Matematikk for yrkesfag

Størrelse: px
Begynne med side:

Download "Matematikk for yrkesfag"

Transkript

1 John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL

2 John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet

3 Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange og dele 7 Regning med desimaltall 9 Regnerekkefølge 13 Brøk 14 Avrunding 15 Veien om Likninger Bokstavregning 18 Likninger 19 3 Formler Formler 27 Proporsjonalitet 29 4 Prosent Prosent 34 Vanlig prosentregning 37 5 Lønn Lønn 47 Skatt 48 Feriepenger 49 6 Lengde og målestokk Lengdeenheter 51 Målestokk 57 7 Flate Pytagorassetningen 59 Omkrets 64 Areal 66 8 Rom Perspektivtegning 70 Liter, desiliter, centiliter og milliliter 71 Volum av prisme 74 Overflaten av prisme 76 9 Sparing Sparing 78 Fasit 83

4 34 4 Prosent 4 Prosent NB! Prosent betyr hundredeler. 5 5 % er derfor det samme som brøken % = Skriv som brøk med hundre som nevner. a 8 % = b 35% = c 75% = d 5% = NB! Brøker med hundre som nevner kan vi raskt skrive som desimaltall. EKSEMPEL 1 Skriv brøkene som desimaltall. a b 8 28 a b 8 = 008, 28 = 028, Legg merke til at å dele med hundre er det samme som å flytte kommaet to plasser mot venstre! = 020, 6 = 006, Skriv brøken som desimaltall. a 3 = b 12 = c 35 = d 5 =

5 4 Prosent 35 EKSEMPEL 2 Skriv som brøk og som prosent. a 0,25 25 a 025, = = 25% b 0,05 5 b 005, = = 5% , = = 15% 008, = = 8 % Skriv som brøk og som prosent. a 012, = = b 010, = = c 001, = = EKSEMPEL 3 Skriv som prosent ved å bruke kalkulator. a 3 4 a =, = % b b =, = % = 015, = 15 % 20 3 = 005, = 5% 60 Skriv som prosent ved å bruke kalkulator. a d 3 10 = = b 1 5 = = c 2 50 = = = = e = = f = = NB! 23 = 0,23 = 23 % Brøk Desimaltall Prosent

6 36 4 Prosent 405 Skriv som prosent. a 0,12 Svar: 0,12 = % b 0,04 Svar: 0,04 = % c 0,18 Svar: 0,18 = % d 0,35 Svar: 0,35 = % e 0,02 Svar: 0,02 = % 406 Skriv som prosent. a b c d Svar: 4 = = % 5 Svar: 7 = = % 10 2 Svar: = = % 25 6 Svar: = = % 200 EKSEMPEL 4 Fig_4_1 Hvor mange prosent er det fargede området av hele figuren? =, = % 407 John tok et stykke av kaka. a Hvor mange prosent av kaka tok John? Svar: b Hvor mange prosent av kaka ble igjen til Håvard? Svar:

7 4 Prosent 37 Fig_1_ Hvor mange prosent er det fargede området av hele området? Svar: Vanlig prosentregning EKSEMPEL 5 Hva er 5 % av 400? =, = 5 % av 400 er Regn ut a 10 % av = = b 20 % av 3000 = = c 8 % av 600 = = 410 Merverdiavgift (mva.) er en avgift til staten som betales for de fleste varer og tjenester. En vare koster 850 kr uten merverdiavgift. Merverdiavgiften for denne varen er 25 %. Hvor mye utgjør merverdiavgiften? En kinobillett koster 111 kr uten merverdiavgift. Merverdiavgiften for en kinobillett er 8 %. Hvor mye utgjør merverdiavgiften? = 850 0, 25 = 212, 50 Merverdiavgiften utgjør 212,50 kr. 111 = 111 = Merverdiavgiften utgjør kr.

8 38 4 Prosent EKSEMPEL 6 En sykkel kostet 3000 kr. Prisen ble satt ned med 20 %. Hva er avslaget i kroner? Hva ble den nye prisen? =, = Avslaget var 600 kr = 2400 Den nye prisen ble 2400 kr. 411 En skipakke ble satt ned med 35 % fra 2000 kr. a Hvor stort var avslaget i kroner? 2000 = = Avslaget var kr. b Hva var tilbudsprisen? 2000 = Tilbudsprisen var kr. 412 En bukse ble satt ned med 15 % fra 1200 kr. a Hvor stort var avslaget i kroner? 1200 = = Avslaget var kr. b Hva var tilbudsprisen? 1200 = Tilbudsprisen var kr.

9 4 Prosent Timelønna ble satt opp 5 % fra 150 kr. a Hvor mye økte timelønna i kroner? 150 = = Økningen var kr. b Hva var den nye timelønna? = Den nye timelønna var kr. 414 En ansatt i en bedrift får vite at årslønna kommer til å øke med 6 %. Årslønna er nå kr. a Hvor mye øker årslønna i kroner? Økningen er kr. b Hva blir den nye årslønna? Den nye årslønna blir kr. 415 Prisen på en flybillett var 1500 kr. I en kampanje ble prisen satt ned med 30 %. a Hvor stort var avslaget i kroner? Avslaget var kr. b Hva ble kampanjeprisen? Kampanjeprisen ble kr.

10 40 4 Prosent Hvor mange prosent? EKSEMPEL 7 På en matematikkprøve svarte Maren riktig på 6 av 10 spørsmål. Hvor mange prosent riktige svar hadde Maren? =, =, % = % 416 Hvor mange prosent er 30 kr av 600 kr? = 005, = 005, % = 5% a Hvor mange prosent er 20 kr av 200 kr? = = % = % b Hvor mange prosent er 60 kr av 300 kr? c I en undersøkelse svarte 36 av 50 at de visste hvem Justin Bieber er. Hvor mange prosent er det? Fig_4_3 417 Hvor stor prosent av møtedeltakerne var Antall møtedeltakere 12 8 a gutter 20 = = % = % 4 0 Gutter Jenter b jenter 20 = = % = %

11 4_7 4 Prosent Antall elever Fotball Svømming Fjelltur Klatring Hvor mange prosent av elevene valgte a svømming 28 = = % = % b fjelltur eller klatring 28 = = % = % Endring i prosent EKSEMPEL 8 Carmines timelønn økte fra 120 kr til 130 kr. Med hvor mange prosent økte timelønna? Timelønna økte med = ,083 0,083 % 8,3% 120 = = = Timelønna økte med 8,3 %. NB! endringen Endringiprosent = gammelverdi %

12 42 4 Prosent 419 a Prisen på en vare ble satt opp fra 500 kr til 540 kr. Hvor mange prosent var økningen på? Prisen økte med 540 = 500 = = % = % Økningen var på %. b En timelønn økte fra 152 kr til 160 kr. Hvor mange prosent økte timelønna? Økningen var på %. c En vare koster 900 kr uten merverdiavgift. Merverdiavgiften for varen er 225 kr. Hvor mange prosent utgjør merverdiavgiften for denne varen? = = % = % Merverdiavgiften utgjør %. 420 I en bedrift ble antallet ansatte redusert fra 20 til 15. Med hvor mange prosent ble antallet ansatte redusert? = = 025, = 025, % = 25% a En bukse kostet 900 kr. Den ble satt ned til 765 kr. Med hvor mange prosent ble buksa satt ned? 900 = 900 = = % = % Buksa ble satt ned med %.

13 4 Prosent 43 b En skipakke kostet 3000 kr. Den ble satt ned til 1800 kr. Med hvor mange prosent ble skipakken satt ned? Skipakken ble satt ned med %. Prosentpoeng og prosent EKSEMPEL 9 Et politisk parti gikk i en meningsmåling fram fra 20 % til 23 %. Hva kan vi si om framgangen? 23 % 20 % = 3 % Framgangen var på 3 prosentpoeng =, =, % = % Framgangen var på 15 %. 421 Ved en skole var det et år 40 % jenter. Året etter hadde andelen økt til 45 %. a Hvor stor var økningen i prosentpoeng? % % = % Økningen var på prosentpoeng. b Hvor stor var økningen i prosent? 40 = = % = % Økningen var på %.

14 44 4 Prosent 422 I en meningsmåling gikk et parti ned fra 20 % til 18,4 %. a Hva var nedgangen i prosentpoeng? 20 % % = % Nedgangen var på prosentpoeng. b Hvor mange prosent sank oppslutningen? 20 = = % = % Oppslutningen sank med %. 423 I en meningsmåling gikk et parti opp fra 14,8 % til 17,1 %. a Hva var økningen i prosentpoeng? Økningen var på prosentpoeng. b Hvor mange prosent økte oppslutningen? Oppslutningen økte med %. 424 I en meningsmåling gikk et parti ned fra 34,3 % til 32,1 %. a Hva var nedgangen i prosentpoeng? Nedgangen var på prosentpoeng. b Hvor mange prosent sank oppslutningen? Oppslutningen sank med %.

15 4 Prosent 45 Ny verdi på en rask måte EKSEMPEL 10 Prisen på en vare som koster 500 kr, øker med 20 %. Hva kan vi gange 500 kr med for å få ny pris? Vi setter 500 kr lik %. Den nye prisen blir da % + 20 % = 120 % av den gamle prisen. Hvis vi ganger 500 kr med 120 %, får vi ny pris. NB! Når vi regner med prosent, setter vi gammel pris lik %. Hvis prisen øker med 15 %, blir den nye prisen 115 % av den gamle prisen. Vi kan da gange gammel pris med 115 % for å få ny pris. % = % = 1, % = 1, % = 1,20 EKSEMPEL 11 Prisen på en vare er 500 kr. Prisen øker med 20 %. Hva blir den nye prisen? Gammel pris: % % + 20 % = 120 % Den nye prisen er 120 % av den gamle prisen % = 500 1,20 = 600 Den nye prisen er 600 kr. Gammel pris + økning = ny pris % + 20 % = 120 % NB! 120 % = 1,20 Å legge til 20 % er det samme som å gange med 1,20.

16 46 4 Prosent 425 Et maleri ble kjøpt for 4000 kr. Verdien steg med 30 %. Hva kostet maleriet etter verdiøkningen? % + 30 % = 130 % % = ,30 = 5200 Maleriet kostet 5200 kr. a Prisen på et skjørt ble satt opp med 15 % fra 800 kr. Hva ble den nye prisen? % + % = % 800 % = 800 = Den nye prisen ble kr. b Prisen på et maleri ble satt opp med 5,0 % fra 5000 kr. Hva ble den nye prisen? Den nye prisen ble kr. 426 Prisen på et snøbrett var 4000 kr. Prisen ble satt ned med 20 %. Hva ble den nye prisen? % 20 % = 80 % % = ,80 = % = 0,80 Den nye prisen ble 3200 kr. Prisen på en sykkel ble satt ned med 15 % fra 5000 kr. Hva ble den nye prisen? Den nye prisen ble kr.

17 5 Lønn I deltidsjobber, for eksempel ved siden av skolen, er det vanlig med timelønn. Det er vanlig med tillegg i lønna for kveldsarbeid og for arbeid på helligdager. EKSEMPEL 1 Siv jobber på kafeen på senteret og tjener 120 kr per time. Hun jobber tre kvelder i uka. Hver kveld jobber hun to timer. a Hvor mange timer jobber hun per uke? b Hvor mye tjener hun per uke? a 3 2 = 6 Hun jobber 6 timer per uke. b = 720 Hun tjener 720 kr per uke. 501 Sigurd jobber på bensinstasjonen og tjener 110 kr per time. Han jobber to kvelder per uke. Hver kveld jobber han tre timer. a Hvor mange timer jobber han per uke? a 2 = Han jobber timer per uke. b Hvor mye tjener han per uke? b 110 = Han tjener kr per uke. 502 Sigrid jobber i kolonialbutikk og tjener 130 kr per time. Mandager jobber hun fra kl. 17 til kl. 20. Onsdager jobber hun fra kl. 17 til kl. 21. Fredager jobber hun fra kl. 18 til kl a Hvor mange timer jobber hun per uke? b Hvor mye tjener hun per uke? a Mandag 17 20: timer Onsdag 17 21: timer Fredag : timer Sum: timer b 130 = Hun tjener kr per uke.

18 48 5 Lønn 503 Svein jobber i storkiosken og tjener 105 kr per time. Han jobber slik: Mandag: Torsdag: Fredag: a Hvor mange timer jobber han per uke? a Mandag: Torsdag: Fredag: Sum: timer timer timer timer b Hvor mye tjener han per uke? b = Han tjener kr per uke. Skatt Hvis du tjener mindre enn et visst beløp i året, kan du få frikort. Grensen for å få frikort varierer fra år til år. (I 2012 var grensen kr.) Hvis du i løpet av året tjener mer enn fribeløpet, må du betale skatt av alt du har tjent det året. NB! Brutto lønn skattetrekk = netto lønn I dagligtalen sier vi som regel lønn i stedet for brutto lønn. 504 I mars tjente Marit 6000 kr. Hun ble trukket 15 % i skatt. Regn ut nettolønna. Skattetrekk: = 6000 = Netto lønn: 6000 = Nettolønna var kr. 505 I oktober tjente Arild kr. Han ble trukket 20 % i skatt. Regn ut nettolønna. Skattetrekk: = = Netto lønn: = Nettolønna var kr.

19 5 Lønn I oktober jobbet Anders 20 timer på kafeen. Anders tjente 90 kr per time og ble trukket 12 % i skatt. a Hvor mye tjente Anders i oktober? b Regn ut nettolønna i oktober. Han tjente = Skattetrekk: 12 = = Netto lønn: = Feriepenger Hvis du er i fast jobb, får du feriepenger i stedet for den vanlige lønna i ferien. Når du slutter i en jobb, er det vanlig at du får utbetalt feriepengene sammen med den siste lønna. Alle har krav på feriepenger i tillegg til den ordinære lønna. NB! For personer under 60 år som har fem ukers ferie, utgjør feriepengene 12 % av feriepengegrunnlaget. EKSEMPEL 2 Line har tjent 8000 kr på en sommerjobb. Hvor mye vil hun få i feriepenger for denne jobben? Feriepengene er 12 % av det hun har tjent =, = Hun vil få 960 kr i feriepenger. 507 Arve har tjent kr på en sommerjobb. Hvor mye vil han få i feriepenger for denne jobben? Han vil få kr i feriepenger.

20 50 5 Lønn 508 Siw har tjent kr på en sommerjobb. Hvor mye vil hun få i feriepenger for denne jobben? 509 Leif har i sommer jobbet 64 timer på SuperBurger. Leif har hadde timelønn på 102 kr. a Hvor mye tjente han til sammen? b Hvor mye vil han få i feriepenger for denne jobben? Han tjente kr = kr Feriepenger: 510 Andrea har jobbet 85 timer som vikar hos BlomsterLars. Hun har tjent 110 kr per time. Hvor mye vil hun få i feriepenger for denne jobben?

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

1P kapittel 7 Økonomi

1P kapittel 7 Økonomi 1P kapittel 7 Økonomi Løsninger til oppgavene i boka 7.1 a % + 5 % 105 % 1,05. Vekstfaktoren er1, 05. b % + 15 % 115 % 1,15 Vekstfaktoren er 1,15. c % + 15,5 % 115,5 % 1,155 Vekstfaktoren er 1,155. d %

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka

YF kapittel 4 Prosent Løsninger til oppgavene i læreboka YF kapittel 4 Prosent Løsninger til oppgavene i læreoka Oppgave 401 8 a 8 % = d 35 35 % = 75 75 % = 3,5 3,5 % = Oppgave 402 3 a 0,03 = 12 0,12 = d 135 1, 35 = 3,5 0,035 = Oppgave 403 6 a 0,06 = = 6 % d

Detaljer

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka

YF kapittel 5 Lønn Løsninger til oppgavene i læreboka YF kapittel 5 Lønn Løsninger til oppgavene i læreoka Oppgave 501 a Hun joet tre timer mandag, fem timer onsdag og seks timer fredag. 3 + 5 + 6 14 Lisa joet 14 timer denne uka. 112 14 1568 Lisa tjente 1568

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med utdelt materiell Tone Elisabeth Bakken Dag 2 6.februar 2014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning Mål for Kapittel 4, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå? 2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

Basisoppgaver til 1P kap. 2 Økonomi

Basisoppgaver til 1P kap. 2 Økonomi Basisoppgaver til 1P kap. 2 Økonomi 2.1 Forhold 2.2 Prosentregning 2.3 Prisindeks 2.4 Konsumprisindeks. Reallønn 2.5 Lønnsutregning 2.6 Skattetrekk. Ferielønn 2.8 Utregning av skatt (2.7 og 2.9 har ikke

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent.

Detaljer

Basisoppgaver til Tall i arbeid P

Basisoppgaver til Tall i arbeid P Basisoppgaver til Tall i arbeid P 1 Tall og algebra Økonomi Geometri Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra 1.1 Regning med hele tall 1. Brøk 1. Store og små tall 1.4 Bokstavuttrykk

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) En hustegning har målestokk 1 : 50 På tegningen er en dør plassert 6 mm feil. Hvor stor vil denne feilen bli i virkeligheten når huset bygges? Oppgave 2 (1 poeng)

Detaljer

Kapittel 24 LØNN, SKATT OG FERIEPENGER. Lønn

Kapittel 24 LØNN, SKATT OG FERIEPENGER. Lønn Lønn Fast lønn Timelønn Overtidslønn Fast lønn vil si at en arbeidstaker får et fast beløp for å arbeide en gitt periode. Den vanligste perioden er én måned, og vi kaller da lønnen for månedslønn. Timelønn

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

1P eksamen våren 2016

1P eksamen våren 2016 1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.

Detaljer

2 Prosent og eksponentiell vekst

2 Prosent og eksponentiell vekst 2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren

Detaljer

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter.

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. ØKONOMIDELEN 1P KOMPETANSEMÅL: Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort og sette opp budsjett

Detaljer

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene

1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 1P kapittel 2 Økonomi Løsninger til innlæringsoppgavene 2.1 a Det er 12 gutter og 16 jenter i dansegruppen. Forholdet mellom antall gutter og antall jenter er derfor 12 12 : 4 3 16 16 : 4 4 Forholdet mellom

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.

Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave

Detaljer

LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6.

LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6. LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6. Uke Kompetansemål i LK-06 1-2 Rekne med desimaltal. Utvikle, bruke og diskutere metodar for overslagsrekning. Bruke digitale verktøy

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til

Detaljer

Timelønnen til Lotte var 90 kr/t a) 175 kr/t 8 t = 1400 kr Hun tjener 1400 kr per dag. b) 1400 kr 5 = 7000 kr Hun tjener 7000 kr på én uke.

Timelønnen til Lotte var 90 kr/t a) 175 kr/t 8 t = 1400 kr Hun tjener 1400 kr per dag. b) 1400 kr 5 = 7000 kr Hun tjener 7000 kr på én uke. Faktor 3 Oppgavebok til kapittel 7: Økonomi Kategori 1 7.101 60 kr/t 4 t = 240 kr Sara tjener til sammen 240 kr. 7.102 75 kr/t 8 t = 600 kr Martin tjente til sammen 600 kr den uka. 7.103 180 kr/t 37,5

Detaljer

Øvingshefte. Velge regneart

Øvingshefte. Velge regneart Øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Eksempeloppgave eksamen 1P-Y våren 2016

Eksempeloppgave eksamen 1P-Y våren 2016 Eksempeloppgave eksamen 1P-Y våren 2016 DEL 1 Uten hjelpemidler Tid: 1,5 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 Skriv disse tallene

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter.

Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. ØKONOMIDELEN 1P KOMPETANSEMÅL: Gjøre rede for og regne med prisindeks, kroneverdi, reallønn og nominell lønn og beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort og sette opp budsjett

Detaljer

Hverdagsmatte Fasit side 1

Hverdagsmatte Fasit side 1 Hverdagsmatte Fasit side 1 Del 1 Grunnleggende regning Tall Oppgave 1.16 Legge sammen og trekke fra Oppgave 1.19 a) 9 b) 6 c) 9 d) 9 e) 14 f) 10 g) 12 h) 13 Oppgave 1.20 a) 68 b) 189 c) 599 Oppgave 1.21

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Løsningsforslag Oppgave 1. Regn ut. a) 3 2 + 5 (10 6) = 9 + 5 (4) = 9 + 20 = 29 b) -1 4 (-2) 3 + = -1 (-8) + 6 = 8 + 6 = 14 c)

Detaljer

Terminprøve i matematikk for 8. trinn

Terminprøve i matematikk for 8. trinn Terminprøve i matematikk for 8. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Terminprøve i matematikk for 9. trinnet

Terminprøve i matematikk for 9. trinnet Terminprøve i matematikk for 9. trinnet Hausten 2005 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Delprøve 1 Maks. poengsum:

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Markus har vært på Island. I banken betalte han 5,25 norske kroner for 100 islandske kroner (ISK). Land Kode Kurs Island ISK 5,25 a) Markus besøkte Hallgrimskirka

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer.

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer. Eksamen 02.12.2008 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5

Detaljer

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten.

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten. 2 Forhold og prosent KATEGORI 1 2.1 Brøkdelen av et tall Oppgave 2.110 Regn ut. 1 3 av 3 b) 2 av 20 5 c) 1 6 av 24 d) 2 7 av 35 Oppgave 2.111 Regn ut. 2 3 av 450 kr b) 4 av 15 km 5 c) 3 7 av 14 kg Oppgave

Detaljer

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time.

c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time. c) I løpet av noen år steg Gretes lønn fra 160 kroner per time til 184 kroner per time. 1) Hvor mange prosent steg lønnen? Konsumprisindeksen (KPI) var 100 det året Grete tjente 160 kroner per time. 2)

Detaljer

Generelt. Trond Kristoffersen. Lønningsrutinen. Ansatte - forpliktelser. Finansregnskap. Økt aktivitet (vekst) fører til behov for:

Generelt. Trond Kristoffersen. Lønningsrutinen. Ansatte - forpliktelser. Finansregnskap. Økt aktivitet (vekst) fører til behov for: Generelt Trond Kristoffersen Finansregnskap Lønn og Økt aktivitet (vekst) fører til behov for: Økte investeringer i eiendeler Mer kapital (lån og egenkapital) (Flere) ansatte Lønn og 2 Lønningsrutinen

Detaljer

Årsplan matematikk for 7. trinn Multi

Årsplan matematikk for 7. trinn Multi Årsplan matematikk for 7. trinn Multi Ukenr Antall uker Kapittel Faktorer som faller på dager / timer med matematikk 34 39 6 1 Tall 40 44 4 2 Statistikk og sannsynlighet Uke 36: Leirskole Kartleggeren

Detaljer

Eksamen 1P, Høsten 2011

Eksamen 1P, Høsten 2011 Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Tema: Tall og algebra Kunne skrive tall på ulike måter. Skrive veldig store og små tall

Detaljer

Ukeplan uke 17 for 9 A. Oddemarka skole

Ukeplan uke 17 for 9 A. Oddemarka skole Ukeplan uke 17 for 9 A Oddemarka skole Informasjon: Tacokveld til onsdag (26.04 )og sommeravslutning (15.06 )for 9A. Det blir klatring 12. mai. Mandag 24. april: skal dere være elever for KKG idrett fra

Detaljer

Prosent og eksponentiell vekst

Prosent og eksponentiell vekst 30 2 Prosent og eksponentiell vekst MÅL for opplæringen er at eleven skal kunne gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst 2.1 Prosentfaktorer Når vi skal regne

Detaljer

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Årsplan i matematikk Trinn 10 Skoleåret Haumyrheia skole

Årsplan i matematikk Trinn 10 Skoleåret Haumyrheia skole Årsplan i matematikk Trinn 10 Skoleåret 2016-2017 Tids rom Kompetansemål Hva skal vi lære? (Læringsmål) Hvordan jobber vi? (Metoder) 34-38 sammenligne og regne tall på standardform og uttrykke slike tall

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i Matematikk for 9. trinn 2015/16. TID TEMA KOMPETANSEMÅL Eleven skal kunne:

RENDALEN KOMMUNE Fagertun skole. Årsplan i Matematikk for 9. trinn 2015/16. TID TEMA KOMPETANSEMÅL Eleven skal kunne: RENDALEN KOMMUNE Fagertun skole Årsplan i Matematikk for 9 trinn 2015/16 TID TEMA KOMPETANSEMÅL Eleven skal kunne: 34-37 38-43 Tall og tallforståelse utvikle, bruke og gjøre greie for ulike metoder i hoderegning,

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Hvor mye må jeg betale for 2 kg appelsiner?

Hvor mye må jeg betale for 2 kg appelsiner? Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon

Detaljer

Faktor REGNEARK & GRAFTEGNER ØVINGSOPPGAVER FOR. Bokmål. Flere oppgaver finns i Faktor Fordypningshefte og Faktor Eksamensforberedende hefte.

Faktor REGNEARK & GRAFTEGNER ØVINGSOPPGAVER FOR. Bokmål. Flere oppgaver finns i Faktor Fordypningshefte og Faktor Eksamensforberedende hefte. Bokmål Faktor ØVINGSOPPGAVER FOR REGNEARK & GRAFTEGNER Flere oppgaver finns i Faktor Fordypningshefte og Faktor Eksamensforberedende hefte. Cappelen Damm AS 1 Oppgaver for REGNEARK Oppgavene er hentet

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Periodeplan 8D uke 50 og 51

Periodeplan 8D uke 50 og 51 Periodeplan 8D uke 50 og 51 Østersund ungdomsskole skoleåret 2013/2014 Ordenselever: : Andrea og Hermann : Nille og Snorre Navn: UKE MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Matematikk Matematikk KRØ Heldagsprøve

Detaljer

Kapittel 7. Økonomi. Dette kapitlet handler om å:

Kapittel 7. Økonomi. Dette kapitlet handler om å: Kapittel 7. Økonomi Dette kapitlet handler om å: Beregne inntekt, feriepenger, skatt og avgifter. Vurdere forbruk og bruk av kredittkort. Sette opp budsjett og regnskap ved hjelp av regneark. Undersøke

Detaljer

Årsplan i matematikk 6.trinn Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering

Årsplan i matematikk 6.trinn Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering Årsplan i matematikk 6.trinn 2016-17 Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering i kunnskapsløftet. 33-38 beskrive og plassverdisystem et for regne med positive og brøker og prosent,

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste

Detaljer

Læreplan i matematikk. Kompetansemål etter 10. årstrinn

Læreplan i matematikk. Kompetansemål etter 10. årstrinn Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med

Detaljer

Delprøve 1. 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han?

Delprøve 1. 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han? Delprøve 1 OPPGAVE 1 a) 1) Hvor mye er 3 delt på 1 2? 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han? b) Når temperaturen i Rjukan er 16 o C, kan temperaturen x meter

Detaljer

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co. MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 2 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag

Detaljer

Kapittel 5. Regning med forhold

Kapittel 5. Regning med forhold Kapittel 5. Regning med forhold Forholdet mellom to tall betyr det ene tallet delt med det andre. Regning med forhold er mye brukt i praktisk matematikk. I dette kapitlet skal vi bruke forhold i blant

Detaljer

( ) ( ) Vekstfaktor. Vekstfaktor

( ) ( ) Vekstfaktor. Vekstfaktor Vekstfaktor Fagstoff Listen [1] Hvis folketallet i en by vokser med 5 % hvert år i perioden 1995 til 2015, så sier vi at folketallet har en eksponentiell vekst i disse årene. Eva setter 10 000 kroner på

Detaljer

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 6 Personlig økonomi

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 6 Personlig økonomi 1,055 kg 1,5 kg 1,505 kg Hverdagsmatte Praktisk regning for voksne Del 6 Personlig økonomi Innhold Del 6, Personlig økonomi Budsjett 1 Regninger 5 Inkasso 7 Lønn og skatt 8 Sparing 9 Sarah skal kjøpe leilighet

Detaljer

Årsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole

Årsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole Årsplan i matematikk Trinn 9 Skoleåret 2016-2017 Tids rom 3 Kompetansemål Hva skal vi lære? (Læringsmål) Hvordan jobber vi? (Metoder) sammenligne og regne tall på standardform og uttrykke slike tall på

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989

Detaljer

Differensiering og tilpasset opplæring. Are Kjellså 3. April Akershus

Differensiering og tilpasset opplæring. Are Kjellså 3. April Akershus Differensiering og tilpasset opplæring Are Kjellså 3. April Akershus Gyldendal Kompetanse Åpne kurs vurdering læringsmiljø/klasseledelse grunnleggende ferdigheter fagkurs pedagogisk ledelse Internkurs

Detaljer

Etter en lang ferie er det en del regneferdigheter vi må friske opp:

Etter en lang ferie er det en del regneferdigheter vi må friske opp: Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler

Detaljer

multimatte L Æ R E R V E I L E D N I N G

multimatte L Æ R E R V E I L E D N I N G multimatte L Æ R E R V E I L E D N I N G Forord Multimatte er et samarbeidsprosjekt mellom Cappelen Undervisning og Mohive og er utviklet med støtte fra Utdanningsdirektoratet. Vi vil takke Berit Haugen,

Detaljer

Eksamen 1P våren 2011

Eksamen 1P våren 2011 Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen

Detaljer

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B Løsningsforslag Prøve kapittel 1-2PY, Klasse B Henrik Vikøren October 1, 201 Del 1 - Uten hjelpemiddel 30 min Oppgave 1 Regn ut: (2 2 ) 3 2 2 = 2 2 3 2 2 = 2 6 +1 = 2 3 = 8 (2 3 2 2 16a = 23 a 3 2 2 2

Detaljer

Kapittel 6. Økonomi. Dette kapitlet handler om å:

Kapittel 6. Økonomi. Dette kapitlet handler om å: Kapittel 6. Økonomi Dette kapitlet handler om å: Beregne inntekt, skatt og avgifter. Vurdere forbruk og bruk av kredittkort. Sette opp budsjett og regnskap ved hjelp av regneark. Undersøke og vurdere ulike

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst 1 Hvis 64 % av elevene på en skole får gjennomsnittskarakteren 4 på avgangsvitnemålet, og det totalt er 200 elever på skolen, hvor mange elever får da

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver... Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å

Detaljer

Matematikk 2P-Y. Hellerud videregående skole

Matematikk 2P-Y. Hellerud videregående skole Matematikk 2P-Y Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 2P-Y. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

-!4%-!4)++5.$%23 +%,3%.

-!4%-!4)++5.$%23 +%,3%. 6EDLEGG -!4%-!4)++5.$%23 +%,3%. Dette er en undersøkelse om forkunnskaper hos nye studenter. Den blir gjennomført ved alle universiteter og høgskoler i Norge. Ansvarlig for undersøkelsen er Norsk Matematikkråd.

Detaljer

1 p 1.1 Kryss av for hvilket av sifrene i tallet som står på tierplassen.

1 p 1.1 Kryss av for hvilket av sifrene i tallet som står på tierplassen. Faktor Terminprøve i matematikk for 8. trinn Våren 2008 bokmål Navn: Oppgavesettet består av tre deler som alle skal besvares. Bruk blyant på figurer og konstruksjoner - ellers bruker du sort eller blå

Detaljer

Årsplan matematikk for 5. trinn Multi

Årsplan matematikk for 5. trinn Multi Årsplan matematikk for 5. trinn Multi Ukenr. Antall uker Kapittel Faktorer som faller på dager / timer med matematikk 34 40 7 1 Hele tall 42 44 3 2 Statistikk 45 49 5 3 Desimaltall 50 3 5 4 Geometri 5

Detaljer

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum.

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum. Årsplan i matematikk 6.trinn 2015-16 Læreverk: MULTI Uk Kompetansemål i Tema Delmål Arbeidsmåte Vurdering e kunnskapsløftet. 34-37 Repetisjon Målenheter for vekt: tonn, kg, hg, g - De fire regneartene.

Detaljer

Skatt og arbeidsliv Velferdsstaten er skattefinansiert. Skatt og arbeidsliv. Hvordan ble Skatt og arbeidsliv til?

Skatt og arbeidsliv Velferdsstaten er skattefinansiert. Skatt og arbeidsliv. Hvordan ble Skatt og arbeidsliv til? Skatt og arbeidsliv Velferdsstaten er skattefinansiert Skatt og arbeidsliv Oslo kemnerkontor har i samarbeid med Oslo voksenopplæring servicesenter og Vox utarbeidet et undervisningsopplegg til bruk både

Detaljer

Matematikk 1P. Hellerud videregående skole

Matematikk 1P. Hellerud videregående skole Matematikk 1P Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 1P. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være ganske

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Statistikk Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Statistikk 1 Statistikk Seksjon 1 Oppgave 1.1 Finn

Detaljer

Matematikkkurs M0 Oppgaver

Matematikkkurs M0 Oppgaver Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

Årsplan i matematikk 6.trinn 2016/2017

Årsplan i matematikk 6.trinn 2016/2017 Årsplan i matematikk 6.trinn 2016/2017 Faglærere: Anne Kristin Helland og Marte Hegg Hellebø Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /37 Tall og tallforståelse

Detaljer

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, så regner symbolsk. Det vil si at

Detaljer