3 Prosentregning vekstfaktor og eksponentiell vekst

Størrelse: px
Begynne med side:

Download "3 Prosentregning vekstfaktor og eksponentiell vekst"

Transkript

1 3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent. Direkte skatt utregnes ofte i prosent, og det samme gjelder merverdiavgift («moms»). I Norge er for tiden denne satsen 23 % av nettopris. Alle møter prosent ved avslag på priser. Prosent er nær knyttet til brøkregning. Prosent er ikke en benevning, slik som kroner, meter, liter osv. 20 % betyr 50 % betyr og ¼ 0,2 ð0,20þ 20 % ¼ ¼ 1 5 ¼ 0, og ¼ 0,5 ð0,50þ 50 % ¼ ¼ 1 2 ¼ 0,5 I mange sammenhenger er det lurt å gjøre om prosenttallet til desimalbrøk eller vanlig brøk, for da blir utregningen lettere % gjøres om til 1 3, 14,3 % gjøres om til 0,143 osv. Merk ellers at 0, ¼ 1 3 og 0, ¼ 2 3 (1 : 3 ¼ 0, ¼ 1 3 og 2 3 ¼ 2 : 3 ¼ 0, ) Vi skiller mellom direkte og indirekte prosentregning. Det er lettest å hanskes med direkte prosentregning. Problemene dukker opp ved indirekte prosentregning. Derfor er det viktig å ha en strategi når en skal løse oppgaver med prosentregning. 37

2 3.1 Direkte prosentregning Eksempel 1 Petter kjøpte ei skjorte som opprinnelig kostet kr 550. Han fikk 20 % rabatt (avslag) ved kjøpet. Hvor mange kroner var rabatten på? Hvor mye betalte Petter for skjorta? Selv om oppgaven synes rimelig grei, velger vi tre alternativer for å løse dette eksemplet. Det er fordi det er lurt å ha flere alternativer å spille på. Det kan også være bra å kunne regne på ulike måter hvis svaret blir det samme ved flere regnemåter, kan vi være ganske trygge på at vi har regnet riktig. Løsningsforslag Alternativ 1 Rabatt i kroner: kr ¼ kr 110 Petter betalte for skjorta: kr 550 kr 110 ¼ kr 440 Her ser vi at vi multipliserer med prosenttallet og dividerer med. kommer altså under brøkstreken. Alternativ 2 Rabatt i kroner: kr 550 0,2 ¼ kr 110 0,2 ¼ 20 ¼ 20 % Petter betalte for skjorta: kr 550 0,8 ¼ kr 440 ð0,8 ¼ 80 % Þ NB! Når vifår 20 % rabatt, betaler vi 80 % (0,8) av ordinær pris. Alternativ 3 Dette løsningsforslaget er spesielt gunstig for den som sliter med prosentregning. Ordinær pris: kr 550 % j ¼ tilsvarer Rabatt: kr x 20 % Vi setter dette opp som en proporsjon: 550 x ¼ 20 38

3 Kryssmultiplisering gir x ¼ j Vi deler på x ¼ 110 Rabatten er på kr 110. Petter betalte kr 440 for skjorta ðkr 550 kr 110Þ. 3.2 Indirekte prosentregning Eksempel 2 Kari kjøpte en sykkel på tilbud. Tilbudsprisen med 25 % rabatt var kr Hva kostet sykkelen opprinnelig? Her er problemstillingen annerledes enn i eksempel 1. Det er feil å regne ut 25 % av kr 2298 (kr 574,50) og legge summen til kr 2298 (kr 2872,50). 25 % rabatt regnes ikke av tilbudsprisen, men av ordinær pris (opprinnelig pris). Strategi Ordinær pris er alltid %. Når rabatten er 25 %, betaler vi 75 % av ordinær pris ð % 25 %Þ. 75%¼ 0,75 Løsningsforslag 1 Sykkelen kostet opprinnelig 2298 kr ¼ kr eller sykkelen kostet kr 2298 : 0,75 ¼ kr Ved å ta kr 2298 og dele på 75 finner vi hvor mange kroner 1 % svarer til. Vi multipliserer så med for å finne %. Løsningsforslag 2 Vi løser problemet ved hjelp av en likning. Opprinnelig beløp ¼ x. eller x 0,25x ¼ ,75x ¼ 2298 j : 0,75 x ¼ ; 75 x ¼

4 x x 25 ¼ 2298 j x 25x ¼ x ¼ j : 75 x ¼ 3064 Sykkelen kostet opprinnelig kr Løsningsforslag 3 Opprinnelig pris: kr x % Tilbudspris: kr % x 2298 ¼ 75 Kryssmultiplisering gir 75x ¼ 2298 j : 75 x ¼ 3064 Sykkelen kostet opprinnelig kr Eksempel 3 Rune kjøpte en lommeregner som opprinnelig kostet kr 1280, for kr Hvor mange prosent rabatt (avslag) fikk Rune? Strategi Her vet vi at % er kr Rabatten er kr 1280 kr 1088 ¼ kr 192: Løsningsforslag 1 Rabatt i prosent: eller ¼ ¼ 0,15 0,15 ¼ 15 % Hvis vi deler % på kr 1280, finner vi hvor mange prosent 1 krone er. 40

5 Når vi multipliserer dette tallet med 192, finner vi hvor mange prosent kr 192 er. Løsningsforslag 2 Løst med likning: Vi setter rabatten i prosent lik x: 1280 x ¼ 192 j 1280x ¼ j : 1280 x ¼ 15 Rune fikk 15 % rabatt på lommeregneren. Løsningsforslag 3 Opprinnelig pris: kr 1280 % Rabatt: kr 192 x % ¼ x Kryssmultiplisering gir Rune fikk 15 % avslag på kjøpet. 1280x ¼ 192 j : 1280 x ¼ 15 Det har vist seg at mange har problemer med å finne ut om skal stå over eller under brøkstreken. Det har lett for å bli «tipping» på grunn av denne usikkerheten. For de som sliter med denne type problemer, vil jeg sterkt anbefale løsningsmetode 3 av de tre eksemplene ovenfor. Det aller viktigste er at vi leser oppgaven (analyserer problemet) grundig. Vi må prøve å få de opplysningene som er gitt, ned på arket og deretter sortere opplysningene. Valg av løsningsmetode avhenger av den enkeltes kunnskaper og forutsetninger. For de som behersker likninger, vil bruk av likninger være ideelt (alltid direkte prosentregning). Husk: Det er viktig å tørre å prøve løsninger som du tror fungerer, og så sette prøve på om du har gjort det riktig. Feiler du, kan du rette opp feilen. Eksempler på direkte/indirekte prosentregning For å bekrefte at vi har forstått løsningsmetodene i de tre eksemplene ovenfor, kan vi ta for oss to eksempler til: 41

6 Eksempel 4 Prisen på en vare var kr 25 i I 1999 hadde prisen steget til kr 27. Da hadde prisen steget med 20 % fra Hva var prisendringen fra 1997 til 1998 i prosent? Løsningsforslag 1 Først må vi finne ut hva prisen var i Vi setter prisen i 1998 lik %. Da var prisen i 1999 lik 120 % ( % þ 20 %). 27 Prisen i kroner i 1998: kr ¼ kr 22, Prisendringen fra 1997 til 1998: kr 22,50 kr 25 ¼ kr 2,50 Prisen hadde altså sunket med kr 2,50. ð 2,50Þ Prisendring i prosent: ¼ Prisen på varen gikk ned med 10 % fra 1997 til (En endring kan være både en økning og en nedgang.) Løsningsforslag 2 (med likning) Vi setter prisen i 1998 lik x: x þ 0,20x ¼ 27 1,20x ¼ 27 x ¼ 22,50 eller x þ 20 x ¼ 27 j x þ 20x ¼ 27 j : 120 x ¼ 22,50 Prisnedgangen var på kr 2,50 fra 1997 til I prosent: 22,50 ¼ 0,9 ð90 %Þ 25 Det vil si at prisen var 90 % av hva den var tidligere, altså en prisnedgang på 10 %. Løsningsforslag 3 Prisen i 1998: kr x % Prisen i 1999: kr % x 27 ¼

7 Kryssmultiplisering: 120x ¼ 27 x ¼ 22,50 Det har vært en prisnedgang på kr 2,50 fra 1997 til Vi lager en ny proporsjon for å finne prisnedgangen i prosent fra 1997 til 1998: Pris 1997: kr 25 % Prisnedgang: kr 2; 50 y % 25 2; 50 ¼ y (nå regner vi y som den ukjente) Kryssmultiplisering gir 25y ¼ 2,50 y ¼ 10 Prisnedgangen fra 1997 til 1998 var på 10 %. Eksempel 5 Kursen på en aksje steg et år med 5 % fra juni til juli og med 10 % fra juli til august. Hvor mange prosent steg kursen fra juni til august dette året? Kommentar Her er det åpenbart feil å si at den totale kursstigningen var 15 %, fordi de to prosenttallene regnes av ulike tall. Vi kan bare summere (eller subtrahere) prosenttall hvis prosentgrunnlaget er det samme. Løsningsforslag 1 Vi velger å sette aksjekursen i juni lik (kroner). Kurs i juli: kr 1,05 ¼ kr 105 ð1,05 ¼ 105 %Þ Kurs i august: kr 105 1,10 ¼ kr 115,50 ð1,10 ¼ 1,1 ¼ 110 %Þ Total kursøkning: kr 115,5 kr ¼ kr 15,50 I prosent: 15; 5 ¼ 15,5 Fra juni til august steg aksjekursen med 15,5 %. 43

8 Løsningsforslag 2 (jamnfør vekstfaktor) 1,05 1,1 ¼ 1,155 ¼ 115,5 %, det vil si en økning på 15,5 %. Dette er en elegant løsning. Løsningsforslag 3 Når vi mangler et tall å ta utgangspunkt i, kan vi velge et hvilket som helst tall så lenge vi skal beregne prosentvise endringer. Her mangler vi kursen i juni, og vi setter den lik. Kurs i juni: kr % Kurs i juli: kr x 105 % ð105 % ¼ % þ 5%Þ x ¼ 105 Løsning: x ¼ 105. Kursen i juli var 105 (kroner). Kurs i juli: kr 105 % Kurs i august: kr y 110 % 105 y ¼ 110 Løsning gir y ¼ 115,5. Kursen i august var 115,50 (kroner). Kursøkning juni august: 115,50 ¼ 15,50 ðkronerþ Når vi bruker som utgangspunkt, vil en økning i kroner og prosent være det samme tallet. Kursøkningen fra juni til august var på 15,5 %. 3.3 Vekstfaktor og eksponentiell vekst Vekstfaktor er et sentralt begrep hvis en størrelse øker eller minker med en fast prosent for hver periode, for eksempel over flere år. Vi vet fra tidligere at når vi legger 5 % til et beløp (en størrelse), vil beløpet ha vokst til 105 %. 105 % er det samme som 105 ¼ 1,05. I dette tilfellet er altså vekstfaktoren lik 1,05. Generelle formler for vekstfaktorer: 44

9 1 þ p ved prosentvis økning 1 p ved prosentvis reduksjon Her står p for prosentsatsen. Eksempel 6 Mari satte inn kr på en konto i AS Bank i Hun fikk 5,5 % rente per år (p.a. = pro anno) for pengene. Hvor mye stod på kontoen i a) 1994? b) 1995? c) 1998? Løsningsforslag Her er vekstfaktoren På kontoen stod det 1 þ 5; 5 ¼ 1,055: i 1994: kr ,055 ¼ kr ,00 i 1995: kr ,055 2 ¼ kr ,25 i 1998: kr ,055 5 ¼ kr ,60 Kommentar Beløpet etter to år kunne vi ha funnet ved å ta kr ,055. Men vi vet at kr ¼ kr ,055. Dermed finner vi beløpet ved å multiplisere kr med 1,055 to ganger, det vil si kr ,055 1,055 ¼ kr ,055 2 Tilsvarende tankegang gjelder for fem år. Det er feil å regne ut renten for det første året, kr 550, multiplisere dette tallet med fem, legge det til innskuddet på kr og få kr Da får vi ikke med rentesrenteeffekten, det vil si renter på opptjente renter. År Prosent Vekstfaktor ,5 % 1, ,5 % 1, ,5 % 1, ,5 % 1, ,5 % 1,055 45

10 Eksempel 7 Kursen på en aksje var kr 180 per 31. desember I de tre første av de følgende månedene steg kursen med henholdsvis 2 %, 3 % og 2,2 %. De neste tre månedene (april, mai og juni) sank kursen med henholdsvis 0,7 %, 1,2 % og 2 %. Hva var kursen på aksjen per 30. juni 1998? Løsningsforslag Måned Prosent Vekstfaktor Januar 2,0 % 1,02 Februar 3,0 % 1,03 Mars 2,2 % 1,022 April 0,7 % 0,993 Mai 1,2 % 0,988 Juni 2,0 % 0,98 Aksjekurs 30. juni 1998: kr 180 1,02 1,03 1,022 0,993 0,988 0,98 ¼ kr 185,80 Tabellen ovenfor finner vi ved å gjøre beregningene nedenfor. For januar til mars bruker vi formelen 1 þ p (prosentøkning) og for april til juni formelen 1 p (prosentreduksjon). Januar: 1 þ 2,0 ¼ 1,02 Februar: 1 þ 3,0 ¼ 1,03 Mars: 1 þ 2,2 ¼ 1,022 April: 1 0,7 ¼ 0,993 Mai: 1 1,2 ¼ 0,988 Juni: 1 2,0 ¼ 0,98 46

11 Denne typen vekst kaller vi eksponentiell vekst. Merk at vi kan snakke om positiv og negativ vekst. Positiv vekst: prosentvis økning. Vekstfaktoren er høyere enn 1. Negativ vekst: prosentvis nedgang. Vekstfaktoren er mindre enn 1 ð0;...þ. Vekstfaktor er også greit å bruke i vanlig prosentregning. Et eksempel kan vise dette: Eksempel 8 I forbindelse med tusenårsskiftet var reiseoperatørene tidlig ute med priser for reiser til ulike reisemål. Operatørene ventet stor etterspørsel etter slike reiser. Men etterspørselen ble mye mindre enn de trodde, og de måtte tilby reisene til lavere pris. En reise til USA ble først satt ned med 15 % og deretter med 25 %, slik at endelig pris ble kr Hva var pristilbudet opprinnelig? Løsningsforslag Her regner vi med to vekstfaktorer: ¼ 0,85 og 1 ¼ 0,75 Vi setter den opprinnelige prisen lik x. x 0,85 0,75 ¼ 6375 x 0,6375 ¼ 6375 j : 0,6375 x ¼ Opprinnelig tilbød reiseoperatørene reisen for kr

( ) ( ) Vekstfaktor. Vekstfaktor

( ) ( ) Vekstfaktor. Vekstfaktor Vekstfaktor Fagstoff Listen [1] Hvis folketallet i en by vokser med 5 % hvert år i perioden 1995 til 2015, så sier vi at folketallet har en eksponentiell vekst i disse årene. Eva setter 10 000 kroner på

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Prosent og eksponentiell vekst

Prosent og eksponentiell vekst 30 2 Prosent og eksponentiell vekst MÅL for opplæringen er at eleven skal kunne gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst 2.1 Prosentfaktorer Når vi skal regne

Detaljer

INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM PROSENT OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER 100%.

INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM PROSENT OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER 100%. 16. juni 2013 INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER %. FINNE HVOR MYE ET IL ER AV ET OPPGITT TALL... 6 NIVÅ C: PROMILLE, FINNE

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

2 Prosent og eksponentiell vekst

2 Prosent og eksponentiell vekst 2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren

Detaljer

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B Løsningsforslag Prøve kapittel 1-2PY, Klasse B Henrik Vikøren October 1, 201 Del 1 - Uten hjelpemiddel 30 min Oppgave 1 Regn ut: (2 2 ) 3 2 2 = 2 2 3 2 2 = 2 6 +1 = 2 3 = 8 (2 3 2 2 16a = 23 a 3 2 2 2

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning Mål for Kapittel 4, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125. Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 4.1 Prisindeks Prisindekser blir brukt til å måle prisutviklingen på utvalgte varer og tjenester. Vi har indekser som bl.a. måler utviklingen på eksport-/importpriser,

Detaljer

En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er 100 %

En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er 100 % En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er % = pv gv er grunnverdien ps er prosentsatsen pv er prosentverdien pv er ps prosent av gv Når vi kjenner to av de tre

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logaritmer 9.1 Potenser Regneregler 2 3 ¼ 2 2 2 Vi kaller 2 3 for en potens. 2 kaller vi for potensens grunntall og 3 for eksponenten. En potens er per definisjon produktet av like store tall.

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå? 2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

6.2 Eksponentiell modell

6.2 Eksponentiell modell Oppgave 6.14 Du arbeider i 7. 8. klasse og du vil bruke oppgave 6.13 til å arbeide med formalisering. Lag en oppgavetekst der du først lar eleven regne ut lønn etterhvert som du varierer antall brosjyrer.

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst 1 Hvis 64 % av elevene på en skole får gjennomsnittskarakteren 4 på avgangsvitnemålet, og det totalt er 200 elever på skolen, hvor mange elever får da

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 2.1 a Det er 12 gutter og 16 jenter i dansegruppen. Forholdet mellom antall gutter og antall jenter er derfor 12 12 : 4 3 16 16 : 4 4 Forholdet mellom

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2%

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2% Brøk-, desimalog prosentplater = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0,0 0,0 00 =,% = : = 0,0 0,0 00

Detaljer

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter.

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. ØKONOMIDELEN 1P KOMPETANSEMÅL: Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort og sette opp budsjett

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Løsning eksamen 2P våren 2008

Løsning eksamen 2P våren 2008 Løsning eksamen 2P våren 2008 Oppgave 1 a) En avlesing av grafen viser at utgiftene er 40 000 kr når vi produserer 50 stoler. Utgiftene per stol blir 40 000 kr 50 = 800 kr b) 2,46 10 4 = 2,46 0,0001 =

Detaljer

Sensorveiledning /løsningsforslag ECON 1310, våren 2014

Sensorveiledning /løsningsforslag ECON 1310, våren 2014 Sensorveiledning /løsningsforslag ECON 1310, våren 2014 Ved sensuren vil oppgave 1 telle 30 prosent, oppgave 2 telle 40 prosent, og oppgave 3 telle 30 prosent. Alle oppgaver skal besvares. Oppgave 1 I

Detaljer

Løsningsforslag til Eksamen 2P vår 2008

Løsningsforslag til Eksamen 2P vår 2008 Løsningsforslag til Eksamen P vår 008 Delprøve 1 OPPGAVE 1 a) Avlesning av grafen viser at 50 stoler koster 40.000 kroner. Gjennomsnittskostnaden per stol blir da: 40000 = 800 kroner. 50 b) c) = = 4,46

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU51005 og 4MX15-10E1 A Emnenavn: Matematikk 1 (5-10), emne 1 Studiepoeng: 15 Eksamensdato: 12. desember 2014 Varighet/Timer:

Detaljer

Basisoppgaver til 1P kap. 2 Økonomi

Basisoppgaver til 1P kap. 2 Økonomi Basisoppgaver til 1P kap. 2 Økonomi 2.1 Forhold 2.2 Prosentregning 2.3 Prisindeks 2.4 Konsumprisindeks. Reallønn 2.5 Lønnsutregning 2.6 Skattetrekk. Ferielønn 2.8 Utregning av skatt (2.7 og 2.9 har ikke

Detaljer

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter.

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. ØKONOMIDELEN 1P KOMPETANSEMÅL: Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort og sette opp budsjett

Detaljer

Diofantiske likninger Peer Andersen

Diofantiske likninger Peer Andersen Diofantiske likninger av Peer Andersen Peer Andersen 2013 Innhold Når en diofantisk likning har løsning... 3 Generell løsning av den diofantiske likningen... 4 Løsningsmetode når vi kjenner en spesiell

Detaljer

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten.

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten. 2 Forhold og prosent KATEGORI 1 2.1 Brøkdelen av et tall Oppgave 2.110 Regn ut. 1 3 av 3 b) 2 av 20 5 c) 1 6 av 24 d) 2 7 av 35 Oppgave 2.111 Regn ut. 2 3 av 450 kr b) 4 av 15 km 5 c) 3 7 av 14 kg Oppgave

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente av Peer Andersen Peer Andersen 2014 TO LIKNINGER MED TO UKJENTE I dette lille notatet skal vi se på hvordan vi kan bruke addisjonsmetoden og innsettingsmetoden for å løse to

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer.

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer. Eksamen 02.12.2008 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka YF kapittel 4 Prosent Løsninger til oppgavene i læreoka Oppgave 401 8 a 8 % = d 35 35 % = 75 75 % = 3,5 3,5 % = Oppgave 402 3 a 0,03 = 12 0,12 = d 135 1, 35 = 3,5 0,035 = Oppgave 403 6 a 0,06 = = 6 % d

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

1P kapittel 7 Økonomi

1P kapittel 7 Økonomi 1P kapittel 7 Økonomi Løsninger til oppgavene i boka 7.1 a % + 5 % 105 % 1,05. Vekstfaktoren er1, 05. b % + 15 % 115 % 1,15 Vekstfaktoren er 1,15. c % + 15,5 % 115,5 % 1,155 Vekstfaktoren er 1,155. d %

Detaljer

Løsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6 Tall og algera Del Løsningsforslag til del av oppgavesettet Tall og algera i Sirkel oppgaveok 10B, kapittel 6 Oppgave.1 a En pakke skinke holder til åtte horn. Sju pakker holder til 56 horn, og åtte pakker

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund 15.03.04

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund 15.03.04 Opsjoner En finansiell opsjon er en type kontrakt med to parter Utstederen (the issuer eller writer) (som kan være en person eller et selskap) påtar seg en forpliktelse Opsjonen gir motparten (som blir

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Matematikkkurs M0 Oppgaver

Matematikkkurs M0 Oppgaver Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

DEN LILLE KALKULATOREN

DEN LILLE KALKULATOREN DEN LILLE KALKULATOREN ELLER KANSKJE DEN LILLE MED DE MANGE MULIGHETER (Det er ikke størrelsen det kommer an på men hvordan den blir brukt) Bjørn Bjørneng Forord: Dette ideheftet tar for seg den enkle

Detaljer

Kapittel 26 PRISKALKULASJON

Kapittel 26 PRISKALKULASJON Bidragsmetoden Det vi betaler. + Dekningsbidrag Salgspris uten merverdiavgift + Merverdiavgift Salgspris med merverdiavgift Det vi tror kunden er villig til å betale. Kjøpmannen får beholde x kroner. Salgspris

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Løsningsforslag Oppgave 1. Regn ut. a) 3 2 + 5 (10 6) = 9 + 5 (4) = 9 + 20 = 29 b) -1 4 (-2) 3 + = -1 (-8) + 6 = 8 + 6 = 14 c)

Detaljer

Økonomiblekke for lokallag i PRESS

Økonomiblekke for lokallag i PRESS Økonomiblekke for lokallag i PRESS Formålet med denne blekka er å gi leseren litt informasjon om hvordan lokallag i PRESS kan styre sin økonomi på en god måte. Her kan du blant annet lære deg hva alle

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15

Detaljer

Matematikk 2P-Y. Hellerud videregående skole

Matematikk 2P-Y. Hellerud videregående skole Matematikk 2P-Y Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 2P-Y. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være

Detaljer

DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans?

DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans? SETT 12 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilket av følgende tall er delelig med 9? A) 309 B) 456 C) 696 D) 783 E) 939 2. To esker inneholder to røde og to hvite kuler hver. Vi tar en tilfeldig

Detaljer

FAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5

FAKTA. Likeverdige bröker: BrÖker som har samme verdi. 1 2 = 2 4 = 3 6 = 4 8 = 5 FAKTA Likeverdige bröker: BrÖker som har samme verdi. 2 = 2 = 6 = 8 = 0 0 utvide en brök: utvide en brök betyr Ô multiplisere teller og nevner med det samme tallet. BrÖken forandrer da ikke verdi. = 2

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

10 Funksjoner. Men vi kan skrive dette enklere rent matematisk. Hvis vi kaller lønnen for L og antall timer for t, kan vi skrive LðtÞ ¼70 t

10 Funksjoner. Men vi kan skrive dette enklere rent matematisk. Hvis vi kaller lønnen for L og antall timer for t, kan vi skrive LðtÞ ¼70 t 10 Funksjoner En funksjon er i matematisk forstand en (entydig) sammenheng mellom to eller flere variabler. Hvis Mari, som er en skoleelev på 16 år, har en lørdagsjobb og tjener kr 70 per time, vil hennes

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Beskrivelse av handel med CFD.

Beskrivelse av handel med CFD. Side 1 av 5 Beskrivelse av handel med CFD. Hva er en CFD?...2 Gearing... 3 Prising.... 4 Markeder som stiger.... 5 Markeder som faller... 5 Side 2 av 5 Hva er en CFD? CFD er en forkortelse for Contract

Detaljer

Øvingshefte. Ligninger

Øvingshefte. Ligninger Øvingshefte Matematikk Ungdomstrinn/VGS Ligninger Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Ligninger 1 Ligninger Seksjon 1 Oppgave 1.1 Skriv tallet

Detaljer

Fagdag 1 - S2. Kommentarer og oppsummering. Oppgave 1 - Tre grunnleggende aritmetiske følger og rekker

Fagdag 1 - S2. Kommentarer og oppsummering. Oppgave 1 - Tre grunnleggende aritmetiske følger og rekker Fagdag - S Kommentarer og oppsummering Oppgave - Tre grunnleggende aritmetiske følger og rekker De naturlige tallene: Det n-te leddet er rett og slett det samme som nummeret (indeksen) i rekken: (Kunne

Detaljer

Oppgave 6 (4 poeng) La X være utbyttet til kasinoet ved en spilleomgang. a) Forklar at. b) Skriv av og fyll ut tabellen nedenfor.

Oppgave 6 (4 poeng) La X være utbyttet til kasinoet ved en spilleomgang. a) Forklar at. b) Skriv av og fyll ut tabellen nedenfor. Oppgave 6 (4 poeng) I et terningspill på et kasino kastes to terninger. Det koster i utgangspunktet ikke noe å delta i spillet. Dersom summen av antall øyne blir 2 eller 12, får spilleren 200 kroner. Blir

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Formler, likninger og ulikheter

Formler, likninger og ulikheter 58 3 Formler, likninger og ulikheter Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Fakultet for estetiske fag, folkekultur og lærerutdanning Eksamen i matematikk 102 - løsningsforslag BOKMÅL Emnekode: MAT102 Ordinær prøve Tid: 5 timer Dato: 1.6.2015 Hjelpemidler: Kalkulator, linjal,

Detaljer

Hellerud videregående skole

Hellerud videregående skole Matematikk 2P Hellerud videregående skole Rektangel Trekant Parallellogram Trapes Noen formler det er lurt å kunne... A = g h A = g h 2 A = g h (a + b) h A = 2 Sirkel A = π r 2 Prisme Sylinder Pytagoras

Detaljer

Faktorisering og multiplisering med konjugatsetningen

Faktorisering og multiplisering med konjugatsetningen Faktorisering og multiplisering med konjugatsetningen De følgende oppgavene er øvinger i faktorisering og multiplisering ved hjelp av konjugatsetningen /3. kvadratsetning. Gjennom oppgavene gir vi elevene

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning.

Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. Mattelekse uke 39 A Tema: Addisjon av positive tall + repetisjon Vis hvordan du kommer frem til svarene dine. Husk utregning, benevning og svarsetning. 1. Lovise kjøpte sykkel til 2798kr, hjelm til 389kr

Detaljer

Nåverdi og pengenes tidsverdi

Nåverdi og pengenes tidsverdi Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2015 Versjon 2.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka YF kapittel 5 Lønn Løsninger til oppgavene i læreoka Oppgave 501 a Hun joet tre timer mandag, fem timer onsdag og seks timer fredag. 3 + 5 + 6 14 Lisa joet 14 timer denne uka. 112 14 1568 Lisa tjente 1568

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Terminprøve i matematikk for 9. trinnet

Terminprøve i matematikk for 9. trinnet Terminprøve i matematikk for 9. trinnet Hausten 2005 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Delprøve 1 Maks. poengsum:

Detaljer

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister Eksamen Fag: VG1341 Matematikk 1MY Eksamensdato: 3. mai 2006 Felles allmenne fag Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer