Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Størrelse: px
Begynne med side:

Download "Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel"

Transkript

1 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel

2 Innhold 1 Om Excel 4 2 Regning Tallregning Potenser Standardform n-terøtter Funksjoner 5 4 Arbeid med regneark 5 5 Median 8 6 Gjennomsnitt Gjennomsnitt når alle dataene er oppgitt Gjennomsnitt i frekvenstabell Standardavvik Standardavvik når alle dataene er oppgitt Standardavvik i frekvenstabeller Histogram 10 9 Spredningsdiagram Regresjon 11 2

3 Innledning Dette heftet er ment som en beskrivelse av dataprogrammet Microsoft Excel som digitalt verktøy i undervisningen i faget «Matematikk Vg2P», studieforbedredende utdanningsprogram. Heftet er tilpasset læreverket Sigma matematikk, Gyldendal Undervisning, og inneholder referanser til framstillingen der. Henvisninger fra boka Følgende er en oversikt over de sidetallene i læreboka som har referanse til digitale verktøy. Lista gir deg en oversikt over hvilket avsnitt i dette heftet som omhandler det aktuelle emnet i læreboka. Henvisningene refererer til sidetall i Sigma matematikk 2P, 2. utgave, Gyldendal Undervisning, I den elektroniske utgaven av heftet er referansene klikkbare. Sidetall i læreboka Emne Avsnitt i dette heftet 10 Potensregning Standardform n-terot Verditabell 3 44 Oppbygning av regneark 4 69 Median 5 72 Gjennomsnitt 6 74 Standardavvik 7 79 Histogram Spredningsdiagram Lineær regresjon Eksponentiell regresjon Andregradsregresjon Potensregresjon 10 3

4 1 Om Excel Dette heftet omtaler dataprogrammet Microsoft Excel. Versjonen som er brukt Microsoft Office 2007, men forklaringene her burde passe til de fleste versjoner av Excel. Excel kan klare mange av oppgavene et digitalt verktøy i matematikk i skolen skal kunne, men hovedstyrken ligger for 2Ps del i statistikk. 2 Regning 2.1 Tallregning For at Excel skal tolke det du skriver som et regnestykke, må du starte med likhetstegn. Så taster du inn regnestykker omtrent som på en vanlig lommeregner, med for gange og «/» for dele. Svaret får du når du trykker enter (linjeskift). 2.2 Potenser Programmet bruker cirkumflex ( ) for potenser. På noen datamaskiner må man taste et mellomrom etter. Legg merke til at Excel tolker 1 2 som ( 1) 2 = 1, mens de fleste vanlige lommeregnere tolker det som (1 2 ) = 1. Vi må derfor passe spesielt godt på fortegn i utregninger og angi ønsket regnerekkefølge med parenteser. I utregningen 7 ( ( 3)) 2 må vi taste slik: 2.3 Standardform Når et tall har mer enn 10 sifre, skriver Excel tallet på standardform. Tierpotensen skrives med bokstaven «E». Eksempel: Tallet 1, skrives som «1,3E+29». Å taste inn tall på standardform gjøres ved å taste potensen inn på vanlig måte: Tallet 1, tastes inn som «1, ». Det går også an å bruke «E». Da taster du slik: «1,3E29». 4

5 2.4 n-terøtter Excel har ikke noen funksjon for n-terøtter. Du må taste dem inn som potenser i stedet. Da bruker vi at n a = a 1 n, altså for eksempel 4 20 = Dette taster vi inn med 20 (1/4) og får 2,11. 3 Funksjoner Program for regneark er lite egnet til å arbeide med funksjoner, som for eksempel å lage verditabell eller å tegne grafer. Vi anbefaler at du i stedet bruker et program som er laget for graftegning. 4 Arbeid med regneark Et regneark kan i mange situasjoner forenkle arbeidet i matematikken. For det første kan du dele opp inntasting og utregning, slik at det blir enklere å feilsøke enn om du regner med papir eller lommeregner. For det andre finnes det effektive metoder for å bygge opp regneark, slik at du sparer inntasting. Som eksempel på hvordan vi bygger opp et regneark, går vi her gjennom regnearket på side 44 i boka. Vi starter med å taste inn kolonneoverskriftene. Så markerer vi rad 1 og velger «Formater celler...» (ctrl 1). Der formaterer vi som tekst og velger «Bryt tekst». Da ser regnearket vårt slik ut: Vi skal taste inn stigende tall fra 1 til 6. Når det er såpass få tall, er det raskest å taste inn manuelt. Når det er mange, lønner det seg å få progammet til å gjøre det. Vi øver på det siste: Vi taster inn 1 og 2 i cellene A2 og A3. Deretter markerer vi de to cellene og flytter pekeren til nederste høyre hjørne av det markerte området. Da blir markøren til et svart kryss. Så tar vi tak i hjørnet og drar det ned til vi har fylt seks rader. 5

6 Vi taster inn frekvensene i kolonne B. Under frekvensene vil vi summere. Da skriver vi «=SUMMER(B2:B7)», og programmet summerer for oss. Nå skal vi lage kolonnen for kumulativ frekvens. Den første verdien er rett og slett første frekvens. Vi setter derfor celle C2 til «=B2». Resten av cellene i kolonne C skal være summen av cellen over og cellen til venstre, altså summen av kumulativ frekvens til nå og frekvensen på denne linja. Da setter vi celle C3 til «=C2+B3». Deretter markerer vi celle C3 og utvider cellen til å gjelde hele kolonnen ved å dra i nedre høyre hjørne. Hvis jeg nå trykker ctrl-j, får jeg se formlene. Da ser det slik ut: 6

7 Neste kolonne er relativ frekvens. Hver celle skal settes til frekvensen, i kolonne B, dividert med summen av frekvensene, celle B8. Hvis vi gjør som ovenfor og setter celle D2 til «=B2/B8», vil ikke de neste cellene få referanse til B8 når vi utvider. De vil referere til B9, B10, B11 og så videre For å unngå dette, må vi låse referansen til celle B8. Det gjør vi ved å sette tegnet «$» inni referansen, altså slik «=B2/$B$8». Da kan vi utvide også denne cellen til å gjelde hele kolonnen. Kolonnen for relativ kumulativ frekvens er omtrent lik den for relativ frekvens, men med den forskjellen at det er den relative frekvensen fra kolonne C vi dividerer med B8. Vi setter celle E2 til «=C2/$E$8» og utvider cellen til hele kolonnen. (Vi får samme resultat om vi utvider kolonne D til å omfatte kolonne E.) Da ser det slik ut. Hvis vi ønsker det, kan vi summere kolonne D og kontrollere at summen blir 1. 7

8 5 Median For å finne medianen, legger vi inn alle dataene våre og bruker kommandoen «=MEDI- AN()». Inni parentesene legger vi inn området dataene er lagt inn, for eksempel «=MEDIAN(B1:AE1)». Dette gjør du ved å ha markøren mellom parentesene og så klikke og dra over alle cellene med dataene i. 6 Gjennomsnitt 6.1 Gjennomsnitt når alle dataene er oppgitt Gjennomsnittet regner vi ut med kommandoen «=GJENNOMSNITT()». Mellom parentesene skriver vi inn området datene ligger i, for eksempel «=GJENNOM- SNITT(A1:A6)». Plasser markøren mellom parentesene. Så klikker du og drar over alle cellene du vil ha gjennomsnittet av. 6.2 Gjennomsnitt i frekvenstabell Dersom dataene er oppgitt i en frekvenstabell er det lettest å regne ut gjennomsnittet selv. Vi setter opp dataene i to kolonner. Så lar vi cellene i den tredje kolonnen være produktet av cellene i de to første. Tast inn tabellen. Klikk i første celle til høyre for tabellen (C2). 8

9 Tast inn «=», klikk på celle A2, tast inn «*», klikk på celle B2, tast linjeskift. Utvid cellen til hele kolonnen (til C7), jfr. figuren. Til slutt summerer du kolonne B og C. Gjennomsnittet er nå summen av kolonne C dividert med summen av kolonne B, altså «=C9/B9», jfr figuren. 7 Standardavvik 7.1 Standardavvik når alle dataene er oppgitt Vi finner standardavviket med komandoen «=STDAVP()» 1. Inni parentesene angir du området for dataene, akkurat som for gjennomsnittet. 1 Det finnes også en kommando «=STDAV()». Den gir galt svar. 9

10 7.2 Standardavvik i frekvenstabeller Med en frekvenstabell, er det best å regne ut standardavviket selv. 1. Regn ut gjennomsnittet som beskrevet over. 2. La celle D2 være «=B2*(A2-B10) 2». Lås referansen til B10 ved å sette inn $ så det blir «$B$10». (Du kan gjøre det ved å markere referansen til B10 og trykke på F4.) 3. Utvid D2 til hele kolonne D, altså til D7. 4. Summer kolonne D (sett D9 til «=SUMMER(D2:D7)»). 5. Standardavviket er kvadratroten av D9 dividert med B9. Det får du med «=ROT(D9/B9)». 8 Histogram Excel egner seg ikke til å tegne histogram i. Excel kan tegne søylediagram, men bredden på søylen må være den samme hele tiden. Vi anbefaler deg å tegne histogram for hånd, eventuelt bruke et digitalt verktøy som kan tegne det. Det finnes måter å manipulere Excels diagrammer, slik at de ser ut som histogrammer, men det er litt innviklet i forhold til håndtegning. 10

11 9 Spredningsdiagram Spredningsdiagram lager vi ved å legge inn verditabellen, markere den og velge «Punktdiagram» fra «Sett inn»-menyen (Sett inn > Diagrammer > Punkt > Punktdiagram.) Du kan endre utseende på diagrammet ved å høyreklikke på de enkelte delene av diagrammet. 10 Regresjon I Excel foretar vi regresjon ved å først lage et spredningsdiagram og så velge «Legg til trendlinje...». Valget «Legg til trendlinje...» finner du ved å høyreklikke på selve punktene i spredningsdiagrammet. 11

12 Når du velger «Legg til trendlinje...», får du opp et vindu med alternativer for trendlinje. Velg hvilken type regresjon du vil ha, for eksempel lineær regresjon («Lineær»), eksponentiell regresjon («Eksponentiell»), andregradsregresjon («Polynom» med rekkefølge 2) eller potensregresjon («Potens»). Merk av for «Vis formel i diagrammet». Når du så lukker vinduet, får du tegnet regresjonskurven i spredningsdiagrammet, sammen med et funksjonsuttrykk for kurven. 12

13 Figuren viser at regresjonskurven er gitt ved funksjonsuttrykket y = 4,7981x 24,478 13

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Stolpediagragram og histogram med regneark

Stolpediagragram og histogram med regneark Stolpediagragram og histogram med regneark I underkapittel 4C i læreboka for Matematikk 2P forklarer vi hvordan du går fram når du skal tegne stolpediagram og histogram. Her viser vi hvordan du kan bruke

Detaljer

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og Ei innføring i Calc 1 Innledning Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og noe av hva det kan brukes til. OpenOffice Calc er brukt som mønster her, men

Detaljer

Excel. Kursopplegg for SKUP-konferansen 2015. Laget av trond.sundnes@dn.no

Excel. Kursopplegg for SKUP-konferansen 2015. Laget av trond.sundnes@dn.no Excel Kursopplegg for SKUP-konferansen 2015 Laget av trond.sundnes@dn.no 1 Konseptet bak Excel er referansepunkter bestående av ett tall og en bokstav. Et regneark består av loddrette kolonner (bokstav)

Detaljer

18.07.2013 Manual til Excel. For mellomtrinnet. Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

18.07.2013 Manual til Excel. For mellomtrinnet. Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 18.07.2013 Manual til Excel 2010 For mellomtrinnet Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Husk... 2 1. Det kan bare være tall i cellene som skal brukes i formelen.... 2 2. En

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Kommentarer til boka Regneark for barnetrinnet 1

Kommentarer til boka Regneark for barnetrinnet 1 Kommentarer til boka Regneark for barnetrinnet (Ideen er den samme, men skjermbildene noe forskjellige i ulike versjoner av Excel) Arket Om regneark Endre cellebredden Plasser markøren midt mellom to kolonner.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller

Excel. Excel. Legge inn tall eller tekst i en celle. Merke enkeltceller Excel Hva er et regneark? Vi bruker regneark til å sortere data, gjøre beregninger og lage diagrammer. I denne manualen finner du veiledning til hvordan du kan bruke regneark. Et regneark består av celler

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

Formellinje. Nytt ark

Formellinje. Nytt ark 1 Bli kjent med regnearket Et regnearkdokument er bygd opp som ei arbeidsbok med flere ark. Du gir arbeidsboka navn når du lagrer filen. Du kan legge til flere ark og du kan gi arkene navn som sier noe

Detaljer

Vet du hva vi kan bruke et regneark på pc-en til?

Vet du hva vi kan bruke et regneark på pc-en til? Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Innføring i Excel. Et lite selv-instruksjons kurs ( tutorial )

Innføring i Excel. Et lite selv-instruksjons kurs ( tutorial ) H. Goldstein Revidert 2011 Innføring i Excel Et lite selv-instruksjons kurs ( tutorial ) Den beste og raskeste måten å lære seg et nytt program på er på forhånd å ha en oppgave man ønsker å bruke programmet

Detaljer

Matematikk 2P. det digitale verktøyet. Kristen Nastad

Matematikk 2P. det digitale verktøyet. Kristen Nastad Matematikk 2P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

Innføring i Excel. Et lite selv-instruksjons kurs ( tutorial ) Oppgave 1

Innføring i Excel. Et lite selv-instruksjons kurs ( tutorial ) Oppgave 1 H. Goldstein Januar 2008 Innføring i Excel Et lite selv-instruksjons kurs ( tutorial ) Den beste og raskeste måten å lære seg et nytt program på er på forhånd å ha en oppgave man ønsker å bruke programmet

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Grunnleggende. Excel

Grunnleggende. Excel Grunnleggende Excel Grunnleggende begreper Regneark: Basert på gamle bokføringsbilag, men med mange automatiske funksjoner som gjør utregninger enklere å utføre og oppdatere Rad: horisontal (overskrift

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Bli kjent med regnearket... 2 Rader, kolonner, celler... 2 Organisering av regnearkmodellen... 3 Regning i regneark... 4 Formler... 4 Vise formler, utskrift... 7 Utskrift av regnearket... 7 Kopiere

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Klarer dere disse abel-nøttene fra 2011?

Klarer dere disse abel-nøttene fra 2011? 2: Lineære funksjoner VG1-T - teoretisk retning En del av dere synes nok at innføringa i kapittel 1 er i vanskeligste laget. Trass i at vi stort sett har repetert foreløpig, ser jeg at dere merker overgangen

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2010-versjon) Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2010-versjon) Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 Grunnleggende Excel-øvelser (2010-versjon) Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING OM REGNEARK... 4 ØVELSE 1. PRESENTASJON

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Hva er regneark?... 4 Bli kjent med regnearket... 5 Rader, kolonner, celler... 5 Organisering av regnearkmodellen... 6 Regning i regneark... 7 Formler... 7 Vise formler, utskrift... 11 Utskrift

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

AUTOCAD 2008. Artikkelserie. Tabeller

AUTOCAD 2008. Artikkelserie. Tabeller Odd-Sverre Kolstad AUTOCAD 2008 Artikkelserie Tabeller Gyldendal Norsk Forlag AS 2007 Omslag Marianne Thrap Redaktør: Rune Kjelvik Formgiver: Rune Kjelvik 1. opplag ISBN 978-82-05-37108-8 Alle henvendelser

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

16 Excel triks det er smart å kunne

16 Excel triks det er smart å kunne 16 Excel triks det er smart å kunne Viste du at: Det er mer en 300 funksjoner i Excel. Den første versjonen av Excel ble laget til Macintosh i 1985 Det er mer en 200 hurtigtaster i Excel ProCloud sammen

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Hurtigstartveiledning

Hurtigstartveiledning Hurtigstartveiledning Microsoft Excel 2013 har et annet utseende enn tidligere versjoner, så vi laget denne veiledningen for å minimere læringskurven. Legge til kommandoer på verktøylinjen for hurtigtilgang

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 Grunnleggende Excel-øvelser (2013-versjon) Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING OM REGNEARK... 4 ØVELSE 1. PRESENTASJON

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Innføring i OOcalc Side 1. OOcalc

Innføring i OOcalc Side 1. OOcalc Innføring i OOcalc Side 1 OOcalc Hva er et regneark? Et regneark kan sammenlignes med et vanlig ruteark, hvor tall skrives inn og beregninger utføres. På et vanlig ruteark må man selv utføre beregningen.

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

September 2003 MATEMATIKK IKT. Innføring i bruk av regneark i matematikk på ungdomstrinnet

September 2003 MATEMATIKK IKT. Innføring i bruk av regneark i matematikk på ungdomstrinnet September 2003 MATEMATIKK OG IKT Innføring i bruk av regneark i matematikk på ungdomstrinnet 1 Forord Heftet er utarbeidet av Benedikte Grongstad og Ketil Tveito, Sandgotna skole, Bergen på oppdrag fra

Detaljer

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

16 Excel triks det er smart å kunne

16 Excel triks det er smart å kunne Viste du at: 16 Excel triks det er smart å kunne Det er mer en 300 funksjoner i Excel. Den første versjonen av Excel ble laget til Macintosh i 1985 Det er mer en 200 hurtigtaster i Excel ProCloud sammen

Detaljer

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning Øyslebø oppvekstsenter ÅRSPLAN 2015-2016 Fag: Matematikk Trinn: 9. klasse Lærer: Tove Mørkesdal og Tore Neerland Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker,

Detaljer

Sinus 1T > Tallregning og algebra

Sinus 1T > Tallregning og algebra 8 Sinus T book.indb 8 Sinus T > Tallregning og algebra 04-0- 6:7:0 Tallregning og algebra MÅL for opplæringen er at eleven skal kunne regne med rotuttrykk, potenser med rasjonal eksponent og tall på standardform,

Detaljer

Eksempler på bruk av IKT i matematikk i videregående skole

Eksempler på bruk av IKT i matematikk i videregående skole Eksempler på bruk av IKT i matematikk i videregående skole FORORD Formålet med dette heftet er å vise noen anvendelser av digitale hjelpemidler til å løse matematikk oppgaver i videregående skole. Du kan

Detaljer

Kompendium Excel 2007

Kompendium Excel 2007 Kompendium Excel 2007 Utarbeidet av: Magnus Nohr (2001), oppdatert av Lars Vemund Solerød (2007) Fag: Excel Avdeling: Avdeling for lærerutdanning, 2007 Kompendium til internt bruk fremstilt av Høgskolen

Detaljer

SINUS R1, kapittel 1-4

SINUS R1, kapittel 1-4 Løsning av noen oppgaver i SINUS R1, kapittel 1-4 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 1.13 e, side 13 1.31 a, side

Detaljer

Løsning eksamen 2P våren 2010

Løsning eksamen 2P våren 2010 Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Tema: Tall og algebra Kunne skrive tall på ulike måter. Skrive veldig store og små tall

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Fagstoff til eksamen. Matematikk Vg2P

Fagstoff til eksamen. Matematikk Vg2P Matematikk Vg2P Fagstoff til eksamen Innhold på ndla.no er nå tilgjengelig i PDF- eller epub-format som hjelpemidler til eksamen. Disse filene kan lagres på egen datamaskin og leses i digitalt format,

Detaljer

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal Veiledning og oppgaver til OpenOffice Calc Regneark 1 Grunnskolen i Nittedal Regneark 1 Når du er ferdig med heftet skal du kunne: Vite hva et regneark er. Oppstart og avslutning av OpenOffice Calc. Flytting

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Eksempelsett 2P, Høsten 2010

Eksempelsett 2P, Høsten 2010 Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.

Detaljer

2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka

2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka P kapittel 4 Statistikk Løsninger til oppgavene i læreoka 4.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale

Detaljer

Geometra. Brukermanual. Telefon: 64831920

Geometra. Brukermanual. Telefon: 64831920 Geometra Brukermanual Telefon: 64831920 Innhold GENERELT...3 Hva er Geometra?...3 Om PDF tegninger...3 KOM I GANG!...5 Start programvaren og logg inn...5 Grunnleggende funksjoner:...6 Lag et prosjekt,

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 20.08.2015 Faglærere:

Detaljer

Fasit teorioppgaver. Kapittel 1: Bli kjent med Word. Oppstart. Maksimering. Hva skjer ved oppstart av Word?

