall mellom 1 og 10. To elever får en lapp med hvert sitt av de to tallene. Elev A: Jeg vet ikke hvilket

Detaljer

Algebra for alle. Gunnar Nordberg

Algebra for alle. Gunnar Nordberg Algebra for alle Gunnar Nordberg 1 Om dette verkstedet Fra konkreter til tall Fra tall til variabler(bokstaver) Kan algebraen bli meningsfull Å undervise i algebraisk forståelse Ideer til gode oppgaver

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

FORELESING KVELD 12. IT For medisinsk sekretær Fredrikstad

FORELESING KVELD 12. IT For medisinsk sekretær Fredrikstad FORELESING KVELD 12 IT For medisinsk sekretær Fredrikstad Kai Hagali EXCEL FORMLER Summer Gjennomsnitt Tellenumre Maks Min Hvis Er de som må sitte ABSOLUTT REFERANSE Vil være med i eksamen Dvs. referansen

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

LIGHTNING ET PROGRAM FOR SKJERMFORSTØRRING BRUKERVEILEDNING. Bojo as Akersbakken 12, N-0172 Oslo Utgave 1206 Bojo as 2006

LIGHTNING ET PROGRAM FOR SKJERMFORSTØRRING BRUKERVEILEDNING. Bojo as Akersbakken 12, N-0172 Oslo Utgave 1206 Bojo as 2006 LIGHTNING ET PROGRAM FOR SKJERMFORSTØRRING BRUKERVEILEDNING Bojo as Akersbakken 12, N-0172 Oslo Utgave 1206 Bojo as 2006 23 32 75 00 23 32 75 01 post@bojo.no http://www.bojo.no Innhold Innhold...2 1. Om

Detaljer

MA 1410: Analyse (4 vekttall)

MA 1410: Analyse (4 vekttall) MA 110: Analyse ( vekttall) PC-øvelser uke 7, 10. - 1. september 001. Hva skal gjøres denne uken (se detaljer nedenfor): - Bli kjent med innlogging og utlogging. - Oppstart, bli kjent med og avslutning

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer