SAMMENDRAG OG FORMLER

Størrelse: px
Begynne med side:

Download "SAMMENDRAG OG FORMLER"

Transkript

1 SAMMENDRAG OG FORMLER

2 SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen har toppunktet sitt i A. En vinkel har to vinkelbein. Når vi står i vinkelens toppunkt og ser utover i vinkelen, har vi venstre vinkelbein på vår venstre side og høyre vinkelbein på vår høyre side. A venstre vinkelbein høyre vinkelbein FORSKJELLIGE VINKLER A SPISS VINKEL B RETT VINKEL En vinkel som er mindre enn 90, kaller vi en spiss vinkel. En vinkel som er 90, kaller vi en rett vinkel. Ofte skriver vi inne ved toppunktet for å markere at det er en rett vinkel. C STUMP VINKEL D LIKE VINKEL En vinkel som er mellom 90 og 180, kaller vi en stump vinkel. En vinkel som er 180, kaller vi en like vinkel. 1

3 BETEGNELSER PÅ VINKLER C A B Vinkelen med toppunkt i A kan skrives som: vinkel A, A, eller BAC eller CAB Vinkelen med toppunkt i B kan skrives som: vinkel B, B, eller ABC eller CBA Vinkelen med toppunkt i C kan skrives som: vinkel C, A, eller ACB eller BCA OVERSIKT OVER VINKELKONSTRUKSJONER

4 NORMALKONSTRUKSJONER MIDTNORMALEN TIL ET LINJESTYKKE A B NORMALEN TIL EN LINJE GJENNOM ET PUNKT PÅ LINJA A P l B NORMALEN FRA ET PUNKT TIL EN LINJE P A l B 3

5 PARALLELLKONTRUKSJON TREKANTER MED SPESIELLE NAVN RETTVINKLET TREKANT En trekant med en vinkel på 90 kaller vi en rettvinklet trekant. C C A B A B LIKESIDET TREKANT En trekant der alle tre sidene er like lange, kaller vi en likesidet trekant. I en likesidet trekant er alle vinklene like store, altså 60. C 4 cm 60 4 cm A 4 cm B LIKEBEINT TREKANT En trekant der to av sidene er like lange, kaller vi en likebeint trekant. C 6 cm 6 cm I en likebeint trekant er vinklene ved grunnlinja like store. Normalen fra toppunktet ned på grunnlinja deler grunnlinja i to like store deler. AC = BC 1 AD = BD = 2 AB A = B A A 4 cm C D B B VINKELSUMMEN I EN TREKANT I en trekant er summen av alle tre vinklene alltid 180 4

6 SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel B TALL OG TALLREGNING Vi har fire regningsarter Addisjon: = 32 ledd ledd sum Subtraksjon: 24 8 = 16 ledd ledd differanse Multiplikasjon: = 192 faktor faktor produkt Divisjon: 24 : 8 = 3 dividend divisor kvotient OVERSLAGSREGNING Ved overslagsregning runder vi av alle tallene i regnestykket slik at vi klarer utregningen i hodet. Overslagsregning ved addisjon Ved addisjon kan det ofte være lurt å runde av det ene tallet oppover og det andre tallet nedover Eksempel: Overslaget blir 90. Overslagsregning ved subtraksjon Ved subtraksjon kan det ofte være lurt å runde av begge tallene oppover eller begge tallene nedover Eksempel: Overslaget blir 20. 5

7 OVERSLAGSREGNING VED MULTIPLIKASJON Ved multiplikasjon kan det ofte være lurt å runde av det ene tallet oppover og det andre tallet nedover. Eksempel: 4,5 5,3 5 5 Overslaget blir 25. OVERSLAGSREGNING VED DIVISJON Ved divisjon kan det ofte være lurt å runde av begge tallene oppover eller begge tallene nedover. Rund alltid av slik at divisjonen går opp. Eksempel: 13,6 : 4,3 12 : 4 Overslaget blir 3. NAVN PÅ TALL NATURLIGE TALL 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 osv. kaller vi de naturlige tallene. HELE TALL 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, osv. kaller vi de hele tallene. PARTALL Hele tall som kan deles på 2 kalles partall. 6, 4, 2, 0, 2, 4, 6, osv. er partall. Hele tall som slutter på 0, 2, 4, 6 eller 8 er partall. 6

8 ODDETALL Hele tall som ikke kan deles på 2, kaller vi oddetall. 7, 5, 3, 1, 1, 3, 5, 7, 9 osv. er oddetall. Hele tall som slutter på 1, 3, 5, 7 eller 9 er oddetall. PRIMTALL Tall som bare er delelige med seg selv eller 1, kaller vi primtall. De første primtallene er 2, 3, 5, 7 11, 13, 17, 19, 23, 29, 33, 37, 41, 43, 47,. Primtallsfaktorisering Når vi skriver et tall som et produkt der alle faktorene er primtall, sier vi at vi primtallsfaktoriserer tallet. Eksempel på primtallsfaktorisering: 9 = = Desimaltall Tallene med komma i, for eksempel 7,3 kalles desimaltall. Desimaltallene ligger mellom de hele tallene på tallinja. 7,3 7

9 Å REGNE MED DESIMALTALL ADDISJON MED DESIMALTALL EKSEMPEL Regn ut: 5,3 + 2,6 = Vi setter det opp slik: 5,3 + 2,6 = 7,9 EKSEMPEL Regn ut: 1,5 0,25 = Vi setter det opp slik: 10 1,50 0,25 = 1,25 Pass på at kommaene står rett under hverandre. MULTIPLIKASJON MED DESIMALTALL DIVISJON MED DESIMALTALL EKSEMPEL Regn ut: 5,62 3,4 = Det er til sammen tre tall etter kommaet her. EKSEMPEL 4,5 : 0,3 = Vi setter dette opp slik: 1 2 5,62 3,4, ,108 Kommaet settes tre plasser fra høyre i svaret. Vi setter opp stykket slik: 45 : 3 = Vi flytter kommaet så mange plasser til høyre i begge tallene at det tallet vi skal dividere med, blir et helt tall. NEGATIVE TALL Tall som 3, 15, 3, 2,5 osv. kaller vi negative tall. 4 På tallinja finner vi de negative tallene til venstre for

10 EKSEMPLER PÅ REGNING MED POSITIVE OG NEGATIVE TALL ADDISJON OG SUBTRAKSJON = = ( 7) = 5 7 = 2 ( 5) + 7 = = 2 5 ( 7) = = 12 ( 5) + ( 7) = 5 7 = 12 ( 5) ( 7) = 5 +7 = 2 MULTIPLIKASJON OG DIVISJON 5 7 = 35 5 ( 7) = 35 ( 5) 7 = 35 ( 5) ( 7) = = = = = 5 7 9

11 SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel C BRØK OG PROSENT BRØK brøkstrek 1 3 teller brøk nevner HVILKEN BRØK ER STØRST? Når to brøker har like tellere, er den brøken størst, som har den minste nevneren. Når to brøker har samme nevner, er den brøken størst, som har den største telleren. Å UTVIDE EN BRØK Å utvide en brøk vil si å multiplisere teller og nevner i brøken med samme tall. Brøken forandrer da ikke verdi. Eksempel: = = 3 6 Å FORKORTE EN BRØK Når vi forkorter en brøk dividerer vi med samme tall i teller og nevner. Brøken endrer da ikke verdi. Eksempel: : 3 6 : 3 = =

12 BRØK OG DESIMALTALL EN BRØK KAN SKRIVES SOM ET DESIMALTALL Eksempel: 5 7 Brøkstrek er det samme som divisjonstegn. Vi utfører divisjonen og får 5 : 7 = 0, = 0,714 ET DESIMALTALL KAN SKRIVES SOM EN BRØK Eksempel: Desimaltallet 0,4 kan skrives på brøkform. 0,4 = ,23 = PROSENT 1% betyr 1 av 100 eller BRØKFORM DESIMALFORM OG PROSENTFORM Eksempel: 1 2 = 0,5 = 50% 23 = 0,23 = 23% 100 Å REGNE MED PROSENT 35 % av 350 kr er 23 kr 35 = 140 kr elever av 240 elever utgjør 72 = 0,30 = 30 = 30%

13 SAMMENDRAG OG FORMLER Nye Mega 8B Kapittel E ALGEBRA Mellom tall og variabler sløyfer vi ofte multiplikasjonstegnet mellom tallet og variabelen. 4 a skrives 4a 8 b skrives 8b Vi har også en bestemmelse om at 1 a = 1a = a. Det vanligste er å bruke formen a. VI SETTER INN VERDIER FOR VARIABLENE Regn ut verdien av 5a når a = 3. 5a = 5 3 = 15 Regn ut verdien av 5a når a = 3. 5a = ( 5) 3 = 15 Regn ut verdien av 5a når a = 3. 5a = 5 ( 3) = 15 Regn ut verdien av 5a når a = 3. 5a = ( 5) ( 3) = 15 12

14 Regn ut verdien av 5a + 3b når a = 6 og b = 2. 5a + 3b = = = 36 Regn ut verdien av 5a + 3b når a = 6 og b = 2. 5a + 3b = ( 2) = 30 6 = 24 Regn ut verdien av 5a + 3b når a = 6 og b = 2. 5a + 3b = 5 ( 6) = = 24 Regn ut verdien av 5a + 3b når a = 6 og b = 2. 5a + 3b = 5 ( 6) + 3 ( 2) = 30 6 = 36 Regn ut verdien av 5a 3b når a = 6 og b = 2. 5a 3b = = 30 6 = 36 13

15 Regn ut verdien av 5a + 3b + 7 når a = 6 og b = 2. Dette uttrykket inneholder to ledd med variabler og ett ledd uten variabel. 7 er en konstant i dette uttrykket. Vi kan regne det slik: 5a + 3b + 7 = = = 42 REGNEREGLER FOR VARIABLER Med variabler har vi samme regneregler med pluss og minus som med tall: 5a + 2a = 7a 5a 2a = 3a Når vi skal forenkle, trekke sammen eller regne ut et regneuttrykk som inneholder en eller flere variabler og konstanter, må vi trekke sammen like ledd. Trekk sammen: 2a + 4b + a b 2 + 6a = 2a + 4b + a b 2 + 6a = 2a + a + 6a + 4b + 3b = 9a + 7b

16 SAMMENDRAG OG FORMLER Nye Mega 8B Kapittel F LIGNINGER OG ULIKHETER LIGNINGER En ligning består av: En venstre side Et likhetstegn En høyre side x + 3 = 8 REGEL Vi kan addere eller subtrahere like mye på hver side i en ligning uten at likheten forsvinner VI LØSER EN LIGNING OG SETTER PRØVE PÅ SVARET Løs ligningen og sett prøve: x + 12 = 38 Løsning: x + 12 = 38 x = x =26 Prøve: VS = HS = 38 x + 12 = = 38 VS = HS = 38 for x = 26 x = 26 er løsning av ligningen. 15

17 REGEL Vi kan dividere med like mye (samme tall) på hver side i en ligning uten at likheten forsvinner. Løs ligningen og sett prøve: 6x = 84 Løsning: 6x = 84 6x 6 = 84 6 x = 14 Prøve: VS = HS = 84 6x = 6 14 = 84 VS = HS = 84 for x = 14 x = 14 er løsning av ligningen. 16

18 REGEL Vi kan multiplisere med like mye (samme tall) på hver side i en ligning uten at likheten forsvinner. Løs ligningen og sett prøve: x 4 = 5 Løsning: x 4 x 4 4 = 5 = 5 4 x = 20 Prøve: VS = HS = 5 x = = VS = HS = 5 for x = 20 x = 20 er løsning av ligningen. 17

19 VI BRUKER FLERE REGLER I SAMME LIGNING Vi skal løse ligningen 3x + 2 = 17 og sette prøve på ligningen. Vi kan løse det slik: 3x + 2 = 17 3x = x = 15 3x 35 = 3 x = 5 Vi subtraherer samme tall på hver side av likhetstegnet. 3 Vi dividerer med samme tall på hver side av likhetstegnet. Prøve: VS = HS = 17 3x + 2 = = = 17 VS = HS = 17 for x = 5 x = 5 er løsning av ligningen. 18

20 ULIKHETER ULIKHETSTEGN 2 < 5 leser vi «2 er mindre enn 5». 5 > 2 leser vi «5 er større enn 2». x < 8 leser vi «x er mindre enn 8». x < 8 betyr at x kan være 7, 6, 5, 4, 3 hvis x skal være et helt tall. x 8 leser vi «x er mindre enn eller lik 8». x 8 betyr at x kan være 8, 7, 6, 5, 4, 3 hvis x skal være et helt tall. x > 8 betyr at x kan være 9, 10, 11, 12 hvis x skal være et helt tall. x 8 betyr at x kan være 8, 9, 10, 11, 12 hvis x skal være et helt tall. 19

21 Å LØSE EN ULIKHET Løs ulikheten x + 4 > 7 og marker løsningen på tallinja. Vi kan løse denne oppgaven slik: x + 4 > 7 x > 7 4 x > 3 Alle x > 3 er løsning av ulikheten x + 4 > 7. 7 x x På tallinja blir dette slik:

22 Løs ulikheten 3x < 15 og marker løsningen på tallinja. Oppgaven kan løses slik: 3x < 15 3x 3 < x < x 15 3x På tallinja blir dette slik:

23 SAMMENDRAG OG FORMLER Nye Mega 8B Kapittel G FUNKSJONER OG GRAFER KOORDINATSYSTEMET Andreaksen, y-akse Et koordinatsystem består av to tallinjer som står normalt på hverandre Førsteaksen, x-akse Andreaksen, y-akse Plasseringen et punkt har i koordinatsystemet, angir vi ved å oppgi koordinatene til punktet. Punktet P har i koordinatene (2,3) Koordinatene oppgis som et tallpar med komma mellom i en parentes. Vi leser det slik: «Punktet P har koordinatene to-tre» P Førsteaksen, x-akse 22

24 EN FUNKSJON KAN VÆRE PÅ TABELLFORM, SOM FORMEL OG SOM GRAF VI LAGER FORMEL Anne går og leverer brev for et firma. Hun får 2 kr per brev. Vi kaller antall brev for x og det hun får betalt i kr, for y. Formelen som viser sammenhengen mellom antall brev hun deler ut, og det hun får betalt, blir da y = 2x VI LAGER VERDITABELL Hvis vi skal lage en grafisk framstilling av funksjonen for x = 1, 2, 3, 4, 5, lager vi en verditabell med disse verdiene for x. Det vil si at vi setter inn disse verdiene for x i formelen for funksjonenen etter tur: Verditabell x 2 x y (x,y) (1,2) (2,4) (3,6) (4,8) (5,10) Helt til høyre i verditabellen får vi koordinatene som skal føres inn i koordinatsystemet. I dette tilfellet kan det bare bli positive verdier av x og y. Vi trenger derfor bare den positive delen av koordinatsystemet. 23

25 VI LAGER GRAFEN TIL FUNKSJONEN Andreaksen y kroner Førsteaksen x brev

26 SAMMENDRAG OG FORMLER Nye Mega 8B Kapittel H SANNSYNLIGHET REGEL Sannsynligheten for en hendelse eller et utfall kan ikke være mindre enn 0 og ikke større enn 1. REGEL A Når alle mulige utfall i et eksperiment har like stor sannsynlighet, er den teoretiske sannsynligheten for ett av utfallene lik 1 antall mulige utfall REGEL B Når vi ønsker å finne sannsynligheten for flere gunstige utfall, har vi at sannsynligheten er lik antall gunstige utfall antall mulige utfall Dette gjelder når det er samme sannsynlighet for hvert enkelt utfall. 25

27 REGEL Sannsynligheten kan uttrykkes som brøk, desimaltall eller prosent ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0, % 20% 30% 40% 50% 60% 70% 80% 90% 100% REGEL Sannsynligheten for en hendelse kan ikke være mindre enn 0 og ikke større enn 1. Sannsynligheten 1 innebærer at hendelsen alltid inntreffer. Sannsynligheten 0 innebærer at hendelsen aldri inntreffer. 26

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016/2017 Læreverk: Multi 5a og b Lærer: Ruben Elias Austnes Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING - Finne verdien av et siffer HELE TALL Titallsystemet Tallinjer

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Lokal læreplan Sokndal skole. Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B

Lokal læreplan Sokndal skole. Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B Lokal læreplan Sokndal skole Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B Uke Tema Komp.mål (direkte fra læreplanen) Læringsmål Uke 34 42? Uke 42-46 Repetisj on tidligere tema. Forbere dende

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

FAGPLAN i matematikk 6. trinn. Mål: Vi skal ha fokus på en praktisk tilnærming til temaene. Uke Tema Læringsmål Kompetansemål. 35 Grunnboka 6A s.

FAGPLAN i matematikk 6. trinn. Mål: Vi skal ha fokus på en praktisk tilnærming til temaene. Uke Tema Læringsmål Kompetansemål. 35 Grunnboka 6A s. FAGPLAN i matematikk 6. trinn Mål: Vi skal ha fokus på en praktisk tilnærming til temaene. Uke Tema Læringsmål Kompetansemål 34 Tall Vise forståelse for Tal og algebra. 35 Grunnboka 6A s. 6-31 tallene

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Oppsummering Faktor 1 3

Oppsummering Faktor 1 3 Faktor 1 Tall og algebra Naturlige tall Naturlige tall er hele tall som er større enn 0. 1 2 4 5 6... Vi kan skrive naturlige tall på utvidet form. 124 = 1 1000 + 2 100 + 10 + 4 1 Partall og oddetall Partall

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

Kapittel 1 Tall og tallregning

Kapittel 1 Tall og tallregning Kapittel 1 Tall og tallregning Enkel kalkulator I en del situasjoner er tallregningen så tidkrevende at det kan være fornuftig å bruke kalkulator. I andre situasjoner kan vi bruke kalkulatoren til å kontrollere

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 2

5. TRINN MATEMATIKK PERIODEPLAN 2 1 5. TRINN MATEMATIKK PERIODEPLAN 2 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

K O M P E T A N S E M Å L

K O M P E T A N S E M Å L K O M P E T A N S E M Å L T A L L O G A L G E B R A G E O M T E R I M Å L I N G S T A T I S T I K K, S A N N Y S N L I G H E T O G K O M B I N A T O R I K K F U N K S J O N E R D E L M Å L / V U R D E

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Sum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell.

Sum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell. NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ Mal መሕበሪ መስመር Tabell ሰሌዳ ዝርዝራት Vunnet Tapt Uavgjort 3 2 4 Søylediagram ቻርት( ዓንዲ ሓባሪ ሰሌዳ) 100 90 80 70 60 50 40 30 20 10 0 Øst Vest Nord Stolpediagram ቻርት( ዓንዲ

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Kompetansemål etter 7. årstrinn.

Kompetansemål etter 7. årstrinn. Kompetansemål etter 7. årstrinn. Tall og algebra: 1. Beskrive plassverdisystem for desimaltall, rene med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje. 2.

Detaljer

FORMELHEFTE ENT3R UMB 2012

FORMELHEFTE ENT3R UMB 2012 FORMELHEFTE ENT3R UMB 2012 2 Innhold TALL OG ALGEBRA... 4 Å REGNE MED NEGATIVE TALL: ADDISJON OG SUBTRAKSJON... 4 Å REGNE MED NEGATIVE TALL: MULTIPLISERE MED NEGATIVE TALL... 5 Å REGNE MED NEGATIVE TALL:

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 1 7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: utvikle, og bruke metodar for hovudrekning, overslagsrekning og skriftleg rekning,

Detaljer

REPETISJON, 10A, VÅR 2017.

REPETISJON, 10A, VÅR 2017. REPETISJON, 10A, VÅR 2017. Jeg har satt opp en sjekkliste som kan benyttes som hjelp til repetisjon før heldagsprøva, 23.03.17, og eksamen. Bruk lærebokas oppsummeringskapittel, utdelte hefter og diverse

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Årsplan i matematikk 6.trinn 2016/2017

Årsplan i matematikk 6.trinn 2016/2017 Årsplan i matematikk 6.trinn 2016/2017 Faglærere: Anne Kristin Helland og Marte Hegg Hellebø Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /37 Tall og tallforståelse

Detaljer

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 37 Tema: Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal ( ) og tal

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

PROSJEKT MÅLOPPNÅELSE

PROSJEKT MÅLOPPNÅELSE PROSJEKT MÅLOPPNÅELSE EMNE 1 TALL OG ALGEBRA Sammenligne og regne om hele tall, desimaltall, brøker, prosent, promille og tall på standardform, og uttrykke slike tall på varierte måter. DE FIRE REGNINGSARTENE

Detaljer

Læreplan i matematikk fellesfag - kompetansemål

Læreplan i matematikk fellesfag - kompetansemål Læreplan i matematikk fellesfag - kompetansemål etter 7. årssteget Tal og algebra Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system

Detaljer

Jan Erik Gulbrandsen Randi Løchsen. nye MEGA 8. Terminprøve høst. matematikk. Bokmål CAPPELEN DAMM AS. Terminprøver høst for 8. trinn 2012 nye MEGA 1

Jan Erik Gulbrandsen Randi Løchsen. nye MEGA 8. Terminprøve høst. matematikk. Bokmål CAPPELEN DAMM AS. Terminprøver høst for 8. trinn 2012 nye MEGA 1 Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve høst matematikk 2012 Bokmål CAPPELEN DAMM AS Terminprøver høst for 8. trinn 2012 nye MEGA 1 Terminprøver høst 2012 nye MEGA Høstens terminprøver

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering

Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5 Veke Tema Kompetansemål Læringsmål: 34-40 Heile tal Multi 5a s 4-45 42-44 Statistikk s 46-61 -Regne med positive og hele tall. -Bruke, diskutere og utvikle

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2014-2015

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2014-2015 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2014-2015 Lærer: Knut Brattfjord og June Brattfjord Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Lokal læreplan i Matematikk Trinn 8

Lokal læreplan i Matematikk Trinn 8 Lokal læreplan i Matematikk Trinn 8 1 Trinn 8 Hovedtema 1 og 2 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Formler, likninger og ulikheter

Formler, likninger og ulikheter 58 3 Formler, likninger og ulikheter Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

ÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk

ÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk ÅRSPLAN Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk Periode med tema Uke 33 35 Tall og regning Titallsystemet, avrunding uke 36 Hoderegning, Addisjon og subtraksjon Uke 37 Negative tall, Kompetansemål

Detaljer

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter.

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter. Trekanter GeoGebra er godt egnet til å tegne trekanter og eksperimentere med dem. Vi skal nå se på hvordan vi kan tegne trekanter når vi kjenner en eller flere sider eller vinkler. Vi skal også se på hvordan

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE FORSLAG TIL FAGPLAN I MATEMATIKK 8. KLASSE- Justert 27.09.2011 Periode Tema Kompetansemål Aktiviteter/innhold Kilder Vurdering August og September (ca. 6 uker) Tall og

Detaljer

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6 Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene

Detaljer

Matematikk 5., 6. og 7. klasse.

Matematikk 5., 6. og 7. klasse. Matematikk 5., 6. og 7. klasse. Kompetansemål 5. 6. 7. Tall og algebra (regnemåter) Beskrive og bruke plassverdisystemet for, regne med positive og negative hele tall,, brøker og prosent, og plassere de

Detaljer

Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK BREIDABLIKK UNGDOMSSKOLE

Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK BREIDABLIKK UNGDOMSSKOLE Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK BREIDABLIKK UNGDOMSSKOLE. -. Trinn KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne TALL OG ALGEBRA sammenligne og omregne hele tall, desimaltall, brøker, prosent,

Detaljer

Ukemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering

Ukemål (Konkretiserte mål fra Fagplan) Prøver (Hentet fra prøveplan). Småprøver kan legges inn av teamene. og organisering Uke Fagemne (Hentet fra Fagplan) 34 Rutenett og koordinatsystem Ukemål (Konkretiserte mål fra Fagplan) Jeg kan plassere punkter i et koordinatsystem og beregne avstander langs aksene. Læringsstrategier,

Detaljer

Årsplan i Matematikk 7. trinn

Årsplan i Matematikk 7. trinn Årsplan i Matematikk 7. trinn 2016-2017 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Tall og tallforståelse Uke 34-35/36 Brøk Uke 36-39 Kunne beskrive plassverdisystemet

Detaljer

Årsplan i matematikk 2016/2017

Årsplan i matematikk 2016/2017 Årsplan i matematikk 2016/2017 Antall timer pr. uke: 4 Lærer: Irene Fodnestøl Læreverk:, Multi 5b,, Smart Nettsted: http://podium.gyldendal.no/multi?page=elev Periode Kompetansemål fra Kunnskapsløftet

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Normaler og vinkler. Å tegne normaler. To verktøy er aktuelle når vi skal tegne normaler: Normal linje og Midtnormal. Aschehoug 1

Normaler og vinkler. Å tegne normaler. To verktøy er aktuelle når vi skal tegne normaler: Normal linje og Midtnormal. Aschehoug 1 Normaler og vinkler I dette opplæringsløpet lærer du ulike metoder for å tegne normaler og vinkler samt å måle vinkler. Det du lærer i dette løpet skal du bruke senere når du skal tegne trekanter og figurer

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Faktorisering og multiplisering med konjugatsetningen

Faktorisering og multiplisering med konjugatsetningen Faktorisering og multiplisering med konjugatsetningen De følgende oppgavene er øvinger i faktorisering og multiplisering ved hjelp av konjugatsetningen /3. kvadratsetning. Gjennom oppgavene gir vi elevene

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Regning med variabler

Regning med variabler Regning med variabler???? (x y) (x y) Hvordan kan Herman regne ut uttrykket på tavla? Når vi skal regne ut bokstavuttrykk med parenteser, må vi løse opp parentesene først. Hvis det står et tall eller et

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer