Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Størrelse: px
Begynne med side:

Download "Hvorfor blir det tull med tall? - grunnleggende tallforståelse"

Transkript

1 Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 16-Oct-13

2 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken på videregående skole. De møter med svake forkunnskaper, dårlig selvtillit og liten motivasjon. De fleste av disse mangler grunnleggende tallforståelse og forståelse av regneoperasjoner. Det GÅR AN å la dem få troa på seg selv og gjøre så stor framgang at de kommer gjennom med ståkarakter. I denne parallellen ser vi på alternative måter å arbeide med grunnleggende tallforståelse. 16-Oct-13 2

3 Langfinger Spiller A setter en brikke på et tall. Spiller B setter brikker på alle faktorene i dette tallet. Spiller A setter brikke på ett nytt tall Spiller B setter brikker på alle faktorene i dette tallet (de som er ledig) Hvis spiller A setter brikken på et tall som ikke har noe ledige faktorer, får spiller B summen av alle ledige tall lagt til sin poengsum. 16-Oct-13 3

4 Svake forkunnskaper? Obligatorisk kartleggingsprøve Vg1 Relateres til kompetansemål etter 10. trinn Gir læringsstøttende informasjon på elev-, klasse- og skolenivå Vil være lett for mange elever Har standardisert bekymringsgrense (20 %) Er knyttet til grunnleggende regneferdighet i alle fag Er ikke diagnostisk Veiledning Generell informasjon om prøven Konkretiserer hvordan resultatene kan følges opp i undervisningen Tallforståelse Tallregning Algebra Datapresentasjon Måling 16-Oct-13 4

5 Tallforståelse Heltall Desimaltall Brøk Prosent 16-Oct-13 5

6 Tallforståelse Heltall Langfinger (faktorisering se også Faktorspillet, Juniper Green) Hundrekartet (par- og oddetall, primtall, sammensatte tall, algebra) Null er best og Først fram (negative tall) Sort og rød (bokstavregning, negative tall) Desimaltall Tallfølger, tallinjer og lommeregner eller regneark Skyt sifrene (posisjonssystemet) Fire på linje Brøk Hvor mange brøker? Brøkkamp Prosent Doble tallinjer (med eller uten digitale hjelpemidler) Prosentdomino Tre på rad 16-Oct-13 6

7 NP % NP oppgave 2 76 % HELTALL 87 ulike svar ( ) = ( ) = = = 16-Oct-13 7

8 Hundrekartet Faktorisering Den matematiske krydderhylle, kap 5 se Undersøkende matematikk undervisning i videregående skole, kap 3. Multiplikasjonstabellen Se etter mønster og system Eratosthenes Såld Finne primtallene Spill Langfinger Faktorspillet Juniper Green Rike, fattige og perfekte tall Finn kvadrater, rektangler

9 Legg brikker på svarene i 2-gangen 16-Oct-13 9

10 3 - gangen 16-Oct-13 10

11 4 - gangen 16-Oct-13 11

12 3 gangen og 6 gangen 16-Oct-13 12

13 Finnes det noen tall på 100- kartet som IKKE er i gangene? Hvor langt opp må vi sjekke? 100 = Oct-13 13

14 Finn kvadrater = = = 10 Blir det alltid slik? Bevis? Større kvadrat? Prøv med et rektangel?

15 Null er best! Lamis skriftserie nr 4, 2009: Et Ess i Ermet (-3) (-5) = (-4) 10 + (-3) + 13 = 20 Kortstokk med joker(e) og poengskjema 2 4 personer Kortene på bordet med baksiden opp. Sorte kort positive tall og røde kort negative tall. Trekk to kort fra toppen av bunka og regn ut verdien. Velg om du vil ta ett kort til før poengene for denne runden blir notert. Hvis du får en joker, kan du selv velge poengsum for denne runden. Etter fire runder legges poengene sammen. Den som nå er nærmest null har vunnet! Prøv også spillet Først fram fra samme skriftserie. 16-Oct-13 15

16 Rød og sort Lamis skriftserie nr 4, 2009: Et Ess i Ermet Sortér kortene i ei bunke med sorte og ei bunke med røde kort. Mattias trekker rød 5 og sort 2. Han velger 3 r s og får = 13 poeng Mattias fører poengene inn i skjemaet, og stryker ut uttrykket 3 r s. Første spiller trekker to kort, ett fra hver bunke. Spilleren velger ett av utrykkene, setter verdien av kortene sine inn i uttrykket og får poeng etter det. s står for verdien av sort kort, og r står for verdien av rødt kort. Spillet fortsetter til alle uttrykkene er brukt opp. Den som da har flest poeng, vinner. s + r s - r r 3 r - s - s r - s 2 r + s s 3 s - r 2 s + r 16-Oct-13 Astrid Bondø 16

17 DESIMALTALL NP8 og NP trinn 73 % (diff 0,11) 9. trinn 78 % (diff 0,10) 16-Oct-13 17

18 DESIMALTALL Tallinjer Heltall 0 20 Plasser tallene 1, 2, 5, 12, og Oct-13 18

19 Tallinjer Fullføre tallinje heltall Fullføre tallinje brøk/desimaltall 16-Oct-13 19

20 Tallfølger Tallfølger Konstantfunksjon LR/regneark Tallinjer 16-Oct-13 20

21 Skyt bort sifrene Slå inn sifrene 1-8 på kalkulatoren, Sett komma mellom to av sifrene. Fjern sifrene, først 1-tallet, 2-tallet osv. Skriv hva du gjør. 16-Oct-13 21

22 Fire på linje KIM: Veiledning til tall og tallregning Et lommeregnerspill for to spillere. Spiller 1 velger to av de ni tallene og multipliserer dem. Spilleren setter en ring rundt svaret på spillebrettet. Spiller 2 gjør det samme og setter et kryss for svaret på spillebrettet. Den som først får fire på rad har vunnet. (vannrett, loddrett eller diagonalt) Velge tall FØR man sjekker på kalkulatoren. Én kalkulator midt på bordet. Spillerne trykker for hverandre. Tallene kan velges flere ganger. Kun en brikke i hver rute. 16-Oct-13 22

23 Bare bråk med brøk? Brøk NP8 og NP trinn 6,5 % 9. trinn 14, 2 % 11. trinn 50 % Sorter fra minste til største verdi. 16-Oct-13 23

24 NP % 12 % 66 % 7 % Mer eller mindre enn halve veien? 900 m hjem skole 16-Oct-13 24

25 NP % Mer eller mindre enn ett kilogram? 56 % 6 % 29 % + = 16-Oct-13 25

26 Hva er en brøk? Forståelse Ferdighet Anvendelse Uttrykk 3 4 på så mange ulike måter du kan.. 16-Oct-13 26

27 Brøk Isfjellmetaforen. Etter ide fra Freudenthalinstituttet, University of Utrecht, Nederland

28 Uttrykk i symbolsk matematikkspråk skal bæres oppe av Halvkonkreter tegninger, figurer Konkreter her brikker Eksempler fra det virkelige liv

29 Del av mengde En av to brikker er blå. ½ av mengden er blå Velg dere tre brikker av en farge og seks brikker av en annen farge. Hvilke brøker kan dere representere? Noter brøkene, gjerne med tegning til. I det minste må dere kunne rekonstruere representasjonen.

30 Del av mengde - muligheter Et bilde kan representere to brøker. Her ¼ og ¾ Hva med Hva med ? ? Ikke mulig å lage brøkene som er røde her med de brikkene vi brukte Hva med en brøk større enn en? 1 1 2?

31 Sammenlikne mengder Den røde mengden er ¾ av den blå mengden Den blå mengden er 4 / 3 av den røde mengden

32 Brøkkamp Lamis skriftserie nr 4: Ett ess i ermet Utstyr: En kortstokk pr gruppe. Ei tallinje per gruppe for å kunne sammenligne brøker. Regler: Bland kortstokken godt og del kortene i to like store bunker. Hver spiller får ei bunke hver. Legg bunken på bordet foran med bildesiden ned. Trekk to kort og lag en brøk (kortet med minst verdi skal være teller). Spilleren som får brøken med størst verdi, får kortene. Skriftliggjøring Spørsmål

33 Eksempel Brøkkamp Spiller A Spiller B Spiller A vinner de fire kortene. 1 5 = > fordi 9-delen er større enn 10-delen. Da er to 9-deler mer enn to 10-deler.

34 Tallinjer - brøkkamp viser alle brøkene brukes dersom det er uenighet om hvilken brøk som er størst. 16-Oct-13 34

35 NP8 og NP Trinn 66 % (diff 0,14) 9. Trinn 72 % (diff 0,14) 11. Trinn 44 % Prosent I en butikk er det 20 % avslag på alle varer. Even kjøper ei jakke og betaler kr 400,-. Hva var prisen før salget? 16-Oct-13 35

36 Dobbel tallinje I en butikk er det 20 % avslag på alle varer. Even kjøper ei jakke og betaler kr 400,-. Hva var prisen før salget? Hvordan kan vi hjelpe elevene videre uten å gi dem svaret? Even betaler 80 % av prisen før salget. Han betaler 400 kr. Film Ny GIV (matematikksenteret.no) Geogebrafiler prosentregning 16-Oct-13 36

37 Prosentdomino Utstyr: Et sett dominokort (24 kort) To og to elever spiller mot hverandre Regler: Spillerne legger ned ett kort hver etter tur. Vinner er den som først har lagt ned sine kort. Verdier og figurer som viser samme størrelse kan legges inntil hverandre. Kortene som ligger på bordet kan bygges i alle retninger. Kan en spiller ikke legge ned kort en runde, må spilleren melde pass. Refleksjon diskusjon begrunne - skriftliggjøre

38 Aktiviteter med prosentdomino Fase 1 Sett sammen to og to kort som dere er sikker på passer sammen. De kortene som blir til overs, hvorfor får dere ikke til å plassere disse? Fase 2 Hvor mange kort klarer dere å plassere etter hverandre i ei lang rekke? Hvilke kort blir til overs? Hvilke kort mangler dere slik at dere kan bruke alle kortene? Lag de kortene dere mangler. Fase 3 To og to spiller mot hverandre etter egne spilleregler.

39 Stemmer dette? Elevsvar: Hvis det er fem kroner, er en femdel ei krone, mens O,5 er halvparten, det er 2,50 kroner Brukte kalkulatoren. Slo inn 1 delt på 5, det ble 0,2, ikke 0,5 0,5 er det samme som 0,50, det er 50 hundredeler, altså 50 %. 1/5 er bare 20 % 16-Oct-13 39

40 Stemmer dette? Elevsvar: 1% betyr en hundredel, men i 0,1 står ettallet på tidelsplassen. Må skrive 0,10 hvis vi skal ha med hundredel, da blir det 10 %. 1% må skrives 0,01. Her ser dere forskjellen, dette er 1% (viser en av hundre brikker i et rutenett ) og dette er en tidel, dvs 0,1. Det er IKKE det samme. 16-Oct-13 40

41 Stemmer dette? Elevsvar: En tredel er en av 3, da må jeg ha 3 for å få en hel. Hvis jeg ganger 0,3 med 3, så får jeg bare 0,9 og det er for lite. Brukte kalkulatoren. Slo inn en delt på tre, det blir 0, Det er større enn 0,3. Ganget 0,33333 med 3, det blir 0,99999, det er en hel hvis du runder det av. Da kunne vi brukt denne brikken, og lagt det slik. 16-Oct-13 41

42 Tre på rad prosent Torkildsen/Maugesten: Sirkel 2 3 spillere To terninger og seks spillbrikker til hver spiller Kast to terninger etter tur. Lag en brøk, verdien på den ene terningen er teller, den andre nevner. Gjør brøken om til prosent, plasser en spillebrikke på brettet. Plasser på 0 dersom det ikke er noen ledige ruter til brøken. Når alle brikkene er plassert ut, skal en av brikkene på brettet flyttes. Vinneren er den som først får Tre på rad; vannrett, loddrett eller på skrå. 16-Oct-13 42

43 16-Oct-13 43

Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Hvorfor blir det tull med tall? - grunnleggende tallforståelse Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 5-Nov-13 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken

Detaljer

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil

Detaljer

AKTIVITETER. knyttet til grunnleggende tallforståelse. Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen.

AKTIVITETER. knyttet til grunnleggende tallforståelse. Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen. AKTIVITETER knyttet til grunnleggende tallforståelse Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen 20-Dec-12 3 3 Kast en terning Skriv tallet i en av rutene. Fortsett

Detaljer

Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen

Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Alle teller - en introduksjon NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor Alistair

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13 TERNINGER - variasjon i matematikkundervisningen Astrid Bondø NSMO 18-Aug-13 Siffer blir tall Lamis skriftserie: Et ess i ermet Bruk en vanlig 6-er terning eller en 0-9 terning. Kast terningene. Du får

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Forhold. begrep og bruk. Svein H. Torkildsen, NSMO

Forhold. begrep og bruk. Svein H. Torkildsen, NSMO Forhold begrep og bruk Svein H. Torkildsen, NSMO Brøk Isfjellmetaforen. Etter ide fra Freudenthalinstituttet, University of Utrecht, Nederland Uttrykk i symbolsk matematikkspråk skal bæres oppe av Modeller

Detaljer

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Lærerveiledning Passer for: Varighet: Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Full fart med funksjoner, prosent og potens er et skoleprogram hvor elevene går fra

Detaljer

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver 3 x 3 ruter Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver som kan brukes i matematikktimene. Magisk kvadrat Du har

Detaljer

Hvordan gi hjelp? Nesten 10 - Vurdering. Lag 21 -Vurdering. Faktoriseringsspillet. Desimallabyrint Nesten 10

Hvordan gi hjelp? Nesten 10 - Vurdering. Lag 21 -Vurdering. Faktoriseringsspillet. Desimallabyrint Nesten 10 24.09.2018 2018 Blended learning Digital læring Bjørnar Alseth Aktiviteter Lek, spill Utforsking, grubliser Samarbeid Prosjektarbeid Klassesamtale 9-kort-spillet To elever spiller sammen, med 9 tallkort,

Detaljer

Moro med matematikk 5. - 7. trinn 90 minutter

Moro med matematikk 5. - 7. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med matematikk 5. - 7. trinn 90 minutter Moro med matematikk er et skoleprogram i matematikk hvor elevene får jobbe variert med problemløsingsoppgaver, spill

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Når tallene varierer.

Når tallene varierer. Når tallene varierer. Innføring i algebra med støtte i konkreter Astrid Bondø Ny GIV, februar/mars 2013 Når tallene varierer Det første variable skritt! Treff 10 Hesteveddeløp Rød og sort (Et Ess i Ermet,

Detaljer

Ligninger lekende lett trinn 90 minutter

Ligninger lekende lett trinn 90 minutter Lærerveiledning Passer for: Varighet: Ligninger lekende lett 8. - 10. trinn 90 minutter «Ligninger lekende lett» er et skoleprogram som tar utgangspunkt i betydningen av likhetstegnet. I konkretisering

Detaljer

Brøk. begrep og bruk. Svein H. Torkildsen, NSMO

Brøk. begrep og bruk. Svein H. Torkildsen, NSMO Brøk begrep og bruk Svein H. Torkildsen, NSMO Brøk Vi ser bare 10 % av isfjellet. 90 % ligger skjult, men det er det skjulte som holder oppe det vi ser! Et bilde på alt det som bør ligge under og gi mening

Detaljer

Familiematematikk MATTEPAKKE 6. Trinn

Familiematematikk MATTEPAKKE 6. Trinn Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges

Detaljer

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma

Detaljer

Spilleregler og spillvarianter for alle tre serier med Match-spill. Spilleregler og spillvarianter for Match Former og Farger, Tall og Mengder

Spilleregler og spillvarianter for alle tre serier med Match-spill. Spilleregler og spillvarianter for Match Former og Farger, Tall og Mengder Spilleregler og spillvarianter for alle tre serier med Match-spill Spilleregler og spillvarianter for Match Former og Farger, Tall og Mengder 1. Match brikkene i grupper på to, tre eller fire: Brikkene

Detaljer

Dybdelæring begrepene brøk og desimaltall

Dybdelæring begrepene brøk og desimaltall Dybdelæring begrepene brøk og desimaltall APRIL 2019 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... BRØK... HVOR LIGGER PROBLEMET?... Brøk som del av en

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet. Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man

Detaljer

Nr. Oppgave Kap. 1 Bilen til familien Olsen har kjørt km. 2 Hva vil kilometertelleren til bilen vise når den har kjørt én kilometer lenger?

Nr. Oppgave Kap. 1 Bilen til familien Olsen har kjørt km. 2 Hva vil kilometertelleren til bilen vise når den har kjørt én kilometer lenger? Oppgaver, innholdsbeskrivelse og elevresultater Nivå 6 - Parallelltest er utarbeidet til denne modulen. Hver enkelt oppgave tester det samme som tilsvarende oppgave i testen Nivå 6. Test i talloppfatning

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

Dybdelæring terskelbegrep brøk og desimaltall

Dybdelæring terskelbegrep brøk og desimaltall Dybdelæring terskelbegrep brøk og desimaltall MARS 2018 Susanne Stengrundet, Anne-Mari Jensen og Ingunn Valbekmo NTNU Innholdsfortegnelse INNLEDNING... 3 TERSKELBEGREP: BRØK... 3 HVOR LIGGER PROBLEMET?...

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

Misoppfatninger knyttet til brøk

Misoppfatninger knyttet til brøk Misoppfatninger knyttet til brøk 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NEVNER REPRESENTERER ANTALL DELER - UAVHENGIG

Detaljer

LOKAL LÆREPLAN Matte Trinn 5

LOKAL LÆREPLAN Matte Trinn 5 LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Periode Tema Kompetansemål Læringsaktiviteter Vurdering Uke 34-38

Periode Tema Kompetansemål Læringsaktiviteter Vurdering Uke 34-38 ÅRSPLAN MATEMATIKK FOR 7. TRINN 2018-2019 Periode Tema Kompetansemål Læringsaktiviteter Vurdering 34-38 Hele tall Titallsystemet Addisjon og subtraksjon Multiplikasjon og divisjon Regning med parenteser

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 2

5. TRINN MATEMATIKK PERIODEPLAN 2 1 5. TRINN MATEMATIKK PERIODEPLAN 2 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Regler for: - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Kids - Regning med tall! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Misoppfatninger knyttet til tall

Misoppfatninger knyttet til tall Misoppfatninger knyttet til tall 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NULL SOM PLASSHOLDER... 4 OPPGAVER... 5 ANALYSE...

Detaljer

I Spillet Mathable er et spill basert på matematiske likninger som må være dannet på spillbrettet. For å gjøre dette, må spillerne gjøre bruk av et spillebrett med normale ruter(hvite), ruter med en begrensning

Detaljer

Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret

Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Årsplan matematikk 4. klasse, 2016-2017 Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Uke Kompetansemål (K06) Tema Arbeidsmåter Vurdering 34-35 Lese av, plassere og beskrive posisjoner i rutenett,

Detaljer

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse 07.03.2012 Begynneropplæringen i matematikk 1.-3.trinn Tillegskomponenter: Kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Nettsted: www.gyldendal.no/multi Elevoppgaver Lærersider

Detaljer

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Gul og Blå 6 Diagram Brøk Diagram 6 Brøk Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Statistikk, sannsynlighet og kombinatorikk

Statistikk, sannsynlighet og kombinatorikk NY GIV, januar/februar 2011 Oslo, Trondheim og Stavanger Statistikk, sannsynlighet og kombinatorikk Astrid Bondø NSMO 17-Feb-11 Sentralmål Eksempler fra eksamen Statistikkspill Eksempler på oppgaver Sannsynlighet

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

ÅRSPLAN. Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen. Karl Johans Minne skole

ÅRSPLAN. Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen. Karl Johans Minne skole ÅRSPLAN Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse August/september -utvikle, bruke og samtale om

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Terningspill. Terningspillet 100

Terningspill. Terningspillet 100 Terningspill Terningspillet 100 Posisjonssystemet, Dere trenger en eller to terninger. Mål for aktiviteten: Oppnå poengsum mindre enn eller lik 100, og så nær som mulig 100. Kommentar: Her har Ida vunnet,

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte.

Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte. Unneberg skole ÅRSPLAN I MATEMATIKK. trinn 2016-2017 Rød skrift marker det som er fra utviklende matte. KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Eleven skal kunne

Detaljer

NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10

NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10 NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10 BOKMÅL Dato: 10.05.17 Eksamenstid: 9 1 Hjelpemidler: Ingen Oppgavesettet består av 4 oppgaver. Alle deloppgavene,

Detaljer

Algebra er generalisering Hvordan arbeide Dybdelæring ved med generalisering? hjelp av lek og moro Mona Røsseland, med algebra Dr.

Algebra er generalisering Hvordan arbeide Dybdelæring ved med generalisering? hjelp av lek og moro Mona Røsseland, med algebra Dr. Algebra er generalisering Dybdelæring ved hjelp av lek og moro med algebra Mona Røsseland, Dr.gr stipendiat, Uni. i Agder Generelle begrunnelser, argumenter Generelle uttrykk Ikoner, symboler, modeller/diagrammer

Detaljer

Problemløsing trinn. Astrid Bondø Lesja, 24. september Sep-14

Problemløsing trinn. Astrid Bondø Lesja, 24. september Sep-14 Problemløsing 8. 10.trinn Astrid Bondø Lesja, 24. september 2014 25-Sep-14 Drøft Hva er en problemløsingsoppgave? 1. Skriv et par stikkord individuelt 2. Diskuter med to-tre andre 3. Finn ut hva dere har

Detaljer

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Måling Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere PowerPoint presentasjoner. Det vil bli lagt

Detaljer

Hvordan kan du skrive det som desimaltall?

Hvordan kan du skrive det som desimaltall? 7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

Kyrkjekrinsen skole Årsplan for perioden:

Kyrkjekrinsen skole Årsplan for perioden: Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År:2012-2013 Trinn og gruppe: 4. trinn Lærer: Henriette Hjorth Røen og Katrine Skaale Johansen Uke Årshjul Hovedtema Kompetansemål Delmål

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok.

ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok. Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon 08.09.2014. Matematikkundervisningens to dimensjoner

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon 08.09.2014. Matematikkundervisningens to dimensjoner Gode regningsstrategier i addisjon og subtraksjon Ann-Christin Arnås ann-christin.arnas@gyldendal.no Gjett tre kort Utstyr En kortstokk Regler Et spill for 2 3 spillere eller for en stor gruppe En person

Detaljer

Moro med regning 3. 4. trinn 90 minutter

Moro med regning 3. 4. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med regning 3. 4. trinn 90 minutter Moro med regning er et skoleprogram hvor elevene får bruke sin egen kropp til utforsking av tall-området 1 100, samt å addere

Detaljer

Kengurukonkurransen 2019

Kengurukonkurransen 2019 2019 «Et sprang inn i matematikken» Benjamin (6. 8. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange

Detaljer

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL

Detaljer

Familiematematikk MATTEPAKKE 3. Trinn

Familiematematikk MATTEPAKKE 3. Trinn Familiematematikk MATTEPAKKE 3. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Geobrett Hvor mange forskjellige kvadrater kan du finne? Hvor mange kvadrater av ulik størrelse kan du

Detaljer

Uke Tema: Kunnskapsløftet

Uke Tema: Kunnskapsløftet Uke Tema: Kunnskapsløftet Matematisk innhold Kompetansemål: Læringsmål: Metoder/Vurdering 34-39 Kap. 1: Tall Titallssystemet o Store tall Addisjon og subtr. o Store tall Negative tall Multiplikasjon og

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15

Detaljer

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Ungdomstrinnet 8 _ (x²) 1 2 4 (x²) 1 2 _ (x²) 1 2 _ 4 _ 8 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING ÅRSPLAN I MATEMATIKK FOR 6. TRINN 2018/2019 Læreverk: Multi Lærer: Anne Marte Urdal Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-40 - Finne verdien av et siffer avhengig av hvor i tallet det står

Detaljer

Addisjon og subtraksjon av brøker finne fellesnevner

Addisjon og subtraksjon av brøker finne fellesnevner side 1 Detaljert eksempel om Addisjon og subtraksjon av brøker finne fellesnevner Dette er et forslag til undervisningsopplegg der elevene skal finne fellesnevner ved hjelp av addisjon og subtraksjon av

Detaljer

Lekende funksjoner Vg1T, TY, P, PY og Vg2 P 75 minutter

Lekende funksjoner Vg1T, TY, P, PY og Vg2 P 75 minutter Lærerveiledning Passer for: Varighet: Lekende funksjoner Vg1T, TY, P, PY og Vg2 P 75 minutter Lekende funksjoner er et skoleprogram hvor elevene går fra praktiske og fysiske aktiviteter til abstrakte representasjoner,

Detaljer

Japanske puslespill. - Induktiv og deduktiv tenking. Novemberkonferansen 2014 Astrid Bondø Svein H Torkildsen NSMO

Japanske puslespill. - Induktiv og deduktiv tenking. Novemberkonferansen 2014 Astrid Bondø Svein H Torkildsen NSMO Japanske puslespill - Induktiv og deduktiv tenking Novemberkonferansen 2014 Astrid Bondø Svein H Torkildsen NSMO Sudoku og andre spill Kjenner du reglene? Deduktiv tenking Må du finne mønster og system

Detaljer

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Ny GIV. egen metodikk eller et løft for alle? Namsos Astrid Bondø Svein H. Torkildsen NSMO

Ny GIV. egen metodikk eller et løft for alle? Namsos Astrid Bondø Svein H. Torkildsen NSMO Ny GIV egen metodikk eller et løft for alle? Namsos 29.03.12 Astrid Bondø Svein H. Torkildsen NSMO Oppdrag Fokus på den metodikken som lærere nå får opplæring i gjennom Ny GIV-satsningen. Er dette en metodikk

Detaljer

GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN!

GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN! GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN! Du trodde du hadde et idiotsikkert system for juks, men det var dessverre ikke tilfelle. Var dine planer hemmet av den korte forberedelsestiden, uforsiktighet

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2019-2020 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Julekalender mellomtrinn -

Julekalender mellomtrinn - Julekalender 2004 - mellomtrinn - 1. desember Vi har noen underlige terninger. De viser tallene 1, -2, 3, -4, 5, -6. Om vi slår to terninger samtidig, hvilken av summene listet opp under klarer vi IKKE

Detaljer

Familiematematikk MATTEPAKKE 2. Trinn

Familiematematikk MATTEPAKKE 2. Trinn Familiematematikk MATTEPAKKE 2. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Sauen Erik Du trenger 50 tellebrikker som skal være sauene foran Erik i køen. Oppgave: Sauen Erik skulle få klippet

Detaljer

UKE Tema Læringsmål Kunnskapsløftet Metoder

UKE Tema Læringsmål Kunnskapsløftet Metoder ÅRSPLAN MATEMATIKK 6. TRINN 2017/2018 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på

Detaljer

Match Learner. Lek og lær

Match Learner. Lek og lær Match Learner Lek og lær Fax Sparebanken Pluss, Post-box 200 Account No: 3000.19.54756 2 Match Learner Lek og Lær Match er kvalitetsspill for alle barn fra to år og oppover. Spillene kan brukes hver for

Detaljer

Årsplan i matematikk for 7. trinn 2017/2018 Læreverk: Multi 7a og 7b Lærer: Irene J. Skaret

Årsplan i matematikk for 7. trinn 2017/2018 Læreverk: Multi 7a og 7b Lærer: Irene J. Skaret Årsplan i matematikk for 7. trinn 2017/2018 Læreverk: Multi 7a og 7b Lærer: Irene J. Skaret Uke Kompetansemål (K06) Tema Arbeidsform Vurdering 34 39 - Kjenne verdien av sifrene i heltall og i desimaltall.

Detaljer

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng.

Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng. REGNING DE FIRE REGNINGSARTENE: Når tallbegrepet er godt innarbeidet, og elevene forstår posisjonssystemet, begynner arbeidet med de fire regningsartene: sum (+), differens (-), multiplikasjon ( ) og divisjon(:).

Detaljer

Aktiviteter i sannsynlighetsregning på samlingen i MAT102 onsdag 8. februar

Aktiviteter i sannsynlighetsregning på samlingen i MAT102 onsdag 8. februar Aktiviteter i sannsynlighetsregning på samlingen i MAT102 onsdag 8. februar Her er en rekke aktiviteter som utvikler begrepsforståelsen i sannsynlighet. Målet med disse aktivitetene er å kunne vurdere

Detaljer

Kengurukonkurransen 2015

Kengurukonkurransen 2015 Kengurukonkurransen 2015 «Et sprang inn i matematikken» BENJAMIN (6. 8. trinn) Hefte for læreren Kengurukonkurransen! I år arrangeres den for 11. gang i Norge. Dette heftet inneholder: Informasjon til

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative

Detaljer

Regler for: Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! 3 2 Regler for: getsmart Lilla 9 Graf y 4 7 3 2 2 3 Funksjon 1-4 4-3 -2-1 -1 1 2 3-2 x f(x)= f(x)= 3 2 2 3 3 2 2 3-3 -4 Graf 9 3 2 2 3 Funksjon 7 Det anbefales at man først ser på powerpoint-reglene når

Detaljer

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men del

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt. Hva kjennertegner den gode lærer?

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt. Hva kjennertegner den gode lærer? Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Oversikt Grunnleggende ferdighet regning i de andre fagene: eksempel på p ulike

Detaljer