1.2 Posisjonssystemer

Størrelse: px
Begynne med side:

Download "1.2 Posisjonssystemer"

Transkript

1 MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) ) År Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive et stort antall objekter på en oversiktlig og ordnet måte. Vi starter da med å samle objektene i basisgrupper av en bestemt størrelse, f.eks. ti i hver gruppe som i vår kultur. Det blir da en mengde til overs med færre enn ti objekter (her tar vi også med det tilfellet der vi ikke får noe til overs). I ti-tallsystemet lar vi alle antall mindre enn ti få sine egne talltegn: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Antallet objekter i mengden som ble til overs er da første siffer (lest fra høyre i vår kultur) i tallet vi søker 1-erne. For å bestemme andre siffer gjentas denne prosessen, der en nå betrakter tiergruppene som objekter, som samles sammen ti og ti. Antallet objekter som blir til overs (dvs. opprinnelige tiergrupper) utgjør da det andre sifferet 10-erne, osv. Eksempel 1 De fleste har vært med å telle opp penger etter en basar, innsamling eller lignende. Sitter vi med en masse kronestykker foran oss samler vi dem i tierstabler, disse stablene samler vi igjen ti og ti, se illustrasjonen. De kronestykkene som ikke ga en hel tierstabel blir første siffer (igjen lest bakfra) i kronebeløpet, de stablene som ble til overs KAPITTEL 1 17

2 når vi lagde en gruppe gir nest siste siffer o.s.v. Her får vi 6 enere og 3 tiere, altså 36. Eksempel 2/øvelse Figuren nedenfor kan forestille en mengde blomster på et jorde, eller noe annet. Finn sifrene i antall blomster, og skriv antallet, ved å gå fram som beskrevet ovenfor. (Du kan ringe inn tiergrupper med blyant). Finn først antall enere, så tiere osv. Noter sifrene i tabellen under. De ulike kolonnene vil angi hvor mange 1-ere, 10-ere, 100-ere o.s.v. vi har Vi forstår at prosessen ovenfor lar seg gjennomføre for alle endelige antall, og den gir et entydig svar. Vi sier at ethvert tall har sin entydige representasjon i f.eks. ti-tallsystemet. Nå er det selvsagt ikke noe i veien for å gruppere objektene i en gitt mengde på andre måter enn med akkurat ti i hver gruppe. Vi kan i prinsippet velge å gruppere etter en hvilken som helst størrelse på basisgruppene. I det følgende ser vi på noen eksempler. Å arbeide med tall i andre basiser enn ti er nyttig ved at det tvinger oss som pedagoger til å tenke mer grundig igjennom hva et posisjonssystem egentlig er. 18 TALLÆRE

3 Eksempel 3/øvelse Vi skal finne antallet a i «blomstermengden» nedenfor i tre-tallsystemet. Start med å samle objektene i ringer med tre i hver. Hvor mange blir til overs? Sett tallet inn i tabellen under. Fortsett med å samle treermengdene tre og tre. Hvor mange får du til overs? Fortsett! Vi kan sette sifrene inn i denne tabellen: Her vil kolonnene vise hvor mange 1-ere, 3-ere, 9-ere, 27-ere osv vi har. Når vi velger 3 som basis vil vi trenge en ny posisjon når vi har fått 3 av den forrige, posisjonene blir 3-er potenser. Ovenfor fant vi at a = 1 tjuesjuer + 1 nier + 0 treere + 2 enere eller a = Dette skriver vi forenklet 1102 tre, tre med små bokstaver forteller at tallet er gitt i tre-tallsystemet. Hvor mange og hvilke sifre benyttes i tre-tallsystemet? oooooo I ti-tallsystemet har vi 10 siffer: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, i tretallsystemet har vi 3 siffer: 0, 1, 2 og generelt i b-tallsystemet har vi b siffer: 0, 1, 2,..., (b 1). De ulike posisjonene i et b-tallsystem har verdiene 1, b, b 2, b 3,... som kan stilles opp som i tabellen: b 3 b 2 b 1 1 KAPITTEL 1 19

4 Vi har nå sett hvordan ethvert antall a i prinsippet kan skrives entydig i et posisjonssystem med vilkårlig basisstørrelse. To nærliggende problemer er nå: 1. Hvordan regner vi om fra et annet tallsystem til vårt ti-tallsystem? 2. Hvordan regner vi om fra ti-tallsystemet til et system med et annet basistall? Første spørsmål besvares enkelt og rett fram; det ser vi i eksempel 3. Eksempel 4 a) Vi regner seks om til ti-tallsystemet: seks = = 3274 ti b) Generelt skal vi finne en fremgangsmåte for å regne ett tall fra b- tallsystemet til ti-tallsystemet. 376 b = 3 b b + 6 (b må her være større enn 7). Lab = ni = = = 312 ti. Oppgave Ta utgangspunkt i eksempel 3 der a = 1102 tre, regn om til titallsystemet og kontroller svaret ved å telle «blomstene» (i ti-tallsystemet). Så til det andre spørsmålet: oooooo Eksempel 5 Hvordan kan vi skrive 38 ti i tre-tallsystemet? I stedet for å tegne 38 «blomster» osv. kan vi samle i treergrupper i tankene. Vi spør: Trinn 1: Hvor mange 3-ere er det plass til i 38, og hvor mange blir til overs? 12 3-ere og 2 til overs, det betyr at vi får 2 på 1- erplassen. Trinn 2: Videre grupperer vi de 12 3-erne i nye 3-ere og får 4 9- ere og ingen til overs, dvs at vi får 0 på 3-erplassen. Trinn 3: Vi grupperer de 4 9-erne 3 og 3 og får 1 27-er og 1 til overs, altså 1 på 9-erplassen. Trinn 4: Nå har vi ikke nok 27-ere til å gruppere dem 3 og 3, vi står da igjen med 1 på 27-erplassen. Dette kan vi skrive slik: 20 TALLÆRE

5 Vi deler på 3 hver gang og er interessert i «resten» den første resten gir 1-erne, den andre 3-erne osv. Legg merke til at de fire trinnene ovenfor kan sees på som fire divisjonsstykker der vi hver gang deler på 3. Først gir 38:3 at det går en 12-gang med 2 i rest, dernest går 12:3 opp med en 4-gang og 0 i rest, så går 4:3 en 1-gang med 1 i rest, og til slutt gir divisjonen 1:3 en 0-gang med 1 i rest. Ved slik divisjon med rest er alltid «den gangen det går» (kvotienten) og «den resten det blir» entydig bestemt. (Dette virker nokså opplagt. Det betyr at hvis du og jeg, eller andre dividerer f. eks. 124 på 7, så finner vi alle at det går en 17-gang og at resten blir 5.) Dette kalles gjerne divisjonslemmaet. Denne entydigheten av kvotient og rest ved divisjon sikrer at ethvert antall får en entydig sifferskrivemåte i ethvert tallsystem. Vi har også en alternativ metode for å regne om fra ti-tallsystemet til et system med et annet basistall: Vi starter med å sette opp en liste over 3-erpotenser: 1, 3, 9, 27, Når jeg skal skrive 38 i 3- tallsystemet ser jeg at den høyeste 3-er potensen jeg trenger er 3 3, altså 27. Jeg spør hvor mange ganger har jeg plass til 27 i 38? 1 gang: altså 1 på 27-erplassen, da har jeg 11 igjen. Hvor mange ganger har jeg plass til 9 i 11? 1 gang: altså 1 på 9-er plassen, jeg har 2 igjen. Hvor mange ganger er det plass til 3 i 2? ingen: altså 0 på 3-erplassen, jeg har fremdeles 2 igjen. Hvor mange ganger er det plass til 1 i 2? 2 ganger: altså 2 på 1-erplassen. Dette kan også skrives som en restdivisjon: 38 = = = = Her er det kvotientene vi er interessert i: 1102 tre. KAPITTEL 1 21

6 Eksempel 6, basistallet er større enn 10 Skriv ti om til tretten-tallsystemet. Vi får: Vi bruker parenteser for å markere at 10 og 11 nå er egne sifre. I et virkelig tretten-tallsystem ville en funnet opp egne symboler for tallene ti, elleve og tolv, f. eks., og. Vårt tall blir da 92. Oppgave Kontroller resultatet i eksempel 6 ved å regne tallet om igjen til titallsystemet slik som i eksempel 4. Det babylonske posisjonssystemet Det eldste kjente posisjonssystem er det babylonske. Mens papyrusgresset ga skrivemateriale til egypterne, skrev (eller rettere sagt trykte) babylonerne på leirtavler med en trekantet pinne eller kile. Kilen satte et trekantformet merke for hvert trykk. Formen og stillingen kunne varieres. Skriften kalles kileskrift. Nedenfor er vist bildet av en gammelbabylonsk leirtavle fra ca år f. Kr. Tavlen inneholder to kolonner med tall skrevet i 14 linjer (linjenumrene er påført av oss). Du kan jo nå tenke deg at du er arkeologen som fant tavla, og stiller spørsmålene: 22 TALLÆRE

7 a) Hvilke tall mener du står i kolonne 1? b) Hvordan skulle etter dette de babylonske tallsymbolene bli for tallene 18, 25 og 47? c) Finn de 6 første tallene i kolonne 2. d) I linje 7, kolonne 2, finner du symbolet. Hvilket tall mener du dette er? Hva forteller dette symbolet og de følgende tallsymbolene i kolonne 2 oss om tallsystemet til babylonerne? e) Omskriv resten av tallene i kolonne 2 til titallsystemet. f) Ved siden av ser du baksiden av den samme leirtavla. Hvilke tall mener du står i de siste 4 linjene? Er det rimelig å tro at babylonerne hadde noe eget symbol for null? Begrunn svaret ut fra symbolbruken på denne leirtavla. Leirtavla over viser hvordan tallsymbolene ble trykket i våt leire med en spesiell pinne, som kunne holdes på to måter. Hvis du ikke har funnet ut av det viser tavla over en oversikt over 9-gangen. La oss nå forenkle disse symbolene slik: 1 og 10 Oppgave 1.8 a) Hvor mange forskjellige tallsifre er det i et sekstitalls posisjonssystem? (Babylonerne hadde lenge ikke noe symbol for null). b) Omskriv til babylonsk: 7, 28, 50, 59. c) Vi kan si at skrivemåten for sifrene fra 1 til 59 følger prinsippet for et additivt tallsystem. Hva mener vi med det? Vi har da f. eks. at 152 = Flere aktiviteter med det babylonske tallsystemet er inntatt blant oppgavene. Vi kan nærme oss to-tallsystemet gjennom følgende Undersøkelse Du har en skålvekt og en loddsats som inneholder ett 1-gramslodd, ett 2-gramslodd og ett 4-gramslodd. Hvilke forskjellige vekter kan legemene du kan veie med disse loddene ha? Vi sier at loddsatsen er god dersom den kan veie flest mulig legemer ved hjelp av minst mulig antall lodd. KAPITTEL 1 23

8 Hvilket lodd bør vi da utvide vår loddsats med? Og hva bør det neste loddet bli? Loddene i loddsatsen svarer til 2-erpotensene: 2 0 = 1, 2 1 = 2, 2 2 = 4, 2 3 = 8, osv. Undersøkelsen ovenfor kan oppsummeres ved å si at ethvert naturlig tall kan skrives (entydig) som en sum av forskjellige 2-erpotenser. Oppgave 1.9 Skriv følgende tall som summer av forskjellige 2-erpotenser: 19, 25, 33, 53, 64, 100. oooooo Her ser du en praktisk framgangsmåte for å finne et talls 2-erpotenser. Tallet i eksemplet er Start med 1, og fordoble gjentatte ganger. Stopp før du passerer 53. Sett merke ved de tallene som gir sum 53. En får: 53 = = Legg merke til at vi dermed også har funnet skrivemåten for 53 i to-tallsystemet: 53 ti = = to Vi kunne selvsagt også oppnådd dette resultatet ved hjelp av teknikken med restdivisjon: Det finnes en generell multiplikasjonsalgoritme av gammelegyptisk type som kun benytter fordoblinger og addisjon. Algoritmen bygger 24 TALLÆRE

9 på det ovenstående. Vi ser på eksemplet 53 72, som kan stilles opp slik: Venstre kolonne dannes først, for å finne 2-erpotensene som inngår i 53. Så fordobles 72 gjentagne ganger til streken blir nådd. Deretter strykes de tallene i høyre kolonne som korresponderer med de 2-erpotenser som ikke inngår i 53. Summen av kolonnens øvrige tall gir svaret. Prøv algoritmen selv på f. eks ! Utfordring At algoritmen er korrekt kan vi se slik (i tilknytning til vårt eksempel over): = ( ) 72 = = der de fire siste addendene gjenfinnes i kolonnen til høyre i algoritmen over. Det er altså tilstrekkelig å kunne 2-gangen for å utføre et hvilket som helst gangestykke. Det finns en beslektet algoritme kalt russisk bondemultiplikasjon, der også halveringer benyttes. Egypterne kunne også dividere etter et lignende skjema som det ovenfor. Dette finner du i oppgavene. Vi nevner at halvering og fordobling lenge ble sett på som egne regneoperasjoner, også hos oss. Dette går fram av «Hauks bok» av Hauk Erlendson, lagmann på Island og i Norge fra 1294 til I «Hauks bok» nevnes 7 slags regning: tvefaldan (fordobling), helmingaskifti (halvering), viðrlagning (addisjon), afdráttr (subtraksjon), margfaldan (multiplikasjon), setta skifting (divisjon) og taka rot undan (rotutdragning). Regning med tall i andre baser En av posisjonssystemets store fordeler er at en kan etablere greie algoritmer for regning med flersifrede tall. Gjennom mange års KAPITTEL 1 25

10 skolegang er vi vel vant med det, i titallsystemet. Det går så automatisk at vi ikke tenker over framgangsmåten i noen særlig grad, og vi har glemt at det i sin tid var en møysommelig prosess å lære. Å regne med tall i andre baser har en pedagogisk verdi i lærerutdanningen, for det tvinger oss til ettertanke og oppmerksomhet. Vi har derfor tatt med en del oppgaver om dette. Elevarbeid fra 1. klasse ved Grålum skole, Lærer: Jorun Wiklund Det vises til dette arbeidet i oppgave TALLÆRE

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann.

Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann. Mayafolkets tallsystem Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann. Mayafolket hadde null. Kun tre tegn. En prikk (stein)

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

1 Tall og tallsystemer. Plassverdibegrepet

1 Tall og tallsystemer. Plassverdibegrepet 1 Tall og tallsystemer. Plassverdibegrepet Kan kråka telle? En jeger bygger et skjulested ved en samlingsplass for kråker. Når han kommer neste dag, flyr kråkene når de ser ham. Jegeren venter i skjulestedet,

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Inviter foreldrene på matematisk aften (forslag til invitasjon nederst i dette dokumentet).

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Divisjon med desimaltall

Divisjon med desimaltall Divisjon med desimaltall Mål Generelt: Divisjon med desimaltall. Mønster og sammenhenger i divisjon. Spesielt: Bruke overslag til å vurdere plassering av desimalkomma. Se hva som skjer med kvotienten når

Detaljer

skrevet som, mens 1/12 som Dessuten hadde egypterne et symbol for 2/3,

skrevet som, mens 1/12 som Dessuten hadde egypterne et symbol for 2/3, KAPITTEL. DE RASJONALE TALLENE FØR GREKERNE Egyptisk brøkregning. Både babylonere og egyptere kjente naturlige tall og brøker. Egypterne regnet ikke med brøker på samme måte som vi gjør, men med stambrøker.

Detaljer

Oppgave 1.20 Hvordan kan man stimulere til matematisk tenkning ved å lese om Pippi og/eller Ole Aleksander?

Oppgave 1.20 Hvordan kan man stimulere til matematisk tenkning ved å lese om Pippi og/eller Ole Aleksander? Ekstraoppgaver Kapittel 1 Oppgave 1.18 Finn andre eksempler på regler og sanger som egner seg i arbeidet med tall og telling i barnehagen. Drøft hvilke matematiske erfaringer barn får ved å delta i disse

Detaljer

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og

Detaljer

Tallsystemer FRA A TIL Å

Tallsystemer FRA A TIL Å Tallsystemer FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallsystemer T - 2 2 Grunnleggende om tallsystemer T - 2 2.1 Tegn og symboler T - 3 2.2 Nullen er viktig

Detaljer

Binære tall og andre morsomheter

Binære tall og andre morsomheter Lærerveiledning Binære tall og andre morsomheter Passer for: Varighet: Vg1T og Vg2P 90 minutter Binære tall og andre morsomheter er et skoleprogram hvor elevene får en annerledes tilnærming til totallsystemet,

Detaljer

Plassverdisystemet for tosifrede tall

Plassverdisystemet for tosifrede tall side 1 Detaljert eksempel om Plassverdisystemet for tosifrede tall Dette er et forslag til undervisningsopplegg knyttet til kompetansemål på 2. årstrinn i hovedområdet Tall og algebra. Kompetansemål etter

Detaljer

Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness

Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Figur 1. Standardalgoritme for divisjon. Jeg underviser i matematikk for lærerstudenter og opplever år etter år at de færreste

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring Hva vil det si å kunne matematikk? Gjett tre kort Hva er tallforståelse? Mona Røsseland Nasjonalt senter for Matematikk i opplæringen Lærebokforfatter; MULTI 9-Sep-08 9-Sep-08 2 Arbeide både praktisk og

Detaljer

Tallsystem. M1 vår 2008

Tallsystem. M1 vår 2008 Tallsystem M1 vår 2008 6. mars 2008 1. Innledning 2. Ulike tallsystem i historien 3. Titallsystemet og andre tallsystem 4. Heltallene og utvidelser 1. Innledning Et interessant ulvebein ble funnet i Tsjekkoslovakia,

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

1.8 Binære tall EKSEMPEL

1.8 Binære tall EKSEMPEL 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Multiplikasjon 1. Introduksjonsoppgave:

Multiplikasjon 1. Introduksjonsoppgave: Multiplikasjon 1 Multiplikasjon er en av de fire regneartene som i mange tilfeller er en effektiv måte å skrive og regne ut gjentatt addisjon på. Svaret i et multiplikasjonsstykke kalles produkt, og tallene

Detaljer

Kompetansemål etter 2. trinn

Kompetansemål etter 2. trinn Kompetansemål etter 2. trinn Tall: 1. telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2. bruke tallinjen til beregninger og å angi tallstørrelser 3. gjøre overslag

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/ Årsplan i matematikk for 2 tr. 15-16 Læreverk: Multi 2A, 2B og oppgavebok. MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 15-16 34 35 36 37 38 39 Tallene 0- med tallene opp til -Bruke tallinja til

Detaljer

Fagplan Matte, 3. trinn, 2010/2011

Fagplan Matte, 3. trinn, 2010/2011 Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og

Detaljer

SUBTRAKSJON FRA A TIL Å

SUBTRAKSJON FRA A TIL Å SUBTRAKSJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til subtraksjon S - 2 2 Grunnleggende om subtraksjon S - 2 3 Ulike fremgangsmåter S - 2 3.1 Tallene under hverandre

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Inneholder ett oppslag fra hvert hefte:

Inneholder ett oppslag fra hvert hefte: Sett inn støtet er en serie hefter som gir systematisk opplæring og trening i utvalgte tema innenfor matematikk. Heftene har enkle instruksjoner og god progresjon i vanskelighetsgrad. Oppgavene er laget

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

MATEMATIKK. September

MATEMATIKK. September MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Kartlegging av tallforståelse trinn

Kartlegging av tallforståelse trinn Kartlegging av tallforståelse 1. 10. trinn Ingvill Merete Stedøy-Johansen og May Renate Settemsdal 29-Oct-06 Veiledning Kartleggingstester Vurderingsskjemaer Retningslinjer for oppfølgende intervju 29-Oct-06

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Øvingshefte. Tall tallsystemet vårt

Øvingshefte. Tall tallsystemet vårt Øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt 1 Tall tallsystemet vårt Seksjon 1 Oppgave

Detaljer

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL

Detaljer

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b. TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og

Detaljer

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgaveteksten: Oppgave 1 I en klasse med åtte gutter og tolv

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Det binære tallsystem en elevtilnærming

Det binære tallsystem en elevtilnærming Henning Bueie, Terje Idland Det binære tallsystem en elevtilnærming Innledning: I denne artikkelen vil vi gi en innføring i det binære tallsystem(eller totallssystemet) og dets utvikling. Dette knytter

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

En studentassistents perspektiv på ε δ

En studentassistents perspektiv på ε δ En studentassistents perspektiv på ε δ Øistein Søvik 16. november 2015 5 y ε 4 3 ε 2 1 1 δ 1 δ 2 x Figur 1: Illustrerer grenseverdien lim x 1 2x + 1. Innledning I løpet av disse korte sidene skal vi prøve

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 1

5. TRINN MATEMATIKK PERIODEPLAN 1 1 5. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015 MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument

Detaljer

Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo

Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo Tall og tallregning Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo Formål Matematikkfaget i skolen medverkar til å utvikle den matematiske kompetansen som samfunnet og den einskilde

Detaljer

Tall med god eller med dårlig kvalitet? av Tom André Tveit den

Tall med god eller med dårlig kvalitet? av Tom André Tveit den Tall med god eller med dårlig kvalitet? av Tom André Tveit den 25.05.2016. Merknad til lesere: Artikkelen er ment for de med kjennskap til slik matematikkfaget fremstår i vitenskapen idag. Formålet med

Detaljer

Årsplan Matematikk 3.trinn

Årsplan Matematikk 3.trinn Årsplan Matematikk 3.trinn 2016-2017 Uke Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 34 35 Kap. 1 Data og statistikk Samle og sortere objekter i passende kategorier. Illustrere

Detaljer

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter? Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1

7. TRINN MATEMATIKK PERIODEPLAN 1 1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i

Detaljer

God morgen! Alle Teller

God morgen! Alle Teller God morgen! Alle Teller Gerd Åsta Bones & Mike Naylor!!! www.matematikkbølgen.com Dag 1: Operasjoner og posisjonssystemet.!!! 0900-1015! Åpningsaktiviteter.!!!!!!!!!! 1015-1030! Pause!!! 1030-1200! Forståelse

Detaljer

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument Telle med 19 fra 19 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

Årsplan i matematikk 2. klasse 2014-15

Årsplan i matematikk 2. klasse 2014-15 Antall timer pr uke: 5 Lærere: Adeleid K Amundsen Læreverk: Multi Gyldendal Grunnbok 2A og 2B + Oppgavebok 2 Nettstedet: www.gyldendal.no/multi Årsplan i matematikk 2. klasse 2014-15 Tidsplan- Innhold

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på?

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på? 3. kurskveld Gjennomgang av hjemmeleksa Hvilke tall tenker jeg på? Læreren tenker på to etterfølgende tall mellom 1 og 10. To elever får en lapp med hvert sitt av de to tallene. Elev A: Jeg vet ikke hvilket

Detaljer

Kyrkjekrinsen skole Årsplan for perioden:

Kyrkjekrinsen skole Årsplan for perioden: Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År:2012-2013 Trinn og gruppe: 4. trinn Lærer: Henriette Hjorth Røen og Katrine Skaale Johansen Uke Årshjul Hovedtema Kompetansemål Delmål

Detaljer

Årsplan matematikk 1. trinn skoleåret 15/16

Årsplan matematikk 1. trinn skoleåret 15/16 Årsplan matematikk 1. trinn skoleåret 15/16 FAG Den lokale læreplanen for faget må: Sees i sammenheng med det aktuelle trinn Sikre at skolen jobber med alle kompetansemål i faget Aktuelle elementer fra

Detaljer

Kunnskap om posisjonssystemet

Kunnskap om posisjonssystemet Elisabet Lindland Kunnskap om posisjonssystemet sammenheng med leseferdighet? Kunnskap om posisjonssystemet ser ut til å være essensielt i elevenes kunnskap om matematikk, [5]. I addisjon, subtraksjon,

Detaljer

Årsplan i matematikk - 1. klasse 2014-2015

Årsplan i matematikk - 1. klasse 2014-2015 Antall timer pr : 4 timer Lærere: Ida Nystuen Askjer og Elise G. Solberg Læreverk: Multi Gyldendal Grunnbok 1A og 1B + Oppgavebok 1 Nettstedet: www.gyldendal.no/multi Årsplan i matematikk - 1. klasse 2014-2015

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

QED 5-10, Bind 1 TRYKKFEIL

QED 5-10, Bind 1 TRYKKFEIL QED 5-10, Bind 1 TRYKKFEIL S 34: Linja rett over Eksempel 7: Skal være = 30, = 40, = 50 Tallet 34 i Eksempel 7 skal være δ S 37: Andre linje i 124: Det skal være «kile og hakk», dvs at symbolet som står

Detaljer