Fasit teorioppgaver. Kapittel 1: Bli kjent med Word. Oppstart. Maksimering. Hva skjer ved oppstart av Word? OK Fasit teorioppgaver Kapittel 1: Bli kjent med Word Oppstart Hva skjer ved oppstart av Word? Det sist brukte dokumentet åpnes automatisk Et nytt tomt dokument åpnes Ingen dokumenter åpnes Maksimering

Detaljer

En enkel lærerveiledning

En enkel lærerveiledning En enkel lærerveiledning ~ 1 ~ Innhold INNLEDNING... 3 Hva?... 3 Hvorfor?... 3 INN- og UTLOGGING... 4 Innlogging... 4 Utlogging... 5 Lærerinnlogging/-utlogging... 5 OUTLOOK / EPOST... 6 Skrive epost...

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Sinus 1P > Tallregning og algebra

Sinus 1P > Tallregning og algebra 1 Book Sinus 1P.indb Sinus 1P > Tallregning og algebra 01-0- 1:: Tallregning og algebra MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 18.08.2014 Faglærere:

Detaljer

Basisoppgaver til 2P kap. 3 Statistikk

Basisoppgaver til 2P kap. 3 Statistikk Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske

Detaljer

Kapittel 4. Statistikk

Kapittel 4. Statistikk Kapittel 4. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data

Detaljer

Grunnleggende Excel 2010. Tor Espen Kristensen torkri6@hfk.no

Grunnleggende Excel 2010. Tor Espen Kristensen torkri6@hfk.no Grunnleggende Excel 2010 Tor Espen Kristensen torkri6@hfk.no Innhold iii Innhold 1 Litt om Excel............................... 1 2 Formler i regneark............................ 1 3 Grafisk framstilling

Detaljer

Til arrangører av drillkonkurranser i NMF

Til arrangører av drillkonkurranser i NMF Til arrangører av drillkonkurranser i NMF - Veiledning til utfylling av dommerpapirer før konkurransen Denne veiledningen består av tre deler: 1. Oversikt over hvilke skjemaer som trengs og hvor mange

Detaljer

4: Sannsynlighetsregning

4: Sannsynlighetsregning Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

FORELESING KVELD 12. IT For medisinsk sekretær Fredrikstad

FORELESING KVELD 12. IT For medisinsk sekretær Fredrikstad FORELESING KVELD 12 IT For medisinsk sekretær Fredrikstad Kai Hagali EXCEL FORMLER Summer Gjennomsnitt Tellenumre Maks Min Hvis Er de som må sitte ABSOLUTT REFERANSE Vil være med i eksamen Dvs. referansen

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Bytte til Excel 2010

Bytte til Excel 2010 I denne veiledningen Microsoft Excel 2010 ser helt annerledes ut enn Excel 2003, så vi har laget denne veiledningen for å gjøre det så enkelt som mulig for deg å lære forskjellene. Les videre for å lære

Detaljer

Behandling av dokumenter i Microsoft Word. En rask innføring

Behandling av dokumenter i Microsoft Word. En rask innføring Behandling av dokumenter i Microsoft Word En rask innføring Forord Denne guiden er utformet av Orakeltjenesten ved Dragvoll som en enkel innføring i grunnleggende funksjoner i Word for å hjelpe studenter

Detaljer

Lokal læreplan i Matematikk Trinn 9

Lokal læreplan i Matematikk Trinn 9 Lokal læreplan i Matematikk Trinn 9 1 9. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00 Oppgave (1 poeng) Prisen for en vare er satt opp med 5 %. Nå koster varen 50 kroner. Hva kostet

Detaljer

EXCEL. 1.1 Arbeidsbøker og regneark

EXCEL. 1.1 Arbeidsbøker og regneark 1 EXCEL Excel er et regnearkprogram som utgjør en del av programpakken Microsoft Office. Dette dataprogrammet har blitt utviklet gjennom mange år og er i dag det regnearkprogrammet som dominerer markedet.

Detaljer