Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Størrelse: px
Begynne med side:

Download "Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra"

Transkript

1 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra

2 Innhold 1 Om Geogebra Innstillinger Regning Tallregning Regnerekkefølge Tallet π Minne Kvadratrot Parenteser Brøk Store og små tall Potenser n-terøtter Funksjoner Tegning av grafer for hånd Tegning av rett linje Tegning av grafer på det digitale verktøyet Utregninger på grafen Finne y når du kjenner x Nullpunkter Finne x når du kjenner y Topp- og bunnpunkter Skjæringspunkter mellom grafer Lineær regresjon 16 5 Sannsynlighetsregning Simulering Økonomi Budsjett Regnskap Lån Serielån Annuitetslån med et fast årlig beløp Annuitetslån over et visst antall år

3 Innledning Dette heftet er ment som en beskrivelse av dataprogrammet Geogebra som digitalt verktøy i undervisningen i faget «Matematikk Vg1P», studieforbedredende utdanningsprogram. Heftet er tilpasset læreverket Sigma matematikk, Gyldendal Undervisning, og inneholder referanser til framstillingen der. Heftet er skrevet i samarbeid med Henning Bueie, Åretta ungdomsskole. Henvisninger fra boka Følgende er en oversikt over de sidetallene i læreboka som har referanse til digitale verktøy. Lista gir deg en oversikt over hvilket avsnitt i dette heftet som omhandler det aktuelle emnet i læreboka. Henvisningene refererer til sidetall i Sigma matematikk 1P, 3. utgave, Gyldendal Undervisning, I den elektroniske utgaven av heftet er referansene klikkbare. Sidetall i læreboka Emne Avsnitt i dette heftet 12 Tallregning og regnerekkefølge Kvadratrøtter Store og små tall Tegne rett linje Skjæring av grafer Lage verditabell Tegne graf Toppunkt Lineær regresjon 4 85 Lineær regresjon Budsjett Regnskap Serielån Annuitetslån (beløp) Annuitetslån (år)

4 1 Om Geogebra Geogebra er et matematikkverktøy med funksjonalitet innenfor de fleste områdene i matematikk i videregående skole. Geogebra kan lastes ned fra Internett og kjøres som et frittstående program. Du kan også kjøre Geogebra direkte fra Internett. Du finner Geogebra på Dette heftet tar utgangspunkt i versjon 4.2. Skjermbildet i Geogebra ser slik ut: Skjermbildet består av: 1. Menylinje og knapperad. Viktig å merke seg at du får fram undermenyene ved å trykke på de små trekantene på knappene. 2. Algebravindu/resultatvindu. Her kommer det fram opplysninger om de ulike matematiske objektene du arbeider med, for eksempel skjæringspunkter, funksjonsverdier, resultater av beregninger og annet. 3. Funksjons- og geometrivindu. Her viser Geogebra grafer og geometriske figurer. 4. Regnearkvindu. 5. Inntastingsfelt. Her skriver du inn formler, funksjoner og regneoperasjoner. Resultatene av beregninger du gjør her havner i resultatvinduet. 4

5 1.1 Innstillinger Om du vil justere innstillingene i Geogebra, bruker du Innstillinger-menyen. Ønsker du for eksempel at programmet skal runde av til tre gjeldende siffer, velger Innstillinger > Avrunding > 2 desimaler. Det kan være lurt å la programmet runde av til et bestemt antall gjeldende siffer, slik at ikke små tall blir runda av til null. 2 Regning 2.1 Tallregning Du taster inn regnestykker omtrent som på en vanlig lommeregner, med for gange og «/» for dele. Desimaltall skrives inn med punktum som desimalkomma. Tallet 2, taster du altså inn som «2.5». Kommaet («,») brukes for å skille koordinater i punkter. Skriv inn i inntastingsfeltet. Resultatet av utregningen havner i resultatvinduet. 2.2 Regnerekkefølge Vanlig regnerekkefølge er innebygd i programmet. Så vi kan taste rett inn slik det står. Utregningen taster vi inn som det står og avslutter med enter. Geogebra bruker cirkumflex ( ) for potenser. På noen datamaskiner må man taste et mellomrom etter. 5

6 Resultatvinduet viser at svaret blir 44. Dersom vi skal omgå regnerekkefølgen, må vi angi ønsket rekkefølge med parenteser, som for eksempel i utregningen 7 ( ( 3)) 2, som tastes inn slik: 7*(-4^2-5*(-3))^2 Geogebra har hurtigtaster for skrive eksponenter. Dersom du taster alt + 2 (hold inne alt-knappen og tast 2), så ser du at programmet skriver «opphøyd i andre» direkte. 2.3 Tallet π Programmet har en egen hurtigknapp for π. Dessuten kan vi bruke tastesnarveien alt + p. 2.4 Minne Geogebra lagrer automatisk resultater fra utregninger i variabler (minne) etter hvert som resultatene kommer fram. Hvert nye svar blir tilordnet en ny variabel. La oss si at du har regnet ut (4 + 5) 2 3 og fått 72. Da vil Geogebra lagre verdien 72 i variabelen a. Dette kommer fram i resultatvinduet. Dersom du nå ønsker å multiplisere savret med π, skriver du a π i inntastingsfeltet. Resultatet av denne regneoperasjonen lagres i variabelen b. Siden resultatet b er avhengig av verdien av a, kalles b for et avhengig objekt. Du kan også lagre verdier i variablene direkte. For å lagre 2 i 2 og 71 i b, skriver du a = 2 og b = 71 i inntastingsfeltet. Deretter kan du skrive a b. Da angir Geogebra svaret som c = 142. Svaret blir angitt som et avhengig objekt, siden svaret c er avhengig av variablene a og b. 6

7 2.5 Kvadratrot For å regne ut kvadratroten av et tall, bruker du kommandoen «sqrt()». For å regne ut 4, skriver du inn «sqrt(4)». I resultatvinduet viser programmet at svaret er 2. Husk på parenteser, slik at programmet vet hva som skal inkluderes i kvadratroten Eksempel: Vi skal regne ut. Da taster vi inn «sqrt(2*40/9.8)». Resultatvinduet viser at svaret er 2, 9, Parenteser Når vi skriver for hånd, skriver vi ofte brøker og kvadratrottegn uten parenteser, da vi er enige om hvordan de skal regnes ut. For eksempel er = 12 6 = 2 Dersom vi vil regne ut svaret uten mellomregning i programmet, må vi hjelpe til med å slå parenteser om telleren og nevneren: (5+7)/(2*3) I resultatvinduet ser vi at svaret på utregningen er Brøk Brøker taster du inn med vanlig deletegn i stedet for brøkstrek. Pass på å slå parenteser om telleren og nevneren dersom de består av flere ledd. Brøkene regnes om til desimaltall og svaret gis som desimaltall. Dessverre finnes det ikke en egen brøkfunksjon i Geogebra. Skal vi for eksempel regne ut slår vi parenteser om den første telleren og den siste nevneren og får: (2+3)/3-8/(7-3) Resultatvinduet viser 0,33 som svar. 7

8 Ved utregning av brudden brøk er det også nødvendig å bruke parenteser. Skal vi regne ut brøken taster vi det inn med parenteser rundt telleren og nevneren i hovedbrøken. ((1/2)/(1/3)) Resultatvinduet viser 1,5 som svar. 2.8 Store og små tall Når tallene blir svært store eller svært små, skriver programmet dem på standardform. Dette avhenger noe av hvilke valg du har gjort på Innstillinger > avrunding. Du velger selv om du taster inn på standardform eller ikke. Skal du taste inn , kan du velge å taste rett inn alle sifrene eller å taste «2.4 E 7». Når vi regner ut , vil Geogebra normalt svare I visse tilfeller svarer programmet E11, som betyr at svaret er 1, Potenser Potenser tastes inn med cirkumflex,. Vi regner ut 2 5 ved å taste 2 5. Resultatvinduet gir oss svaret 32. For å taste inn potenser med flere elementer i eksponenten, slår du en parentes om eksponenten. Vi regner ut 2 5 ved å taste 2 ( 5) og ved å taste 2 (2/3) n-terøtter Geogebra har innebygd funksjoner for kvadratrot og tredjerot, henholdsvis «sqrt()» og «cbrt()». For andre røtter må vi bruke at n a = a 1 n. Eksempel: For å beregne 5 7,34 gjør vi slik: 7.34^(1/5) Resultatvinduet gir oss svaret 1,

9 3 Funksjoner 3.1 Tegning av grafer for hånd Når du tegner grafer for hånd, er det praktisk å bruke digitalt verktøy til å regne ut funksjonsverdier for funksjonen. Vi regner ut funksjonsverdier i Geogebra ved å taste inn funksjonsuttrykket i inntastingsfeltet og så be om funksjonsverdiene enkeltvis. Eksempel: Vi skal arbeide med funksjonen f(x) = x x Vi taster inn funksjonsutrykket i inntastingsfeltet i Geogebra. Så kan vi regne ut de funksjonsverdiene vi vil ved å sette inn i f(x). Om vi nå taster f(0) i inntastingsfeltet, vil resultatvinduet vise a = , som betyr at f(0) = 0. Tilsvarende taster jeg f(100) i inntastingsfeltet, og Geogebra viser b = i resultatvinduet. Altså er f(100) = Fortsetter vi på denne måten, kan vi lage en verditabell: x y Når vi så har laget verditabellen, merker vi av punktene i et koordinatsystem og tegner en glatt kurve gjennom dem y x 3.2 Tegning av rett linje Vi skal tegne grafen til en rett linje y = ax+b. Først taster vi funksjonsuttrykket inn i inntastingsfeltet. Deretter lager vi verditabell slik det er beskrevet i avsnitt 3.1 på side 9. Det hender oppgaven ber oss om et spesifikt intervall for x. I så fall bruker vi det. Verditabellen bruker vi til å stille vinduet riktig. 9

10 Eksempel: Vi skal tegne linja K = 2x Vi taster K(x) = 2x i inntastingsfeltet. Det ser slik ut: Så lager vi verditabell for x [0, 3000]. Vi taster inn K(0), K(500), K(1000), K(2000) og K(3000). Da ser resultatvinduet vårt slik ut: Altså må vi la x gå fra 0 til 3000 og y fra 0 til Nå velger vi Innstillinger > Grafikkfelt. Der setter vi x til å gå fra 200 til Så klikker vi på «yakse» midt i vinduet og setter y til å gå fra 1000 til Vi bruker en liten negativ verdi som nedre grense på begge aksene, slik at aksene syns. Da ser grafen slik ut: 10

11 3.3 Tegning av grafer på det digitale verktøyet Vi skal tegne grafen til en funksjon f(x). Vi taster funksjonsuttrykket inn i inntastingsfeltet. Ut fra funksjonens definisjonsmengde lager vi deretter en verditabell slik det er beskrevet i avsnitt 3.1 og stiller inn vinduet etter dette. Det hender oppgaven ber oss om et spesifikt intervall for x. I så fall bruker vi det. Som eksempel skal vi nå tegne grafen til f(x) = 0, 0001x 2 + 0, 45x 200 for x mellom 0 og Først legger vi inn funksjonen. Så regner vi ut en verditabell. Når vi har tastet inn f(0), f(1000), f(2000), f(3000), f(4000) og f(5000), ser resultatvinduet vårt slik ut: Dette betyr at verditabellen er denne: x y Vi ser av tabellen at om vi lar x gå fra 0 til 500, må y være mellom 200 og 300. Nå velger vi Innstillinger > Grafikkfelt. For at grafen og aksene skal synes godt, lar vi området være litt større enn verditabellen tilsier: Vi setter x til å gå fra 200 til Så klikker vi på «yakse» midt i vinduet og setter y til å gå fra 450 til 350. Da ser grafen slik ut: 11

12 Dersom du vil forstørre eller forminske grafen, kan du gå på Innstillinger > Grafikkfelt igjen. Men du kan også bruke verktøyene for forstørrelse eller forminskning på verktøylinja, evt. bare dra i aksene. 3.4 Utregninger på grafen Finne y når du kjenner x Om vi skal finne funksjonsverdien av en bestemt verdi a av x, taster vi inn f(x). Eksempel: Vi lar f være f(x) = 0,001x 3 + 0,09x Vi taster inn f(1) i inntastingsfeltet. Resultatvinduet viser oss da at a = 18, altså har vi f(x) = Nullpunkter Du finner nullpunkter til en graf f ved å skrive «Nullpunkt[f]» i inntastingsfeltet. Eksempel: La f(x) = 0,5x 3 + 2x 2 + 3x 6. Vi skal finne nullpunktene. Vi taster inn funksjonsuttrykket tilpasser vinduet vårt som beskrevet i avsnitt 3.3. Så taster 12

13 vi inn «Nullpunkt[f]». Da ser resultatvinduet vårt ut slik: Dette betyr at nullpunktene har koordinater ( 2, 0), (1,27, 0) og (4,73, 0). Dersom en funksjon ikke har noe nullpunkt, vil Geogebra skrive «udefinert». Eksempel: La f(x) = x 2 5x 12. Vi skal finne funksjonens nullpunkter. Vi taster inn f(x) og skriver «Nullpunkt[f]». Resultatvinduet ser da slik ut: Dette betyr at f ikke har noen nullpunkter. Noen funksjoner har Geogebra problemer med. Eksempel: La f være funksjonen f(x) = 2,3 x 6. Vi skal finne eventuelle nullpunkter. Vi prøver å taste «Nullpunkt[f]», men får ingen respons når vi trykker linjeskift. En unøyaktig nødløsning kan da være å legge et punkt på grafen og dra punktet til det kommer til x-aksen: Velg «Nytt punkt» fra verktøylinja og klikk på grafen til f. Bytt til vanlig verktøy (flytt) og flytt punktet til det ligger omtrent på x-aksen. Koordinatene til punktet er tilnærmet koordinatene til nullpunktet. Altså har nullpunktet x 2, Finne x når du kjenner y Om vi skal finne hvilken x-verdi som svarer til en bestemt y-verdi, legger vi inn denne y-verdien som en ny funksjon g(x). Deretter finner vi skjæringspunktene med «skjæring[f,g]». Eksempel: La f være funksjonen 0,0025x 3 + 0,075x for x [0, 20]. Vi skal 13

14 finne når f(x) oppnår verdien 4,1. Da legger vi inn en ny funksjon g(x) = 4,1 og skriver inn «skjæring[f,g]». Da får vi dette: Altså ser vi at f(x) = 4,1 når x er ca. 7,4. De andre skjæringspunktene er ikke innenfor funksjonens definisjonsmengde Topp- og bunnpunkter Topp- og bunnpunkter til en funksjon f(x)finner vi ved å skrive «ekstremalpunkt[f]». Da vises ekstremalpunktene i resultatvinduet og markeres på grafen. Eksempel: La O(x) = x x Vi skal finne toppunktet. Vi skriver inn «Ekstremalpunkt[O]» og får dette: 14

15 Altså er koordinatene til toppunktet (390, ). Dersom det i tillegg er bunnpunkter på grafen, vil også disse bli merket av Skjæringspunkter mellom grafer Skjæringspunkter mellom to grafer f og g finner vi ved å skrive «skjæring[f,g]». Eksempel: Vi skal finne skjæringspunktene mellom K = 2x og I = 6x. Vi definerer K og I ved å taste K(x) = 2x og I(x) = 6x i inntastningsfeltet. Så taster vi «skjæring(k,i)». Da får vi denne: 15

16 Altså er skjæringspunktet (2000, ). 4 Lineær regresjon Regresjon i Geogebra gjøres ved at vi legger inn verditabellen i et regneark, lager en liste av tabellen og utfører regresjon på lista. Eksempel: Vi skal utføre lineær regresjon på følgende tabell. x y Først henter vi fram regnearkvinduet, nemlig Vis > Regneark. 16

17 Så legger vi inn x-verdiene og y-verdiene i regnearket. Vi markerer tabellen, høyreklikker på den og velger «Lag liste med punkter». Da viser resultatvinduet at en liste {(0, 868), (5, 735), (10, 566), 12, 548),... av punkter er opprettet under navnet «liste1». Punktene er tegnet inn i funksjonsvinduet, men vi må kanskje tilpasse vinduet for å se dem. Vi går til Innstillinger > Grafikkfelt. Der setter vi x til å gå fra 1 til 17, litt utenfor intervallet [0, 16]. Så klikker vi på «yakse» midt i vinduet og setter y til å gå fra 30 til 900, som dekker intervallet [421, 868]. Da ser vinduet slik ut: 17

18 Til slutt taster vi inn «RegLin[liste1]» i inntastingsfeltet. Da får vi tegnet inn regresjonslinja. Likningen for regresjonslinja vises i resultatvinduet. For å få den på formen y = ax + b, høyreklikker vi på likningen i resultatvinduet og velger «Likning y = ax + b»: Da ser vinduet vårt slik ut: Dette betyr at regresjonslinja er y = 27, 9x + 868, 3. 18

19 5 Sannsynlighetsregning 5.1 Simulering Kommandoen «tilfeldigmellom[p,q]» gir oss et tilfeldig tall mellom p og q. Det er mulig å bruke dette til å simulere enkle uniforme modeller. Eksempel: Vi skal simulere terningkast. Vi skriver inn «tilfeldigmellom[1,6]». Da får vi et tilfeldig tall større enn eller lik 1 og mindre enn eller lik 6. Vi taster oppoverpil og enter pånytt og får et nytt tilfeldig tall. Gjentar vi dette, får vi en simulering av en rekke med terningkast: 6 Økonomi Geogebra versjon er fortsatt ikke veldig godt egnet til arbeid med regneark. Vi anbefaler at du istedet bruker et eget program til dette. 19

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Løsninger til kapitteltesten i læreboka

Løsninger til kapitteltesten i læreboka S1 kapittel 4 Funksjoner Løsninger til kapitteltesten i læreboka 4.A a f ( ) 0,5 3 4 b Fra grafen leser vi av at nullpunktene til grafen er og 4. For å finne nullpunktene løser vi likningen f ( ) 0. 0,5

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Klarer dere disse abel-nøttene fra 2011?

Klarer dere disse abel-nøttene fra 2011? 2: Lineære funksjoner VG1-T - teoretisk retning En del av dere synes nok at innføringa i kapittel 1 er i vanskeligste laget. Trass i at vi stort sett har repetert foreløpig, ser jeg at dere merker overgangen

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Tema: Tall og algebra Kunne skrive tall på ulike måter. Skrive veldig store og små tall

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

GeoGebra 3.2. for. ungdomstrinnet

GeoGebra 3.2. for. ungdomstrinnet GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Eksempler på bruk av IKT i matematikk i videregående skole

Eksempler på bruk av IKT i matematikk i videregående skole Eksempler på bruk av IKT i matematikk i videregående skole FORORD Formålet med dette heftet er å vise noen anvendelser av digitale hjelpemidler til å løse matematikk oppgaver i videregående skole. Du kan

Detaljer

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet Skolelaboratoriet for matematikk, naturfag og teknologi Kurshefte i GeoGebra Ungdomstrinnet Astrid Johansen - NTNU Skolelaboratoriet - 29.10.2013 GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk

Detaljer

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt

Detaljer

Matematikk 1T. det digitale verktøyet. Kristen Nastad

Matematikk 1T. det digitale verktøyet. Kristen Nastad Matematikk 1T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

Undervisningsopplegg. Kapittel 2. Bokmål

Undervisningsopplegg. Kapittel 2. Bokmål Undervisningsopplegg 9 Kapittel 2 Bokmål 1 av 10 Bruk av GeoGebra i eksamensoppgaver I dette undervisningsopplegget skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner i eksamensoppgaver

Detaljer

NYE OPPGAVETYPER OG KRAV TIL FØRING

NYE OPPGAVETYPER OG KRAV TIL FØRING CAS, Graftegner og regneark på eksamen Eksamen 1P, 2P og 2P-Y 2 timer uten hjelpemidler 3 timer med hjelpemidler Noen oppgaver i del 2 kreves løst med digitale verktøy Aktuelle verktøy er graftegner og

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og Ei innføring i Calc 1 Innledning Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og noe av hva det kan brukes til. OpenOffice Calc er brukt som mønster her, men

Detaljer

Kapittel 5. Lineære funksjoner

Kapittel 5. Lineære funksjoner Kapittel 5. Lineære funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. I dette kapitlet repeterer vi stoffet om lineære funksjoner

Detaljer

Lær å bruke wxmaxima

Lær å bruke wxmaxima Bjørn Ove Thue og Sigbjørn Hals Lær å bruke wxmaxima Et godt og gratis CAS-verktøy med enkelt brukergrensesnitt. Oppdatert versjon, november 2009 Lær å bruke wxmaxima. Eksempler fra Sinus-bøkene fra Cappelen

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

IKT-basert eksamen i matematikk

IKT-basert eksamen i matematikk IKT-basert eksamen i matematikk Hvordan besvare Del 2 av eksamen i matematikk? Vi viser til beslutningen om innføring av revidert eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og

Detaljer

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene P kapittel Modellering Løsninger til innlæringsoppgavene.1 a c d e y = 4x+ 1 Stigningstallet er 4. Konstantleddet er 1. Linja skjærer altså y-aksen i punktet (0,1). y = 3x 4 Stigningstallet er 3. Konstantleddet

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer