4 Prisindeks. Nominell lønn. Reallønn
|
|
- Håvar Ingvaldsen
- 2 år siden
- Visninger:
Transkript
1 4 Prisindeks. Nominell lønn. Reallønn 4.1 Prisindeks Prisindekser blir brukt til å måle prisutviklingen på utvalgte varer og tjenester. Vi har indekser som bl.a. måler utviklingen på eksport-/importpriser, engrospriser og forbrukspriser (konsumpriser). Den prisindeksen som er mest kjent for allmennheten, er konsumprisindeksen, som skal måle den gjennomsnittlige prisendringen (-stigningen) på forbruksgoder. Denne indeksen er svært sentral i lønns- og inntektsoppgjør, som vi senere skal se. Ved beregning av en prisindeks har vi en fast «handlekurv», dvs. en «kurv» som inneholder bestemte mengder av de varer og tjenester som befolkningen bruker. La oss vise dette ved et eksempel: En handlekurv inneholder enheter av vare A 200 enheter av vare B 150 enheter av vare C Prisen per enhet for de tre varene er henholdsvis kr 10, kr 4 og kr 6. Handlekurven koster kr 10 þ kr þ kr ¼ kr 2700 Vi kjøper den samme handlekurven en måned senere i samme butikk. Da er prisene på de samme varene henholdsvis kr 12, kr 4 og kr 5,40. Den samme handlekurven koster nå kr 12 þ kr þ kr 5, ¼ kr
2 MATEMATIKK: 4 Prisindeks. Nominell lønn. Reallønn Her ser vi at handlekurven har blitt dyrere. Fordi mengdene er uendret, betyr det at det er den gjennomsnittlige prisen på varene som har steget. Handlekurven har steget kr 110 i verdi. Dette tilsvarer en prosentvis økning på 4, I Norge er det Statistisk sentralbyrå (SSB) som har ansvaret for beregningen av konsumprisindeksen. SSB foretar «forbruksundersøkelser» for å finne ut hvilke varer og tjenester vi bruker mest av. Ikke absolutt alle varetyper er med, men et bestemt varemerke kan representere tilsvarende merker. F.eks. kan Coca Cola representere varegruppen «mineralvann», Pampers kan representere varegruppen «bleier», osv. Derfor snakker vi om «representantvarer» ved oppbyggingen av KPI (konsumprisindeksen). Store forbruksundersøkelser danner grunnlaget for et nytt basisår. Et basisår eretår vi sammenlikner tall i forhold til. I dag foretar SSB mindre, men årlige forbruksundersøkelser. Handlekurven i basisåret settes lik. Dette tallet er et ubenevnt tall. Men som vi senere skal se, bruker vi ofte poeng for å unngå misforståelser. er et tall som det er lett å arbeide ut fra. Ivårt eksempel settes verdien på kr 2700 lik (poeng), fordi det er verdien vi tar utgangspunkt i (basisåret). For å beregne indeksene i beregningsårene kan vi bruke proporsjoner. I vårt eksempel blir det ¼ x 2700 x ¼ x ¼ ¼ 104, Indeksen vår ble 104,1 (poeng) i beregningsåret. Indeksen har altså økt med 4,1 (poeng) i forhold til basisåret, og dette utgjør også en økning på 4,1 % ( poeng %, 4,1 poeng x %). De enkelte varene er tillagt en vekt etter deres betydning på KPI. I vårt eksempel er vekten av de tre varene i basisåret henholdsvis: 0 vare A: ¼ 0,37 ¼ 37 % (kr 0 er utgiften på A) vare B: ¼ 0; 30 ¼ 30 % (kr 800 brukes på B) vare C: ¼ 0,33 ¼ 33 % (kr 900 brukes på C) 2700 For vare A innebærer dette at KPI vil øke med 3,7 % ved en 10 % økning i pris. 49
3 Ivårt eksempel har prisen på vare A økt med 20 %, prisen på vare C har gått ned med 10 % og prisen på vare B er uendret. Vi kan regne ut den prosentvise endringen på KPI på følgende måte: 37 % 0,20 þ 33 % ð 0,10Þ ¼7,4 % 3,3 % ¼ 4,1 % Vi tar vekten av de enkelte varene, multipliserer med den prosentvise prisendringen og summerer tallene. Da får vi den prosentvise endringen i KPI. Vi bruker KPI til å måle prisstigningen i et land. En generell prisstigning kaller vi for inflasjon. En inflasjon forteller oss hvor mye mer de enkelte varer i gjennomsnitt koster, ikke nødvendigvis at alle prisene har steget. Basisåret for konsumprisindeksen som brukes for tiden, er 1998, dvs. gjennomsnittsprisene for dette året settes lik. Før dette var 1979 basisåret. En «handlekurv» som kostet kr i juni 1998, kostet kr 50 i april/ mai Dette betyr at de gjennomsnittlige forbruksprisene steg med % på ca. 16 år. Vi sier da at prisnivået har fordoblet seg. Tabell over utviklingen av KPI (1998 = ) År Konsumprisindeks , , , , , , , , , , , ,8 1998, , ,1 For 2000 gjelder indekstallet for januar måned, for de andre årene er det et gjennomsnittstall for hele året. 50
4 MATEMATIKK: 4 Prisindeks. Nominell lønn. Reallønn 4.2 Endring av indeks i prosent. Pengeverdi Av tabellen over utviklingen av KPI på forrige side ser vi at KPI har steget med 2,3 fra 1998 til 1999 (fra til 102,3). I prosent utgjør dette også 2,3. Fra 1990 til 1998 har indeksen steget med 16,3 (,0 83,7). Men stigningen i prosent er ikke 16,3. Når vi skal regne ut i prosent, kan vi sette opp følgende: % 83,7 ðpoengþ x % 16,3 ðpoengþ x ¼ 83,7 16,3 16,3 x ¼ 83,7 x ¼ 19,5 % Her ser vi at det er forskjell på selve indeksøkningen og økningen i prosent. For å unngå slike misforståelser blir indeksene angitt i poeng. Vi kan kort si: Indeksøkning (i poeng) og prosentøkning er det samme tallet i forhold til basisåret, men når vi sammenlikner med et annet år enn basisåret, er tallverdien ulik. Vi har da forutsatt at bare basisåret har en indeks på. Av tabellen på forrige side ser vi at KPI i 1954 var på 10,0 (poeng). Det betyr at en handlekurv som kostet kr 10 i 1954 ville koste kr i 1998, dvs. ti ganger så mye. Dette utgjør en prisstigning på 900 %. Man kan også si at pengeverdien (kroneverdien) har falt. I dette tilfellet har pengeverdien falt med 90 %. En flaske brus som kostet kr 15 i 1998, ville koste kr 1,50 i 1954, hvis prisutviklingen på brus var den samme som utviklingen av KPI. Eksempelvis vil en dobling av prisnivået halvere pengeverdien. Vi har følgende formel for pengeverdi: P 1 I 1 ¼ P 2 I 2 51
5 P 1 og P 2 er pengeverdiene i år 1 og 2, og I 1 og I 2 er konsumprisindeksen i de samme årene. Likningen kan skrives slik: P 1 P 2 ¼ I 2 I 1 Eksempel 1 Ifølge tabellen var konsumprisindeksen for 1980 og 1999 på henholdsvis 40,2 og 102,3 (poeng). Beregn 1) hvor mye indeksen steg i poeng. 2) hvor mange prosent indeksen/prisene steg. 3) nedgangen i pengeverdien. Løsningsforslag 1) Indeksøkning: ð102,3 40,2Þ poeng ¼ 62,1 poeng 62,1 2) Prisstigning i prosent: ¼ 154,5 40,2 3) Vi setter pengeverdien i 1980, P 1, lik. Pengeverdien i 1999, P 2, setter vi lik x. Vi bruker formelen x ¼ 102,3 40,2 x ¼ 39,3 Pengeverdien har falt med 60,7 poeng ð 39,3Þ, og dette er det samme som en prosentvis nedgang på 60,7 %. Hvorfor? 4.3 Nominell lønn. Reallønn Når vi snakker om lønn, tenker vi på årslønn, månedslønn, timelønn, osv. Denne type lønn kaller vi for nominell lønn dvs. all lønn målt i kroner og øre. Begrepet nominell lønn er innført for å skille «vanlig» lønn fra et begrep som forteller noe om vår kjøpekraft reallønn. Målingen av reallønn står svært sentralt ved lønns- og inntektsoppgjør. Det er greit nok å få høyere lønn, men hvis den økte lønnen ikke dekker økningen i forbruksprisene (målt ved KPI), vil lønnsmottakerne være misfornøyd med oppgjøret. 52
6 MATEMATIKK: 4 Prisindeks. Nominell lønn. Reallønn Eksempel 2 Eva hadde i 1997 en årslønn på kr og i 1998 en lønn på kr Hvilket år hadde hun mest å rutte med? Konsumprisindeksen var på 97,8 og,0 de to årene (se tabell). Løsningsforslag 1) Lønnsøkning i kroner: kr kr ¼ kr Lønnsøkning i prosent: ¼ 2 Indeksøkning (i poeng): 97,8 ¼ 2,2 2; 2 Prisstigning i prosent: ¼ 2; 25 97; 8 Her ser vi at lønnsøkningen i prosent er lavere enn prisstigningen i prosent, dvs. at Eva hadde mer å rutte med i ) Vi regner ut hvilken lønn Eva burde ha hatt i 1998 for å dekke prisstigningen: kr ,025 ¼ kr ð1,025 : vekstfaktorþ I 1998 fikk altså Eva kr 0 for lite for å kunne opprettholde kjøpekraften. 3) Vi regner ut reallønnen for de to årene. Ved beregning av reallønn tar vi hensyn til prisendringen. Det vanlige er å regne om de nominelle lønnene til basisåret, dvs. hva de enkelte lønnene tilsvarer i basisåret. NL Formel: reallønn ¼ KPI NL: nominell lønn KPI: prisindeks : basisåret Reallønn 1997: kr ,8 ¼ kr kr Reallønn 1998: ¼ kr Reallønnen eller kjøpekraften har gått ned fra 1997 til
7 Vi kan også definere reallønn som nominell lønn omregnet til basisårets lønn, dvs. hva tilsvarende lønn ville ha vært i basisåret. Reallønn er lønn målt i varer og tjenester, dvs. hvor mye varer/tjenester vi får kjøpt for lønnen. Eksempel 3 En person som i 1995 hadde kr i lønn, fikk i 1996 en økning i reallønnen på 3,2 %. Hvilken lønn hadde personen i 1996? I følge tabellen var KPI henholdsvis 94,2 og 95,3 de to årene. Løsningsforslag Reallønn 1995: kr ,2 ¼ kr ð ,51Þ Reallønn 1996: kr ,032 ¼ kr Vi setter inn i formelen for reallønn: ¼ x 95,3 x: Personens årslønn i 1996 x ¼ (avrundet) Den nominelle årslønnen til denne personen var i 1996 kr Legg merke til følgende: Årslønnen på kr i 1995 tilsvarer en lønn på kr i basisåret (1998). Tilsvarende vil årslønnen på kr i 1996 være det samme som kr i basisåret. Økningen i lønn i basisårene er på kr kr ¼ kr 6454 dvs. 3,2 %: kr 6454 kr ¼ 3,2 % som er det samme som reallønnsøkningen. 4.4 Bytte av basisår. Indeksserie Ovenfor har vi brukt 1998 som basisår. Men det er ingen ting i veien for å bruke et annet år som basis. Hvilket år en skal velge som basisår, kan være noe tilfeldig, men man prøver å finne et «hensiktsmessig» år. 54
8 MATEMATIKK: 4 Prisindeks. Nominell lønn. Reallønn La oss regne om indeksene ovenfor med 1990 som basisår: År Konsumprisindeks Ny konsumprisindeks ,0 11, ,6 13, ,9 21, ,2 48, ,7, ,6 103, , , ,9 109, , , ,8 1998,0 119, , ,1 124,4 ) Ny indeks 1954: x (1990 = ) ) Ny indeks 1960: y 10,0 x ¼ 83,7 x ¼ 10,0 83,7 ¼ 11,9 11,6 y ¼ 83,7 11,6 y ¼ ¼ 13,9 83,7 Det vil bli noe tungvint å lage proporsjoner for å finne alle indeksene. Men som vi ser av de to uttrykkene ovenfor, inneholder begge og 83,7. Disse tallene er fra det nye basisåret. Det vi gjør, er at vi setter opp én proporsjon og bytter ut tallene for de enkelte år (fyll ut for de gjenstående år). 55
9 Indeksserie for bensin, blyfri, 95-oktan, 1990 februar 2000 (1990 = ) Indeks 1994: x År Pris Indeks ,96, ,63 128, ,10 135, ,25 138, ,90 149, ,91 149, ,23 154, ,03 168,3 7,63 x ¼ 5,96 7,63 x ¼ ¼ 128,0 5,96 For årene bytter vi suksessivt ut tallet 7,63 med 8,10, 8,25, 8,90, osv. (jamnfør og ). Prisene for 1999 og februar 2000 kan variere fra sted til sted på grunn av priskrig, transportkostnader osv. 56
4 Prisindeks. Nominell lønn. Reallønn
4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989
Basisoppgaver til 1P kap. 2 Økonomi
Basisoppgaver til 1P kap. 2 Økonomi 2.1 Forhold 2.2 Prosentregning 2.3 Prisindeks 2.4 Konsumprisindeks. Reallønn 2.5 Lønnsutregning 2.6 Skattetrekk. Ferielønn 2.8 Utregning av skatt (2.7 og 2.9 har ikke
YF kapittel 5 Lønn Løsninger til oppgavene i læreboka
YF kapittel 5 Lønn Løsninger til oppgavene i læreoka Oppgave 501 a Hun joet tre timer mandag, fem timer onsdag og seks timer fredag. 3 + 5 + 6 14 Lisa joet 14 timer denne uka. 112 14 1568 Lisa tjente 1568
Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter.
ØKONOMIDELEN 1P KOMPETANSEMÅL: Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort og sette opp budsjett
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til
Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter.
ØKONOMIDELEN 1P KOMPETANSEMÅL: Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort og sette opp budsjett
Forventninger om høyere prisvekst neste 12 måneder
Forventningsundersøkelsen 2. kvartal 2006: Forventninger om høyere prisvekst neste 12 måneder TNS Gallups Forventningsundersøkelse for 2. kvartal 2006 viser at det nå ventes høyere prisvekst neste 12 måneder
Forventningene om prisvekst neste 12 måneder er blitt lavere
Forventningsundersøkelsen 1. kvartal 2006: Forventningene om prisvekst neste 12 måneder er blitt lavere TNS Gallups Forventningsundersøkelse for 1. kvartal 2006 viser at forventningene til prisveksten
Forventningsundersøkelsen 2. kvartal 2007:
Forventningsundersøkelsen 2. kvartal 2007: Forventninger om lavere prisvekst og høyere lønnsvekst blant partene i arbeidslivet TNS Gallups Forventningsundersøkelse for 2. kvartal 2007 viser at det nå ventes
3 Prosentregning vekstfaktor og eksponentiell vekst
3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent.
Kapittel 5. Regning med forhold
Kapittel 5. Regning med forhold Forholdet mellom to tall betyr det ene tallet delt med det andre. Regning med forhold er mye brukt i praktisk matematikk. I dette kapitlet skal vi bruke forhold i blant
Bedre lønnsomhet og flere ansatte i næringslivet
Forventningsundersøkelsen 4.kvartal 2004: Bedre lønnsomhet og flere ansatte i næringslivet TNS Gallups Forventningsundersøkelse viser i 4. kvartal at norske bedriftsledere oppfatter lønnsomheten i egen
Forventning om økt prisvekst neste 12 måneder
Forventningsundersøkelsen 4. kvartal 2005: Forventning om økt prisvekst neste 12 måneder TNS Gallups Forventningsundersøkelse for 4. kvartal viser at det ventes økt prisvekst neste 12 måneder. Økonomenes
Forventning om bedre lønnsomhet og flere ansatte i næringslivet
Forventningsundersøkelsen 3. kvartal 2005: Forventning om bedre lønnsomhet og flere ansatte i næringslivet TNS Gallups Forventningsundersøkelse viser i 3. kvartal at norske bedriftsledere fortsatt oppfatter
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen
Forventning om renteøkning og høyere priser blant husholdningene
Forventningsundersøkelsen 2. kvartal 2005: Forventning om renteøkning og høyere priser blant husholdningene TNS Gallups Forventningsundersøkelse viser at andelen husholdninger i 2. kvartal som forventer
Forventningsundersøkelser for Norges Bank
Forventningsundersøkelser for Norges Bank Undersøkelser blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 1. kvartal 2013 28.02.2013 Forord Opinion Perduco utfører på oppdrag
1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene
1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 2.1 a Det er 12 gutter og 16 jenter i dansegruppen. Forholdet mellom antall gutter og antall jenter er derfor 12 12 : 4 3 16 16 : 4 4 Forholdet mellom
Forventningsundersøkelser for Norges Bank
Forventningsundersøkelser for Norges Bank Undersøkelser blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 02.06.2009 Forord Perduco utfører på oppdrag fra Norges Bank kvartalsvise
Om grunnlaget for inntektsoppgjørene 2015. Foreløpig rapport fra TBU, 16. februar 2015
Om grunnlaget for inntektsoppgjørene 2015 Foreløpig rapport fra TBU, 16. februar 2015 Innholdet i TBU-rapportene Hovedtema i den foreløpige rapporten Lønnsutviklingen i 2014 Prisutviklingen inkl. KPI-anslag
4. kvartal 2014 28.11.2014
4. kvartal 2014 28.11.2014 Forord Opinion utfører på oppdrag fra Norges Bank kvartalsvise forventningsundersøkelser i Norge om inflasjons-, lønns-, valutakurs- og renteutviklingen blant økonomer i finansnæringen
1P kapittel 7 Økonomi
1P kapittel 7 Økonomi Løsninger til oppgavene i boka 7.1 a % + 5 % 105 % 1,05. Vekstfaktoren er1, 05. b % + 15 % 115 % 1,15 Vekstfaktoren er 1,15. c % + 15,5 % 115,5 % 1,155 Vekstfaktoren er 1,155. d %
3. kvartal 2014 29.08.2014
3. kvartal 2014 29.08.2014 Forord Opinion utfører på oppdrag fra Norges Bank kvartalsvise forventningsundersøkelser i Norge om inflasjons-, lønns-, valutakurs- og renteutviklingen blant økonomer i finansnæringen
Forventningsundersøkelsen 1.kvartal 2003
Forventningsundersøkelsen 1.kvartal 2003 Forventning om lavere lønnsvekst og økt lønnsomhet i bedriftene Bedriftslederne, som deltar i Norsk Gallups forventningsundersøkelse, forventer en lønnsvekst i
Forventningsundersøkelsen 2.kvartal 2003
Forventningsundersøkelsen 2.kvartal 2003 Svekket optimisme blant næringslivsledere Flere av næringslivslederne, som deltar i Norsk Gallups Forventningsundersøkelse for Norges Bank, oppgir at lønnsomheten
Grunnlaget for inntektsoppgjørene Foreløpig rapport fra TBU, 20. februar 2017
Grunnlaget for inntektsoppgjørene 2017 Foreløpig rapport fra TBU, 20. februar 2017 Innholdet i TBU-rapportene Hovedtema i den foreløpige rapporten Lønnsutviklingen i 2016. Nytt datagrunnlag (a-ordningen)
Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.
Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen
Forventningsundersøkelser for Norges Bank
Forventningsundersøkelser for Norges Bank Undersøkelser blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 1. kvartal 2010 08.03.2010 Forord Perduco utfører på oppdrag fra
Grunnlaget for inntektsoppgjørene Foreløpig rapport fra TBU, 17. februar 2014
Grunnlaget for inntektsoppgjørene 2014 Foreløpig rapport fra TBU, 17. februar 2014 Innholdet i TBU-rapportene Hovedpunkter i den foreløpige rapporten Lønnsutviklingen i 2013 Prisutviklingen inkl. KPI-anslag
Til diskusjon/øving 2 (del 1): Inflasjon og prisnivå, kjøpekraft
Til diskusjon/øving 2 (del 1): Inflasjon og prisnivå, kjøpekraft Formål forstå virkningene av inflasjon i økonomien Må huske: inflasjon, prisnivå, kjøpekraft, nominelt / reelt BNP Eirik Romstad Handelshøgskolen
Forventningsundersøkelsen 3.kvartal 2003:
Forventningsundersøkelsen 3.kvartal 2003: Bedre tider i næringslivet og forventninger om økt sysselsetting Et flertall av næringslivslederne som deltar i TNS Gallups Forventningsundersøkelse for Norges
Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Basisoppgaver til Tall i arbeid P
Basisoppgaver til Tall i arbeid P 1 Tall og algebra Økonomi Geometri Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra 1.1 Regning med hele tall 1. Brøk 1. Store og små tall 1.4 Bokstavuttrykk
Forventningsundersøkelsen 4.kvartal 2003:
Forventningsundersøkelsen 4.kvartal 2003: Næringslivslederne tror på høyere prisvekst Næringslivslederne som deltar i TNS Gallups Forventningsundersøkelse for Norges Bank, oppjusterer i 4. kvartal sine
Forventningsundersøkelser for Norges Bank
Forventningsundersøkelser for Norges Bank Undersøkelser blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 11.03.2009 Forord Perduco utfører på oppdrag fra Norges Bank kvartalsvise
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 2.KVARTAL 2015
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 2.KVARTAL 2015 Undersøkelse blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 28.05.2015 FORORD På oppdrag for Norges Bank utfører
MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.
MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 2 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag
1P eksamen våren 2016
1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 4.KVARTAL 2015
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 4.KVARTAL 2015 Undersøkelse blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 26.11.2015 FORORD På oppdrag for Norges Bank utfører
c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time.
c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time. 1) Hvor mange prosent steg lønnen? Konsumprisindeksen (KPI) var 100 det året Grete tjente 160 kroner per time. 2)
Om grunnlaget for inntektsoppgjørene Foreløpig rapport fra TBU, 18. februar 2013
Om grunnlaget for inntektsoppgjørene 2013 Foreløpig rapport fra TBU, 18. februar 2013 Innholdet i TBU-rapportene Hovedpunkter i den foreløpige rapporten Lønnsutviklingen i 2012 Prisutviklingen inkl. KPI-anslag
Prosent og eksponentiell vekst
30 2 Prosent og eksponentiell vekst MÅL for opplæringen er at eleven skal kunne gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst 2.1 Prosentfaktorer Når vi skal regne
Tariffestet pensjonsordning som gir arbeidstakere rett til å fratre med tjenestepensjon fra tidligst fylte 62 år.
Tariffordboken Avtalefestet pensjon (AFP) Tariffestet pensjonsordning som gir arbeidstakere rett til å fratre med tjenestepensjon fra tidligst fylte 62 år. Datotillegg Brukes for å markere at et lønnstillegg
NR. 05/2014. for OPAK AS. Oslo, 11.08.14. Øystein Dieseth Avd.leder Eiendomsrådgiving. Side 1/8 3968.1
3968.1 Side 1/8 NR. 05/2014 I følge OPAKs boligundersøkelse i mai har nominell prisoppgang det siste året vært fra 1 til 6 prosent. Selveierleiligheter har som eneste prissegment hatt prisnedgang. Meglerbransjens
Oppgaven skulle løses på 2 sider, men for at forklaringene mine skal bli forståelige blir omfanget litt større.
HANDELSHØYSKOLEN BI MAN 2832 2835 Anvendt økonomi og ledelse Navn: Stig Falling Student Id: 0899829 Seneste publiserings dato: 22.11.2009 Pengepolitikk Innledning Oppgaven forklarer ord og begreper brukt
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste
Bibliotekstatistikk 2007
Bibliotekstatistikk 2007 Folkebibliotekene i utvalgte framstillinger Bibliotekstatistikk 2007 : folkebibliotekene i - utvalgte framstillinger Utgitt 20.08.2008 Revidert utgave 17.09.2008 fylkesbibliotek
Eksamen 24.11.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Kapittel 3. Prosentregning
Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 4.KVARTAL 2016
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK.KVARTAL Undersøkelse blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger.11. FORORD På oppdrag for Norges Bank utfører Epinion kvartalsvise
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges? Oppgave 2 (1 poeng)
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 3.KVARTAL 2016
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK.KVARTAL Undersøkelse blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 5.08. FORORD På oppdrag for Norges Bank utfører Epinion kvartalsvise
Eksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 1.KVARTAL 2015
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 1.KVARTAL 2015 Undersøkelse blant økonomieksperter, parter i arbeidslivet, næringslivslederne og husholdninger 26.02.2015 FORORD På oppdrag for Norges Bank utfører
Del 1: Prisindekser Del 2: Keynes i Excel Del 3: Arbeidsmarked og likevektsledighet. 7. Forelesning ECON
Del 1: Prisindekser Del 2: Keynes i Excel Del 3: Arbeidsmarked og likevektsledighet 7. Forelesning ECON 1310 24.2.2009 Del 1: Litteraturreferanse prisindekser Kjernepensum: H 2 Øvrig pensum: http://www.ssb.no/priser/
Kapittel 7. Økonomi. Dette kapitlet handler om å:
Kapittel 7. Økonomi Dette kapitlet handler om å: Beregne inntekt, feriepenger, skatt og avgifter. Vurdere forbruk og bruk av kredittkort. Sette opp budsjett og regnskap ved hjelp av regneark. Undersøke
Eksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Side 1/ NR. 05/2012
3773.1 Side 1/8 NR. 05/2012 Prisoppgangen i boligmarkedet har fortsatt i 2012. Hittil har prisstigningen vært mellom ca. 4 og 7 prosent i Oslo-området. Dette er omtrent det samme som mange aktører i markedet
for forstegangsomsetning
Konsumprisindeks og Prisindeks for forstegangsomsetning innenlands Tidsserier og endringstall Innhold Innledning 4 Konsumprisindeks: Totalindeks. Tidsserie 5 Delindekser. Tidsserie 6 Endringstall 7 Prisindeks
Sti 1 Sti 2 Sti 3 506, 507, 509, 510 508, 510, 511, 512
5 Økonomi Kompetansemål: Mål for opplæringen er at eleven skal kunne regne med prisindeks, kroneverdi, reallønn og nominell lønn utføre lønnsberegninger, budsjettering og regnskap ved hjelp av ulike verktøy
DUF brukerveiledning
DUF brukerveiledning Indeksregulering av avtaler Forfatter: Mai-Liss Kjær/Carla Børresen Avdeling/enhet: RMA Mottaksenheten Revisjon/ versjon: 2 Dato: 03.12.13 Innhold 1. Beregn prisindeks... 3 2. Regulering...
DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Oppgave 3 (3 poeng) Oppgave 4 (2 poeng) Løs likningene nedenfor
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Løs likningene nedenfor a) b) x 3x 0 3 1 17 x 4 c) lg(x ) 3 lg Oppgave (3 poeng) Skriv uttrykkene så enkelt som mulig a) 8 a ( a b) ( ab) 3 1 b) ( x y)( x y)
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 1.KVARTAL 2016
FORVENTNINGSUNDERSØKELSE FOR NORGES BANK 1.KVARTAL 2016 Undersøkelse blant økonomieksperter, parter i arbeidslivet, næringslivsledere og husholdninger 25.02.2016 FORORD På oppdrag for Norges Bank utfører
Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen
Prosjektnotat nr. 12-2004. Randi Lavik. Lidl og konkurranse
Prosjektnotat nr. 12- Randi Lavik SIFO Prosjektnotat nr. 12 - STATENS INSTITUTT FOR FORBRUKSFORSKNING Sandakerveien 24 C, Bygg B Postboks 4682 Nydalen 0405 Oslo www.sifo.no Det må ikke kopieres fra denne
Eksamen 1P, Høsten 2011
Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl
Lønnsutviklingen 1962-2002
Lønnsutviklingen 1962-22 Økonomiske analyser 5/23 Lønnsutviklingen 1962-22 Stein Hansen og Tor Skoglund Årene 1962-1969 var en periode med spesielt sterk reallønnsvekst. Dette framgår av nye beregninger
Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
OPAKs prisstigningsrapport Nr. 1/2017
OPAKs prisstigningsrapport Nr. 1/2017 OPAK AS Hovfaret 13 PB 128 Skøyen 0212 Oslo OPAK prisstigningsrapport 1 Leieprisvekst i Oslo siste halvår og med forventning om ytterligere prisvekst i tiden som kommer.
Eksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B
Løsningsforslag Prøve kapittel 1-2PY, Klasse B Henrik Vikøren October 1, 201 Del 1 - Uten hjelpemiddel 30 min Oppgave 1 Regn ut: (2 2 ) 3 2 2 = 2 2 3 2 2 = 2 6 +1 = 2 3 = 8 (2 3 2 2 16a = 23 a 3 2 2 2
Aktuell kommentar. Utviklingen i konsumprisene siden Nr Av Kjetil Martinsen og Njål Stensland, Pengepolitikk*
Nr. Aktuell kommentar Utviklingen i konsumprisene siden 9 Av Kjetil Martinsen og Njål Stensland, Pengepolitikk* *Synspunktene i denne kommentaren representerer forfatterens syn og kan ikke nødvendigvis
Tall og bakgrunn for årets inntektsoppgjør
Tall og bakgrunn for årets inntektsoppgjør Parats tariffkonferanse Scandic Oslo Airport, 1. mars 2016 Helle Stensbak, sjeføkonom YS Innholdet i TBU-rapportene Hovedtema i den foreløpige rapporten Lønnsutviklingen
Lønns- og prisutviklingen
Lønns- og prisutviklingen Lønnsutviklingen Den gjennomsnittlige lønnsveksten har falt markert i de to siste årene. Ifølge foreløpige nasjonalregnskapstall økte lønn per normalårsverk med 4,3 prosent i
DEL1 Uten hjelpemidler
DEL1 Uten hjelpemidler Oppgave 1(24 poeng) a) Andersenkjøperfembord.Iendenav hvertbordstårdetettallsomforteller hvor mange centimeter bordet er. Se bildet til høyre. Gjør overslag og finn ut omtrent hvor
2 Likninger. 2.1 Førstegradslikninger med én ukjent
MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel
Forventningsundersøkelsen 2. kvartal 2008:
Forventningsundersøkelsen 2. kvartal 2008: Forventninger om høyere prisvekst og høyere lønnsvekst TNS Gallups Forventningsundersøkelse for andre kvartal 2008 viser at det nå forventes høyere prisvekst
NR. 05/2010. I Oslo og omegn har boligprisene steget det siste året. Nordmenn flest tror boligprisene skal fortsette å stige.
3505.4 Side 1/10 NR. 05/2010 I Oslo og omegn har boligprisene steget det siste året. Nordmenn flest tror boligprisene skal fortsette å stige. Vår siste boligundersøkelse for Oslo og omegnskommuner er fra
Kapittel 7. Økonomi. Mål for Kapittel 7, Økonomi. Kompetansemål. Mål for opplæringen er at eleven skal kunne
Kapittel 7. Økonomi Mål for Kapittel 7, Økonomi. Kompetansemål Mål for opplæringen er at eleven skal kunne Redegjøre for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt,
Hvorfor er det så dyrt i Norge?
Tillegg til forelesningsnotat nr 9 om valuta Steinar Holden, april 2010 Hvorfor er det så dyrt i Norge? Vi vet alle at det er dyrt i Norge. Dersom vi drar til andre land, får vi kjøpt mer for pengene.
ØKONOMISKE UTSIKTER SENTRALBANKSJEF ØYSTEIN OLSEN KONGSVINGER 16. DESEMBER 2016
ØKONOMISKE UTSIKTER SENTRALBANKSJEF ØYSTEIN OLSEN KONGSVINGER. DESEMBER Vekstanslagene ute er lite endret BNP globalt og handelspartnere. Årsvekst. Prosent ),,,,, Globalt Handelspartnere Anslag PPR / Anslag
Nåverdi og pengenes tidsverdi
Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2015 Versjon 2.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har
Eksamen MAT1011 1P, Våren 2012
Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner
Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
NR. 05/2013. Dette indikerer at troen på en fortsatt sterk prisvekst i boligmarkedet er blitt mindre. Fredrik Sverdrup Dahl sivilingeniør.
3880.1 Side 1/8 NR. 05/2013 I følge OPAKs boligundersøkelse i april har prisoppgangen det siste året vært mellom 8 og 12 prosent, mest for selveierleiligheter og rekkehus/tomannsboliger, og minst for borettslagsleiligheter
Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Forelesning, ECON 1310:
Forelesning, ECON 1310: Arbeidsmarkedet og likevektsledighet Anders Grøn Kjelsrud (gkj@ssb.no) 27.9.2016 Pensum og oversikt Kapittel 7 i læreboka Kort om hovedtall i arbeidsmarkedet Kort om arbeidsmarkedet
Kapittel 4. Prosentregning
Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh
Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =
Konsumentens reaksjon på endringer i priser og inntekt
Kapittel 5 Konsumentens reaksjon på endringer i priser og inntekt Løsninger Oppgave 5.1 (a) Ved økt inntekt vil normalt etterspørselen øke. Goder som har denne egenskapen kalles normalgoder. Da går inntekt
Aldri jobbet mindre for maten
Matkurven 2014 Aldri jobbet mindre for maten Nordmenn er blant de som må jobbe minst for maten i Europa viser en ny undersøkelse som sammenligner hvor lenge arbeidstakere i 10 europeiske land må jobbe
I DETTE KAPITLET SKAL DU LÆRE: Hva kan ha ført til en slik situasjon? Diskuter hvilke virkninger det kraftige prisfallet vil få for landet.
6 Tenk deg en situasjon hvor et land har balanse i utenrikshandelen ett år. a Året etter er det større eksport enn import. Hva kan ha skjedd i landets økonomi? b Et annet land har gått fra balanse i utenrikshandelen
Side 1/ NR. 05/2011
3631.1 Side 1/8 NR. 05/2011 I Oslo har boligprisene steget mer enn forventet de siste månedene, selv med en økende boligbygging. Spørsmålet er om boligbyggingen klarer å holde tritt med den tiltagende
Kapittel 7. Økonomi. Mål for Kapittel 7, Økonomi. Kompetansemål. Mål for opplæringen er at eleven skal kunne
Kapittel 7. Økonomi Mål for Kapittel 7, Økonomi. Kompetansemål Mål for opplæringen er at eleven skal kunne Redegjøre for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt,
Gjennomføringen av pengepolitikken
Gjennomføringen av pengepolitikken Sentralbanksjef Svein Gjedrem Stortingets finanskomité. mai Inflasjon Glidende tiårs gjennomsnitt ) og variasjon ) i KPI ). Prosent. - Variasjon KPI Inflasjonsmål ) Det
EKSPORTEN I APRIL 2016
EKSPORTEN I APRIL 2016 Foreløpige tall fra Statistisk sentralbyrå for hovedgrupper av vareeksporten. Verditall April 2016 Verdiendring fra april 2015 Mill NOK Prosent I alt - alle varer 60 622-7,9 - Råolje
Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh
Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.