3 Prosentregning vekstfaktor og eksponentiell vekst

Størrelse: px
Begynne med side:

Download "3 Prosentregning vekstfaktor og eksponentiell vekst"

Transkript

1 3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent. Direkte skatt utregnes ofte i prosent, og det samme gjelder merverdiavgift («moms»). I Norge er for tiden denne satsen 23 % av nettopris. Alle møter prosent ved avslag på priser. Prosent er nær knyttet til brøkregning. Prosent er ikke en benevning, slik som kroner, meter, liter osv. 20 % betyr 50 % betyr og ¼ 0,2 ð0,20þ 20 % ¼ ¼ 1 5 ¼ 0, og ¼ 0,5 ð0,50þ 50 % ¼ ¼ 1 2 ¼ 0,5 I mange sammenhenger er det lurt å gjøre om prosenttallet til desimalbrøk eller vanlig brøk, for da blir utregningen lettere % gjøres om til 1 3, 14,3 % gjøres om til 0,143 osv. Merk ellers at 0, ¼ 1 3 og 0, ¼ 2 3 (1 : 3 ¼ 0, ¼ 1 3 og 2 3 ¼ 2 : 3 ¼ 0, ) Vi skiller mellom direkte og indirekte prosentregning. Det er lettest å hanskes med direkte prosentregning. Problemene dukker opp ved indirekte prosentregning. Derfor er det viktig å ha en strategi når en skal løse oppgaver med prosentregning. 37

2 3.1 Direkte prosentregning Eksempel 1 Petter kjøpte ei skjorte som opprinnelig kostet kr 550. Han fikk 20 % rabatt (avslag) ved kjøpet. Hvor mange kroner var rabatten på? Hvor mye betalte Petter for skjorta? Selv om oppgaven synes rimelig grei, velger vi tre alternativer for å løse dette eksemplet. Det er fordi det er lurt å ha flere alternativer å spille på. Det kan også være bra å kunne regne på ulike måter hvis svaret blir det samme ved flere regnemåter, kan vi være ganske trygge på at vi har regnet riktig. Løsningsforslag Alternativ 1 Rabatt i kroner: kr ¼ kr 110 Petter betalte for skjorta: kr 550 kr 110 ¼ kr 440 Her ser vi at vi multipliserer med prosenttallet og dividerer med. kommer altså under brøkstreken. Alternativ 2 Rabatt i kroner: kr 550 0,2 ¼ kr 110 0,2 ¼ 20 ¼ 20 % Petter betalte for skjorta: kr 550 0,8 ¼ kr 440 ð0,8 ¼ 80 % Þ NB! Når vifår 20 % rabatt, betaler vi 80 % (0,8) av ordinær pris. Alternativ 3 Dette løsningsforslaget er spesielt gunstig for den som sliter med prosentregning. Ordinær pris: kr 550 % j ¼ tilsvarer Rabatt: kr x 20 % Vi setter dette opp som en proporsjon: 550 x ¼ 20 38

3 Kryssmultiplisering gir x ¼ j Vi deler på x ¼ 110 Rabatten er på kr 110. Petter betalte kr 440 for skjorta ðkr 550 kr 110Þ. 3.2 Indirekte prosentregning Eksempel 2 Kari kjøpte en sykkel på tilbud. Tilbudsprisen med 25 % rabatt var kr Hva kostet sykkelen opprinnelig? Her er problemstillingen annerledes enn i eksempel 1. Det er feil å regne ut 25 % av kr 2298 (kr 574,50) og legge summen til kr 2298 (kr 2872,50). 25 % rabatt regnes ikke av tilbudsprisen, men av ordinær pris (opprinnelig pris). Strategi Ordinær pris er alltid %. Når rabatten er 25 %, betaler vi 75 % av ordinær pris ð % 25 %Þ. 75%¼ 0,75 Løsningsforslag 1 Sykkelen kostet opprinnelig 2298 kr ¼ kr eller sykkelen kostet kr 2298 : 0,75 ¼ kr Ved å ta kr 2298 og dele på 75 finner vi hvor mange kroner 1 % svarer til. Vi multipliserer så med for å finne %. Løsningsforslag 2 Vi løser problemet ved hjelp av en likning. Opprinnelig beløp ¼ x. eller x 0,25x ¼ ,75x ¼ 2298 j : 0,75 x ¼ ; 75 x ¼

4 x x 25 ¼ 2298 j x 25x ¼ x ¼ j : 75 x ¼ 3064 Sykkelen kostet opprinnelig kr Løsningsforslag 3 Opprinnelig pris: kr x % Tilbudspris: kr % x 2298 ¼ 75 Kryssmultiplisering gir 75x ¼ 2298 j : 75 x ¼ 3064 Sykkelen kostet opprinnelig kr Eksempel 3 Rune kjøpte en lommeregner som opprinnelig kostet kr 1280, for kr Hvor mange prosent rabatt (avslag) fikk Rune? Strategi Her vet vi at % er kr Rabatten er kr 1280 kr 1088 ¼ kr 192: Løsningsforslag 1 Rabatt i prosent: eller ¼ ¼ 0,15 0,15 ¼ 15 % Hvis vi deler % på kr 1280, finner vi hvor mange prosent 1 krone er. 40

5 Når vi multipliserer dette tallet med 192, finner vi hvor mange prosent kr 192 er. Løsningsforslag 2 Løst med likning: Vi setter rabatten i prosent lik x: 1280 x ¼ 192 j 1280x ¼ j : 1280 x ¼ 15 Rune fikk 15 % rabatt på lommeregneren. Løsningsforslag 3 Opprinnelig pris: kr 1280 % Rabatt: kr 192 x % ¼ x Kryssmultiplisering gir Rune fikk 15 % avslag på kjøpet. 1280x ¼ 192 j : 1280 x ¼ 15 Det har vist seg at mange har problemer med å finne ut om skal stå over eller under brøkstreken. Det har lett for å bli «tipping» på grunn av denne usikkerheten. For de som sliter med denne type problemer, vil jeg sterkt anbefale løsningsmetode 3 av de tre eksemplene ovenfor. Det aller viktigste er at vi leser oppgaven (analyserer problemet) grundig. Vi må prøve å få de opplysningene som er gitt, ned på arket og deretter sortere opplysningene. Valg av løsningsmetode avhenger av den enkeltes kunnskaper og forutsetninger. For de som behersker likninger, vil bruk av likninger være ideelt (alltid direkte prosentregning). Husk: Det er viktig å tørre å prøve løsninger som du tror fungerer, og så sette prøve på om du har gjort det riktig. Feiler du, kan du rette opp feilen. Eksempler på direkte/indirekte prosentregning For å bekrefte at vi har forstått løsningsmetodene i de tre eksemplene ovenfor, kan vi ta for oss to eksempler til: 41

6 Eksempel 4 Prisen på en vare var kr 25 i I 1999 hadde prisen steget til kr 27. Da hadde prisen steget med 20 % fra Hva var prisendringen fra 1997 til 1998 i prosent? Løsningsforslag 1 Først må vi finne ut hva prisen var i Vi setter prisen i 1998 lik %. Da var prisen i 1999 lik 120 % ( % þ 20 %). 27 Prisen i kroner i 1998: kr ¼ kr 22, Prisendringen fra 1997 til 1998: kr 22,50 kr 25 ¼ kr 2,50 Prisen hadde altså sunket med kr 2,50. ð 2,50Þ Prisendring i prosent: ¼ Prisen på varen gikk ned med 10 % fra 1997 til (En endring kan være både en økning og en nedgang.) Løsningsforslag 2 (med likning) Vi setter prisen i 1998 lik x: x þ 0,20x ¼ 27 1,20x ¼ 27 x ¼ 22,50 eller x þ 20 x ¼ 27 j x þ 20x ¼ 27 j : 120 x ¼ 22,50 Prisnedgangen var på kr 2,50 fra 1997 til I prosent: 22,50 ¼ 0,9 ð90 %Þ 25 Det vil si at prisen var 90 % av hva den var tidligere, altså en prisnedgang på 10 %. Løsningsforslag 3 Prisen i 1998: kr x % Prisen i 1999: kr % x 27 ¼

7 Kryssmultiplisering: 120x ¼ 27 x ¼ 22,50 Det har vært en prisnedgang på kr 2,50 fra 1997 til Vi lager en ny proporsjon for å finne prisnedgangen i prosent fra 1997 til 1998: Pris 1997: kr 25 % Prisnedgang: kr 2; 50 y % 25 2; 50 ¼ y (nå regner vi y som den ukjente) Kryssmultiplisering gir 25y ¼ 2,50 y ¼ 10 Prisnedgangen fra 1997 til 1998 var på 10 %. Eksempel 5 Kursen på en aksje steg et år med 5 % fra juni til juli og med 10 % fra juli til august. Hvor mange prosent steg kursen fra juni til august dette året? Kommentar Her er det åpenbart feil å si at den totale kursstigningen var 15 %, fordi de to prosenttallene regnes av ulike tall. Vi kan bare summere (eller subtrahere) prosenttall hvis prosentgrunnlaget er det samme. Løsningsforslag 1 Vi velger å sette aksjekursen i juni lik (kroner). Kurs i juli: kr 1,05 ¼ kr 105 ð1,05 ¼ 105 %Þ Kurs i august: kr 105 1,10 ¼ kr 115,50 ð1,10 ¼ 1,1 ¼ 110 %Þ Total kursøkning: kr 115,5 kr ¼ kr 15,50 I prosent: 15; 5 ¼ 15,5 Fra juni til august steg aksjekursen med 15,5 %. 43

8 Løsningsforslag 2 (jamnfør vekstfaktor) 1,05 1,1 ¼ 1,155 ¼ 115,5 %, det vil si en økning på 15,5 %. Dette er en elegant løsning. Løsningsforslag 3 Når vi mangler et tall å ta utgangspunkt i, kan vi velge et hvilket som helst tall så lenge vi skal beregne prosentvise endringer. Her mangler vi kursen i juni, og vi setter den lik. Kurs i juni: kr % Kurs i juli: kr x 105 % ð105 % ¼ % þ 5%Þ x ¼ 105 Løsning: x ¼ 105. Kursen i juli var 105 (kroner). Kurs i juli: kr 105 % Kurs i august: kr y 110 % 105 y ¼ 110 Løsning gir y ¼ 115,5. Kursen i august var 115,50 (kroner). Kursøkning juni august: 115,50 ¼ 15,50 ðkronerþ Når vi bruker som utgangspunkt, vil en økning i kroner og prosent være det samme tallet. Kursøkningen fra juni til august var på 15,5 %. 3.3 Vekstfaktor og eksponentiell vekst Vekstfaktor er et sentralt begrep hvis en størrelse øker eller minker med en fast prosent for hver periode, for eksempel over flere år. Vi vet fra tidligere at når vi legger 5 % til et beløp (en størrelse), vil beløpet ha vokst til 105 %. 105 % er det samme som 105 ¼ 1,05. I dette tilfellet er altså vekstfaktoren lik 1,05. Generelle formler for vekstfaktorer: 44

9 1 þ p ved prosentvis økning 1 p ved prosentvis reduksjon Her står p for prosentsatsen. Eksempel 6 Mari satte inn kr på en konto i AS Bank i Hun fikk 5,5 % rente per år (p.a. = pro anno) for pengene. Hvor mye stod på kontoen i a) 1994? b) 1995? c) 1998? Løsningsforslag Her er vekstfaktoren På kontoen stod det 1 þ 5; 5 ¼ 1,055: i 1994: kr ,055 ¼ kr ,00 i 1995: kr ,055 2 ¼ kr ,25 i 1998: kr ,055 5 ¼ kr ,60 Kommentar Beløpet etter to år kunne vi ha funnet ved å ta kr ,055. Men vi vet at kr ¼ kr ,055. Dermed finner vi beløpet ved å multiplisere kr med 1,055 to ganger, det vil si kr ,055 1,055 ¼ kr ,055 2 Tilsvarende tankegang gjelder for fem år. Det er feil å regne ut renten for det første året, kr 550, multiplisere dette tallet med fem, legge det til innskuddet på kr og få kr Da får vi ikke med rentesrenteeffekten, det vil si renter på opptjente renter. År Prosent Vekstfaktor ,5 % 1, ,5 % 1, ,5 % 1, ,5 % 1, ,5 % 1,055 45

10 Eksempel 7 Kursen på en aksje var kr 180 per 31. desember I de tre første av de følgende månedene steg kursen med henholdsvis 2 %, 3 % og 2,2 %. De neste tre månedene (april, mai og juni) sank kursen med henholdsvis 0,7 %, 1,2 % og 2 %. Hva var kursen på aksjen per 30. juni 1998? Løsningsforslag Måned Prosent Vekstfaktor Januar 2,0 % 1,02 Februar 3,0 % 1,03 Mars 2,2 % 1,022 April 0,7 % 0,993 Mai 1,2 % 0,988 Juni 2,0 % 0,98 Aksjekurs 30. juni 1998: kr 180 1,02 1,03 1,022 0,993 0,988 0,98 ¼ kr 185,80 Tabellen ovenfor finner vi ved å gjøre beregningene nedenfor. For januar til mars bruker vi formelen 1 þ p (prosentøkning) og for april til juni formelen 1 p (prosentreduksjon). Januar: 1 þ 2,0 ¼ 1,02 Februar: 1 þ 3,0 ¼ 1,03 Mars: 1 þ 2,2 ¼ 1,022 April: 1 0,7 ¼ 0,993 Mai: 1 1,2 ¼ 0,988 Juni: 1 2,0 ¼ 0,98 46

11 Denne typen vekst kaller vi eksponentiell vekst. Merk at vi kan snakke om positiv og negativ vekst. Positiv vekst: prosentvis økning. Vekstfaktoren er høyere enn 1. Negativ vekst: prosentvis nedgang. Vekstfaktoren er mindre enn 1 ð0;...þ. Vekstfaktor er også greit å bruke i vanlig prosentregning. Et eksempel kan vise dette: Eksempel 8 I forbindelse med tusenårsskiftet var reiseoperatørene tidlig ute med priser for reiser til ulike reisemål. Operatørene ventet stor etterspørsel etter slike reiser. Men etterspørselen ble mye mindre enn de trodde, og de måtte tilby reisene til lavere pris. En reise til USA ble først satt ned med 15 % og deretter med 25 %, slik at endelig pris ble kr Hva var pristilbudet opprinnelig? Løsningsforslag Her regner vi med to vekstfaktorer: ¼ 0,85 og 1 ¼ 0,75 Vi setter den opprinnelige prisen lik x. x 0,85 0,75 ¼ 6375 x 0,6375 ¼ 6375 j : 0,6375 x ¼ Opprinnelig tilbød reiseoperatørene reisen for kr

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B Løsningsforslag Prøve kapittel 1-2PY, Klasse B Henrik Vikøren October 1, 201 Del 1 - Uten hjelpemiddel 30 min Oppgave 1 Regn ut: (2 2 ) 3 2 2 = 2 2 3 2 2 = 2 6 +1 = 2 3 = 8 (2 3 2 2 16a = 23 a 3 2 2 2

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 4.1 Prisindeks Prisindekser blir brukt til å måle prisutviklingen på utvalgte varer og tjenester. Vi har indekser som bl.a. måler utviklingen på eksport-/importpriser,

Detaljer

Sinus 2P > Potenser og prosenter

Sinus 2P > Potenser og prosenter 1 8 BOOK Sinus P.indb 8 Sinus P > Potenser og prosenter 01-06-17 1:7:0 Potenser og prosenter MÅL for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative

Detaljer

2 Prosent og eksponentiell vekst

2 Prosent og eksponentiell vekst 2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren

Detaljer

Sinus 1P Y > Prosentregning

Sinus 1P Y > Prosentregning 2 30 Book Sinus 1P-Y.indb 30 Sinus 1P Y > Prosentregning 2014-07-22 13:32:53 Prosentregning MÅL for opp læ rin gen er at ele ven skal kun ne regne med forholdstall, prosent, prosentpoeng og vekstfaktor

Detaljer

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125. Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logaritmer 9.1 Potenser Regneregler 2 3 ¼ 2 2 2 Vi kaller 2 3 for en potens. 2 kaller vi for potensens grunntall og 3 for eksponenten. En potens er per definisjon produktet av like store tall.

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

6.2 Eksponentiell modell

6.2 Eksponentiell modell Oppgave 6.14 Du arbeider i 7. 8. klasse og du vil bruke oppgave 6.13 til å arbeide med formalisering. Lag en oppgavetekst der du først lar eleven regne ut lønn etterhvert som du varierer antall brosjyrer.

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå? 2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst 1 Hvis 64 % av elevene på en skole får gjennomsnittskarakteren 4 på avgangsvitnemålet, og det totalt er 200 elever på skolen, hvor mange elever får da

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2%

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2% Brøk-, desimalog prosentplater = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0,0 0,0 00 =,% = : = 0,0 0,0 00

Detaljer

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 2.1 a Det er 12 gutter og 16 jenter i dansegruppen. Forholdet mellom antall gutter og antall jenter er derfor 12 12 : 4 3 16 16 : 4 4 Forholdet mellom

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka YF kapittel 4 Prosent Løsninger til oppgavene i læreoka Oppgave 401 8 a 8 % = d 35 35 % = 75 75 % = 3,5 3,5 % = Oppgave 402 3 a 0,03 = 12 0,12 = d 135 1, 35 = 3,5 0,035 = Oppgave 403 6 a 0,06 = = 6 % d

Detaljer

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka YF kapittel 5 Lønn Løsninger til oppgavene i læreoka Oppgave 501 a Hun joet tre timer mandag, fem timer onsdag og seks timer fredag. 3 + 5 + 6 14 Lisa joet 14 timer denne uka. 112 14 1568 Lisa tjente 1568

Detaljer

Matematikk 2P-Y. Hellerud videregående skole

Matematikk 2P-Y. Hellerud videregående skole Matematikk 2P-Y Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 2P-Y. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

1P kapittel 7 Økonomi

1P kapittel 7 Økonomi 1P kapittel 7 Økonomi Løsninger til oppgavene i boka 7.1 a % + 5 % 105 % 1,05. Vekstfaktoren er1, 05. b % + 15 % 115 % 1,15 Vekstfaktoren er 1,15. c % + 15,5 % 115,5 % 1,155 Vekstfaktoren er 1,155. d %

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten.

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten. 2 Forhold og prosent KATEGORI 1 2.1 Brøkdelen av et tall Oppgave 2.110 Regn ut. 1 3 av 3 b) 2 av 20 5 c) 1 6 av 24 d) 2 7 av 35 Oppgave 2.111 Regn ut. 2 3 av 450 kr b) 4 av 15 km 5 c) 3 7 av 14 kg Oppgave

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

10 Funksjoner. Men vi kan skrive dette enklere rent matematisk. Hvis vi kaller lønnen for L og antall timer for t, kan vi skrive LðtÞ ¼70 t

10 Funksjoner. Men vi kan skrive dette enklere rent matematisk. Hvis vi kaller lønnen for L og antall timer for t, kan vi skrive LðtÞ ¼70 t 10 Funksjoner En funksjon er i matematisk forstand en (entydig) sammenheng mellom to eller flere variabler. Hvis Mari, som er en skoleelev på 16 år, har en lørdagsjobb og tjener kr 70 per time, vil hennes

Detaljer

FAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5

FAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5 FAKTA Likeverdige bröker: BrÖker som har samme verdi. 2 = 2 = 6 = 8 = 0 0 utvide en brök: utvide en brök betyr Ô multiplisere teller og nevner med det samme tallet. BrÖken forandrer da ikke verdi. = 2

Detaljer

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund 15.03.04

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund 15.03.04 Opsjoner En finansiell opsjon er en type kontrakt med to parter Utstederen (the issuer eller writer) (som kan være en person eller et selskap) påtar seg en forpliktelse Opsjonen gir motparten (som blir

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer.

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer. Eksamen 02.12.2008 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Løsningsforslag MATEMATIKK 1, MX130

Løsningsforslag MATEMATIKK 1, MX130 Løsningsforslag ATEATIKK 1, X130 UTSATT EKSAEN 8. januar 2010 Oppgave 1 a) Alle flisene forutsettes å være like store. Vi tenker oss at sidekantene på flisene er 1 enhet lang og at arealet av hver flis

Detaljer

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister Eksamen Fag: VG1341 Matematikk 1MY Eksamensdato: 3. mai 2006 Felles allmenne fag Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

viktig å vite Til deg som vurderer å kjøpe en andel i borettslag med høy fellesgjeld

viktig å vite Til deg som vurderer å kjøpe en andel i borettslag med høy fellesgjeld viktig å vite Til deg som vurderer å kjøpe en andel i borettslag med høy fellesgjeld 2 Innhold Forskjell på borettslagsboliger og andre eierboliger.................... 5 Pris for boligen Fellesgjeld en

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

Lærerveiledning. Nettsiden er programmert i HTML med CSS ved hjelp av programmet Notepad2. De tilfeldige beregningene er utført med enkel JavaScript.

Lærerveiledning. Nettsiden er programmert i HTML med CSS ved hjelp av programmet Notepad2. De tilfeldige beregningene er utført med enkel JavaScript. Lærerveiledning versjon 2.0 Innhold Innhold...1 Hva er Aksjemarked?...1 Målgruppe og relevante kompetansemål...2 Hvordan legge opp en spilløkt i en matematikktime...2 Ulike måter å bruke Aksjemarked på...3

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Øvingshefte. Ligninger

Øvingshefte. Ligninger Øvingshefte Matematikk Ungdomstrinn/VGS Ligninger Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Ligninger 1 Ligninger Seksjon 1 Oppgave 1.1 Skriv tallet

Detaljer

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette:

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Forord Generelle opplysninger om eksamen i 1T I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Eksamensordning Eksamen varer fem timer og er todelt. Del 1 og del 2 av eksamensoppgaven

Detaljer

Kapittel 5. Regning med forhold

Kapittel 5. Regning med forhold Kapittel 5. Regning med forhold Forholdet mellom to tall betyr det ene tallet delt med det andre. Regning med forhold er mye brukt i praktisk matematikk. I dette kapitlet skal vi bruke forhold i blant

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 2) 0,000 642 3) 53 millioner 4) 0,034 10 2 b) Tegn av tabellen nedenfor i besvarelsen din og fyll inn det som mangler. Prosentvis

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og Ei innføring i Calc 1 Innledning Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og noe av hva det kan brukes til. OpenOffice Calc er brukt som mønster her, men

Detaljer

Matematikk 1P. Hellerud videregående skole

Matematikk 1P. Hellerud videregående skole Matematikk 1P Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 1P. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være ganske

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Unge Abel NMCC. Prosesslogg. Nord-Trøndelag, Norge 27.03.2015

Unge Abel NMCC. Prosesslogg. Nord-Trøndelag, Norge 27.03.2015 2015 Unge Abel NMCC Prosesslogg Nord-Trøndelag, Norge 27.03.2015 Innhold UngeAbel logg... 2 Faglig rapport... 5 Innledning:... 5 UngeAbel oppgave Aa... 6 GeoGebra... 8 Excel... 9 Konklusjon... 10 UngeAbel

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Løsningsforslag Oppgave 1. Regn ut. a) 3 2 + 5 (10 6) = 9 + 5 (4) = 9 + 20 = 29 b) -1 4 (-2) 3 + = -1 (-8) + 6 = 8 + 6 = 14 c)

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

For å svare på disse spørsmålene må vi undersøke hva som skjer i et marked når vi legger på en skatt (avgift) eller utbetaler en subsidie?

For å svare på disse spørsmålene må vi undersøke hva som skjer i et marked når vi legger på en skatt (avgift) eller utbetaler en subsidie? «Prisoverveltning», «Skatteoverveltning» («ta incidence») Hvor mye øker prisen på brus dersom myndighetene legger på en avgift på 5 kroner per liter? Og hvor mye reduseres forbruket? Hvor mye mer vil de

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

4 Matematikklæreren til Kirsten gir poeng og karakterer på prøver. På de tre prøvene Kirsten har hatt, har hun fått poengene 47, 32 og 38.

4 Matematikklæreren til Kirsten gir poeng og karakterer på prøver. På de tre prøvene Kirsten har hatt, har hun fått poengene 47, 32 og 38. Likninger Løs likningene nedenfor og sett prøve på dem: a) + 4 b) 7 c) 4 + d) 8 5 e) 6 + + 5 f) 5 + g) + 5 h) 7( 4) 4 (5 6) Løs disse likningene: a) ( ) + 5 b) 5 (4 ) c) ( ) ( ) d) (5 ) + ( + ) 5 + 4 e)

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål Eksamen 27.05.2008 MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: 5 timer Del

Detaljer

Beskrivelse av handel med CFD.

Beskrivelse av handel med CFD. Side 1 av 5 Beskrivelse av handel med CFD. Hva er en CFD?...2 Gearing... 3 Prising.... 4 Markeder som stiger.... 5 Markeder som faller... 5 Side 2 av 5 Hva er en CFD? CFD er en forkortelse for Contract

Detaljer

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser.

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Kast med to terninger, A er sekser på første terning og B er sekser på andre terning. Sekser på begge terningene er Fra definisjonen av betinget

Detaljer

Eksempeloppgave 2014. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 1. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 1. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 1 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Multiplikasjon og divisjon av brøk

Multiplikasjon og divisjon av brøk Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

Oppgave 6 (4 poeng) La X være utbyttet til kasinoet ved en spilleomgang. a) Forklar at. b) Skriv av og fyll ut tabellen nedenfor.

Oppgave 6 (4 poeng) La X være utbyttet til kasinoet ved en spilleomgang. a) Forklar at. b) Skriv av og fyll ut tabellen nedenfor. Oppgave 6 (4 poeng) I et terningspill på et kasino kastes to terninger. Det koster i utgangspunktet ikke noe å delta i spillet. Dersom summen av antall øyne blir 2 eller 12, får spilleren 200 kroner. Blir

Detaljer

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål Eksamen 27.05.2008 MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: 5 timer Del

Detaljer

PRODUKTKALKYLER. Turid V Tveiten - Økonomi og administrasjon VG2 10/26/2015

PRODUKTKALKYLER. Turid V Tveiten - Økonomi og administrasjon VG2 10/26/2015 PRODUKTKALKYLER Kompetansemål beregne pris på varer og tjenester til forbruker-, bedrifts- og institusjonsmarkedet, utarbeide tilbud og vurdere konsekvenser av prisendringer INNTEKTER OG PRIS Inntektene

Detaljer

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, så regner symbolsk. Det vil si at

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

1P Tall og algebra. Tall og algebra Vg1P (utdrag)

1P Tall og algebra. Tall og algebra Vg1P (utdrag) 1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste... 28 1 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Eksamen 2P, Våren 2011

Eksamen 2P, Våren 2011 Eksamen 2P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 36200 3,62

Detaljer