1.8 Binære tall EKSEMPEL

Størrelse: px
Begynne med side:

Download "1.8 Binære tall EKSEMPEL"

Transkript

1 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet = Hvis vi bruker potenser, får vi 2347 = Det siste sifferet er enere, det nest siste er tiere, det tredjesiste hundrere, osv. Dette tallsystemet har ti tallsymboler (0, 1, 2,, 9). I en datamaskin eller lommeregner kan vi tenke oss at alle tall blir lagret ved at en bryter er av eller på. Vi har da bare to mulige tallsymboler: 0 når bryteren er av og 1 når den er på. Vi må derfor bruke et tallsystem med bare to symboler, 0 og 1. Det tallsystemet kaller vi totallssystemet eller det binære tallsystemet. Alle tall i dette systemet består dermed bare av nuller og enere. Tallet 1010 er et eksempel på et binært tall. Det er ikke det samme som tusen og ti. Når vi skal finne ut hvilket tall det er, gjør vi slik: 1010 = = = 10 Det binære tallet 1010 er det samme som tallet ti. Vi ser at det binære tallsystemet virker på samme måten som titallssystemet. Forskjellen er at for binære tall bruker vi potenser av to i stedet for potenser av ti. Alle datamaskiner og lommeregnere bruker totallssystemet til all regning uten at vi oppdager det. Når du skriver et regnestykke ved hjelp av tastaturet, blir tallene automatisk oversatt til totallssystemet. Alle utregningene blir så gjort i totallssystemet. Svaret blir deretter oversatt til titallssystemet før det blir skrevet ut på skjermen. Vi skal nå lære å oversette tall mellom totallssystemet og titallssystemet. Regn om fra binære tall til vanlige tall. a) 101 b) 1101 c) a) 101 = = = 5 b) 1101 = = = 13 c) = = = 19 31

2 Oppgave 1.80 Regn om fra binære tall til vanlige tall. a) 110 b) 1110 c) d) Oppgave 1.81 Fyll ut tabellen. Binærtall Vanlige tall Hvordan kan vi oversette fra vanlige tall til binære tall Vi tar da utgangspunkt i denne tabellen med potenser av Vi skal nå skrive tallet 23 som et binært tall. Vi leter oss fram til den største toerpotensen som er mindre enn 23. Det er 16. Videre er 23 = Nå finner vi den største toerpotensen som er mindre enn 7. Det er 4. Ettersom 7 = 4 + 3, får vi Dermed er 23 = = = Tallet 23 er dermed det samme som det binære tallet Skriv 37 som et binært tall. 37 = = = = Oppgave 1.82 Skriv tallene som binærtall. a) 13 b) 23 c) 42 d) Sinus 1DH/1MK > Tall og enheter

3 Oppgave 1.83 Skriv tallet 241 som binærtall. De binære tallene inneholder mange siffer. Når vi skriver tallet 211 som et binærtall, blir det Det er fort gjort å gjøre feil når vi skal skrive et slikt tall, eller når vi skal si tallet til en annen person. Det blir lettere hvis vi leser fire og fire siffer om gangen. Vi bruker i tillegg denne tabellen: Binært tall Vanlig tall Symbol Binært tall Vanlig tall Symbol A B C D E F Tallet deler vi opp i to deler og leser det på denne måten: = D3 D 3 Når vi så skal ha tilbake binærtallet, bruker vi tabellen og erstatter D med 1101 og 3 med Da får vi tilbake tallet Når vi skal finne hvilket tall D3 er, kan vi gjøre slik: I tabellen ser vi at D er tallet 13. Da er D3 det samme som = 211 Tallet har elleve siffer. Når vi skal lese dette tallet, setter vi en 0 foran slik at det blir tolv siffer = 5C9 5 C 9 Vi leser tallet som 5C9. Hvilket tall er så det Vi skriver det ved hjelp av potenser av 16. Husk at C er det samme som 12. 5C9 = = = 1481 Tallet 5C9 er skrevet i 16-tallssystemet (det heksadesimale tallsystemet). 33

4 a) Skriv det binære tallet i det heksadesimale tallsystemet. b) Skriv tallet i det vanlige tallsystemet. a) = = 2D9 2 D 9 b) Ettersom D er tallet 13, blir dette 2D9 = = = 729 Oppgave 1.84 a) Skriv det binære tallet i det heksadesimale tallsystemet. b) Hvilket tall er det Oppgave 1.85 a) Skriv det binære tallet i det heksadesimale tallsystemet. b) Hvilket tall er det Oppgave 1.86 a) Skriv tallet 812 i det binære tallsystemet. b) Skriv svaret i oppgave a i det heksadesimale tallsystemet. c) Kontroller om svaret i oppgave b gir tallet Noen digitale enheter Datamaskiner gjør om alle tall til binære tall. Grunnen er at maskinen har mange elektriske «brytere» som kan være av eller på. En slik «bryter» kaller vi en bit. En bit kan dermed være enten 0 eller 1. Alle andre tegn og symboler blir også skrevet ved hjelp av 0 og 1. Bokstaven A blir gjort om til og a til Hvert tegn og hver bokstav har sin egen kode som er sammensatt av åtte 0 eller 1. Koden består dermed av åtte biter. Vi kaller det en byte. En byte er dermed lagerplass for ett tegn. 1 byte = 8 biter Sinus 1DH/1MK > Tall og enheter

5 a) Hvor mange byte er det i teksten «Lykke til!» b) Hvor mange biter blir det a) Teksten består av ti tegn. Husk at mellomrommet også er et tegn. Det er 10 byte i teksten. b) Vi vet at 1 byte består av 8 biter. Dermed er 10 byte = 10 8 biter = 80 biter Til sammen må vi bruke åtti 0 og 1 for å lagre teksten «Lykke til!» Oppgave 1.90 a) Hvor mange biter er det i 12 byte b) En tekst er skrevet med 248 biter. Hvor mange tegn er det i denne teksten Oppgave 1.91 a) Hvor mange byte er det i teksten «Alt vel. Send mer penger.» b) Hvor mange 0 og 1 må vi bruke for å lagre denne teksten digitalt I vårt tallsystem (titallssystemet) har vi faste navn på noen spesielle tall = 100 hundre 10 3 = 1000 tusen 10 6 = million 10 9 = milliard Vi ser at det er noen potenser av ti som har egne navn. Når vi bruker totallssystemet, har vi satt navn på noen potenser av to = 1024 kilo (k) 2 20 = mega (M) 2 30 = giga (G) Til vanlig er kilo = Men i den digitale verden er altså kilo = På tilsvarende måte er mega = , men når det gjelder datateknikk, er mega = Vi bruker forkortingen B for byte og forkortingen b for biter. Med denne skrivemåten er 1 kb = 1024 byte 1 kb = 1024 biter 1 MB = byte 1 Mb = biter 35

6 Videre er 1 MB = 1024 kb 1 Mb = 1024 kb 1 GB = 1024 MB 1 Gb = 1024 Mb Til daglig runder vi ofte av og sier at 1 kb er 1000 byte, at 1 MB er 1000 kb, og at 1 GB er 1000 MB. Et tekstdokument er på 2,7 kb. a) Hvor mange tegn inneholder dokumentet b) Hvor mange 0 og 1 blir det a) 1 kb er 1024 byte, og én byte er ett tegn. Antallet tegn er 2, = 2765 Vi gjør ikke noen stor feil hvis vi sier at det er 2700 tegn. b) Ettersom hver byte (hvert tegn) består av åtte biter (0 eller 1), er antallet 0 og = Oppgave 1.92 En tekst er på 32 kb. a) Hvor mange tegn er det b) Hvor mange biter blir det Oppgave 1.93 Et digitalt bilde blir også lagret ved hjelp av bare 0 og 1. Et bestemt bilde er på 1,2 MB. a) Hvor mange kilobyte (kb) er det b) Hvor mange byte blir det c) Hvor mange 0 og 1 må vi bruke for å lagre dette bildet Når vi sender digitale tekster, bilder eller musikk over telenettet, varierer farten veldig. Hvis vi bruker en vanlig analog (ikke digital) telefonlinje, kan vi sende kb per sekund. Det er altså ca biter per sekund. Vi måler farten i kilobiter per sekund (kbps). Når farten er 46,6 kbps, kan vi sende 46,6 kb på ett sekund Sinus 1DH/1MK > Tall og enheter

7 Med bredbånd er farten mye større. Vanlig fart er noen tusen kilobiter per sekund. Farten kan for eksempel være 2048 kbps. Det er det samme som 2 Mbps.Vi overfører da omtrent 2 millioner nuller og enere på ett sekund. Et bilde er på 728 kb. a) Hvor mange kilobiter er det b) Hvor lang tid tar det å overføre bildet på ei linje med farten 46,6 kbps c) Hvor lang tid tar det på bredbånd med farten 2048 kbps a) Ettersom 1 byte er 8 biter, er 728 kb det samme som kb = 5824 kb b) Med denne linja overfører vi 46,6 kb på ett sekund. Antallet sekunder blir ,6 = 125 Det tar 125 s (2 min 5 s) å overføre bildet. c) Med bredbånd overfører vi 2048 kb på ett sekund. Antallet sekunder blir da = 2,8 Det tar 2,8 sekunder. Oppgave 1.94 En stor tekst inneholder tegn. a) Hvor mange kilobiter er det b) Hvor lang tid tar det å overføre teksten på ei linje med farten 28,8 kbps c) Hvor lang tid tar det å overføre teksten på bredbånd med 1024 kbps Oppgave 1.95 En musikk-cd er på 25,7 MB. a) Hvor lang tid tar det å overføre innholdet på denne cd-en på ei linje med farten 46,6 kbps b) Hvor lang tid tar det på bredbånd med farten 2048 kbps 37

1.8 Binære tal DØME. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet.

1.8 Binære tal DØME. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet. 1.8 Binære tal Når vi reknar, bruker vi titalssystemet. Korleis det verkar, finn vi ut ved å sjå på til dømes talet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Dersom vi bruker potensar, får vi 2347 = 2 10

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver 1 Potenser og tallsystemer KATEGORI 1 1.1 Potenser Oppgave 1.110 3 b) 3 c) 4 d) 4 Oppgave 1.111 10 3 b) ( 5) c) ( ) 3 d) ( ) 4 Oppgave 1.11 Skriv uttrykkene som én potens. 3 4 b) 5 3 c) 5 3 5

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver Potenser og tallsystemer KATEGORI. Potenser Oppgave.0 a) b) c) d) Oppgave. a) 0 b) ( ) c) ( ) d) ( ) Oppgave. Skriv uttrykkene som én potens. a) b) 7 c) d). Potensene a 0 og a n Oppgave.0 a) 7

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Kapittel 2 TALL. Tall er kanskje mer enn du tror

Kapittel 2 TALL. Tall er kanskje mer enn du tror Tall er kanskje mer enn du tror Titallsystemet 123 = 1 100 + 2 10 + 3 1 321 = 3 100 + 2 10 + 1 1 1, 2 og 3 kaller vi siffer 123 og 321 er tall Ikke bare valg av siffer, men også posisjon har betydning

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Kapittel 2. Tall på standardform

Kapittel 2. Tall på standardform Kapittel 2. Tall på standardform Standardform er en metode som er nyttig for raskt å kunne skrive tall som er mye større enn 1 eller mye mindre enn 1. Du må kunne potensregning for å forstå regning med

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i

Detaljer

Kapittel 2. Tall på standardform

Kapittel 2. Tall på standardform Kapittel. Tall på standardform Standardform er en metode som er nyttig for raskt å kunne skrive tall som er mye større enn eller mye mindre enn. Du må kunne potensregning for å forstå regning med standardform.

Detaljer

Eksamen 2P, Høsten 2011

Eksamen 2P, Høsten 2011 Eksamen P, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder 9 11

Detaljer

Tal og einingar. Mål. for opplæringa er at eleven skal kunne

Tal og einingar. Mål. for opplæringa er at eleven skal kunne 8 1 Tal og einingar Mål for opplæringa er at eleven skal kunne gjere overslag over svar, rekne med og utan tekniske hjelpemiddel i praktiske oppgåver og vurdere kor rimelege resultata er 1.1 Reknerekkjefølgje

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Plassverdisystemet for tosifrede tall

Plassverdisystemet for tosifrede tall side 1 Detaljert eksempel om Plassverdisystemet for tosifrede tall Dette er et forslag til undervisningsopplegg knyttet til kompetansemål på 2. årstrinn i hovedområdet Tall og algebra. Kompetansemål etter

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

EC-Styring med "Magelis" berøringsskjerm. 1. Oppstart og initialisering av maskin... 2

EC-Styring med Magelis berøringsskjerm. 1. Oppstart og initialisering av maskin... 2 Innhold 1. Oppstart og initialisering av maskin... 2 2. Drift av maskinen... 3 2.1 Beskrivelse av hovedmeny...3 2.2 Endre program...4 2.3 Opprette et program - eksempel på programmering av en profil...5

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Øvingshefte. Tall tallsystemet vårt

Øvingshefte. Tall tallsystemet vårt Øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Copyright Grieg Multimedia AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt 1 Tall tallsystemet vårt Seksjon 1 Oppgave

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 3.11.011 MAT1015 Matematikk P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del

Detaljer

Crosswords and More. Av LäraMera Program AB og Leripa AB. Kristina Grundström, illustratør Richard Hultgren, programmerer

Crosswords and More. Av LäraMera Program AB og Leripa AB. Kristina Grundström, illustratør Richard Hultgren, programmerer Crosswords and More Av LäraMera Program AB og Leripa AB Pedagogikk og manus Grafikk Programmering Engelsk stemme Musikk Norsk Versjon Ann Truedsson, spesialpedagog Kristina Grundström, illustratør Richard

Detaljer

Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann.

Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann. Mayafolkets tallsystem Et 20-tallssystem. Mayaene brukte både fingre og tær; derfor 20. Ordet for 20 var i enkelte mayadialekter også ordet for mann. Mayafolket hadde null. Kun tre tegn. En prikk (stein)

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

1.2 Posisjonssystemer

1.2 Posisjonssystemer MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) 1993 3) År 2000. 1.2 Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive

Detaljer

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 13. Desember 2013 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

Innhold. 2 Kompilatorer. 3 Datamaskiner og tallsystemer. 4 Oppsummering. 1 Skjerm (monitor) 2 Hovedkort (motherboard) 3 Prosessor (CPU)

Innhold. 2 Kompilatorer. 3 Datamaskiner og tallsystemer. 4 Oppsummering. 1 Skjerm (monitor) 2 Hovedkort (motherboard) 3 Prosessor (CPU) 2 Innhold 1 Datamaskiner Prosessoren Primærminnet (RAM) Sekundærminne, cache og lagerhierarki Datamaskiner Matlab Parallell Jørn Amundsen Institutt for Datateknikk og Informasjonsvitenskap 2010-08-31 2

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Kapittel 8. Potensregning og tall på standardform

Kapittel 8. Potensregning og tall på standardform Kapittel 8. Potensregning og tall på standardform I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Standardform er en metode som er nyttig for raskt å kunne skrive

Detaljer

DEL 1. a) Grete setter 10 000 kr i banken. Hun får 5 % rente (per år). Grete lar pengene stå urørt i banken i 5 år.

DEL 1. a) Grete setter 10 000 kr i banken. Hun får 5 % rente (per år). Grete lar pengene stå urørt i banken i 5 år. DEL 1 Oppgave 1 a) Grete setter 10 000 kr i banken. Hun får % rente (per år). Grete lar pengene stå urørt i banken i år. 1) Hvor mange penger har Grete i banken etter ett år? Grete vil prøve å regne ut

Detaljer

Taleboka TTS digital SAPI5 talesyntese. Brukerveiledning

Taleboka TTS digital SAPI5 talesyntese. Brukerveiledning Taleboka TTS digital SAPI5 talesyntese Brukerveiledning En NY digital taleteknologi som leser opp det meste - for alle som trenger å høre levende tale og lære god uttale! Visjonen var å utvikle en ny høykvalitets

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

1. del av Del - EKSAMEN

1. del av Del - EKSAMEN 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

Slik tar du i bruk nettbanken

Slik tar du i bruk nettbanken NETTBANK Slik tar du i bruk nettbanken For nybegynnere 1 Enklere hverdag med nettbank Innledning I nettbanken kan du selv utføre en rekke banktjenester når som helst i døgnet. Fordeler med nettbank Full

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014 Norsk informatikkolympiade 014 015 1. runde Sponset av Uke 46, 014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness

Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Figur 1. Standardalgoritme for divisjon. Jeg underviser i matematikk for lærerstudenter og opplever år etter år at de færreste

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Lærerveiledning Passer for: Varighet: Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Full fart med funksjoner, prosent og potens er et skoleprogram hvor elevene går fra

Detaljer

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang. Sjekkliste. Introduksjon

Tre på rad mot datamaskinen. Steg 1: Vi fortsetter fra forrige gang. Sjekkliste. Introduksjon Tre på rad mot datamaskinen Erfaren Python Introduksjon I dag skal vi prøve å skrive kode slik at datamaskinen kan spille tre på rad mot oss. Datamaskinen vil ikke spille så bra i begynnelsen, men etterhvert

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tall og Format i Internett

Tall og Format i Internett Tall og Format i Internett Ketil Danielsen ketil.danielsen@himolde.no September 7, 2006 Det ble tidligere sagt at de binære tall (0 og 1) er basis i lagring og overføring av informasjon i datasystemer

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Informasjonsteori Skrevet av Joakim von Brandis, 18.09.2003

Informasjonsteori Skrevet av Joakim von Brandis, 18.09.2003 Informasjonsteori Skrevet av Joakim von Brandis, 18.09.200 1 Bits og bytes Fundamentalt for informasjonsteori er at all informasjon (signaler, lyd, bilde, dokumenter, tekst, etc) kan representeres som

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 7. oktober 2015. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Internminnet. Håkon Tolsby. 22.09.2014 Håkon Tolsby

Internminnet. Håkon Tolsby. 22.09.2014 Håkon Tolsby Internminnet Håkon Tolsby 22.09.2014 Håkon Tolsby 1 Innhold: Internminnet RAM DRAM - SDRAM - DDR (2og3) ROM Cache-minne 22.09.2014 Håkon Tolsby 2 Internminnet Minnebrikkene som finnes på hovedkortet. Vi

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

En oppsummering (og litt som står igjen)

En oppsummering (og litt som står igjen) En oppsummering (og litt som står igjen) Pensumoversikt Hovedtanker i kurset Selvmodifiserende kode Overflyt Eksamen En oppsummering Oppsummering Pensum læreboken til og med kapittel 7 forelesningene de

Detaljer

Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i.

Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i. Skilpaddeskolen Steg 1: Flere firkanter Nybegynner Python Åpne IDLE-editoren, og åpne en ny fil ved å trykke File > New File, og la oss begynne. Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell'

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 3-Feb-07 Dagsoversikt Hvordan styrke

Detaljer

1 Tal og einingar KATEGORI Reknerekkjefølgje. 1.2 Hovudrekning og overslagsrekning

1 Tal og einingar KATEGORI Reknerekkjefølgje. 1.2 Hovudrekning og overslagsrekning Oppgåver 1 Tal og einingar KATEGORI 1 1.1 Reknerekkjefølgje Oppgåve 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgåve 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgåve 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

Terminprøve i matematikk for 8. trinn

Terminprøve i matematikk for 8. trinn Terminprøve i matematikk for 8. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Opprydding og Vedlikehold av Windows

Opprydding og Vedlikehold av Windows Opprydding og Vedlikehold av Windows Innledning Hvis du synes at PC en går tregt kan det være på sin plass med en diskopprydding. Windows selv og de fleste programmer som arbeider under Windows benytter

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgaveteksten: Oppgave 1 I en klasse med åtte gutter og tolv

Detaljer

Kva er klokka? Kva er klokka? Kva er klokka?

Kva er klokka? Kva er klokka? Kva er klokka? er to er eitt er tolv er fem er fire er tre er åtte er sju er seks er elleve er ti er ni halv to halv eitt halv tolv halv fem halv fire halv tre halv åtte halv sju halv seks halv elleve halv ti halv ni

Detaljer

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet Tall Kunne prefikser for store tall i Læringsmål tall 0000 000 titallsstemet t t 0 0-2 - 0 2-3 3 000 00 det binære tallsstemet Forstå ulike prinsipper for representasjon av 00-4 4 000 negative heltall

Detaljer

Digital kalender. Bruksanvisning

Digital kalender. Bruksanvisning Digital kalender Bruksanvisning Funksjoner og finesser Klokke og tidssoner - Månedskalender som dekker tidsrommet fra januar 1901 til desember 2099. - Tiden i 32 byer i verden. - Valg mellom 12- og 24-timersklokke.

Detaljer

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av.

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av. Tall 1111 0000 0001 1101 1110-2 -1 0 1 2 0010 0011-3 3 1100-4 4 0100 1011-5 -6 6 5 0101 1010-7 -8 7 0110 1001 1000 0111 (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) INF1040-Tall-1 Kunne prefikser for store

Detaljer

Norskavdelingen ALFA A1 A2 B1 B2

Norskavdelingen ALFA A1 A2 B1 B2 Voksenopplæringen i Skien Norskavdelingen IKT plan; læringsmål og progresjon ALFA A1 A2 B1 B2 - slå på/av PC - lære innlogging; brukernavn - lære å forstå skrivebordet - bruk av hodetelefoner - øve bruk

Detaljer

Naturfag for ungdomstrinnet

Naturfag for ungdomstrinnet Naturfag for ungdomstrinnet Svangerskap og fødsel Illustrasjoner: Ingrid Brennhagen 1 Vi skal lære om hvordan et barn blir til svangerskap fødsel 2 En baby blir til når et egg fra mora og ei sædcelle fra

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

JEG KAN.. 1.trinn. IT-plan for elever ved Rørvik skole

JEG KAN.. 1.trinn. IT-plan for elever ved Rørvik skole 1.trinn Jeg kan peke på: Tastaturet Skjermen Datamaskinen Musa Jeg kan slå på og av datamaskinen på riktig måte. Jeg kan trykke på start og logge på og av. Jeg kan starte et program ved hjelp av startmenyen.

Detaljer

Løsningsforslag julekalender, 8. - 10. trinn

Løsningsforslag julekalender, 8. - 10. trinn Løsningsforslag julekalender, 8. - 10. trinn 1. desember SVAR: 96,5 s/runde En person gikk 10 000 m på skøyter i Vikingskipet på tiden timer 3 minutter og 3,9 sekunder. Hva blir gjennomsnitlig rundetid

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Installasjonsveiledning DDS-CAD 7.3

Installasjonsveiledning DDS-CAD 7.3 Installasjonsveiledning DDS-CAD 7.3 - Installasjonsveiledning versjon 7.3 Vær oppmerksom på: USB-dongler ikke skal plugges i maskinen før programmet er installert. Før installasjonen: Dette hefte beskriver

Detaljer

Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning.

Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. Mattelekse uke 39 A Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1. Lovise kjøpte sykkel til 2798kr, hjelm til 389kr

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Enarmet banditt Nybegynner Scratch Lærerveiledning

Enarmet banditt Nybegynner Scratch Lærerveiledning Enarmet banditt Nybegynner Scratch Lærerveiledning Introduksjon Dette er et spill med tre figurer som endrer utseende. Din oppgave er å stoppe figurene én etter én, slik at alle tre blir like. Steg 1:

Detaljer

-utvikle og bruke ulike regnemetoder for addisjon og. subtraksjon av flersifrede tall både i hodet og på papiret.

-utvikle og bruke ulike regnemetoder for addisjon og. subtraksjon av flersifrede tall både i hodet og på papiret. Årsplan for 3.trinn matematikk 2016-2017 U 35 Telle og regne Tallene 0-100 36 Telle og regne med tallene 0-100 Stille opp addisjonsstykker uten/med veksling Grunntall 3A kap. 1 Grunntall 3A kap. 1 OMPTANSMÅL

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

EKSAMEN. Informasjon og publiseringsteknologi. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag

EKSAMEN. Informasjon og publiseringsteknologi. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Informasjon og publiseringsteknologi IMT1041 EKSAMENSDATO: 07.12.2005 SENSURFRIST: 28.12.2005 KLASSE: 05HBINFA, 05HBINDA/T, 05HBMEDA, 05HBMEMAA, 05HBMETEA TID:

Detaljer

Binære tall og andre morsomheter

Binære tall og andre morsomheter Lærerveiledning Binære tall og andre morsomheter Passer for: Varighet: Vg1T og Vg2P 90 minutter Binære tall og andre morsomheter er et skoleprogram hvor elevene får en annerledes tilnærming til totallsystemet,

Detaljer