Matematikk for yrkesfag

Størrelse: px
Begynne med side:

Download "Matematikk for yrkesfag"

Transkript

1 John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag

2 Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange og dele 7 Regning med desimaltall 9 Regnerekkefølge 13 Brøk 14 Avrunding 15 Veien om 1 16 Likninger Bokstavregning 18 Likninger 19 3 Formler Formler 7 Proporsjonalitet 9 4 Prosent Prosent 34 Vanlig prosentregning 37 5 Lønn Lønn 47 Skatt 48 Feriepenger 49 6 Lengde og målestokk Lengdeenheter 51 Målestokk 57 7 Flate Pytagorassetningen 59 Omkrets 64 Areal 66 8 Rom Perspektivtegning 70 Liter, desiliter, centiliter og milliliter 71 Volum av prisme 74 Overflaten av prisme 76 9 Sparing Sparing 78 Fasit 83

3 John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet

4 18 Likninger Likninger Bokstavregning NB! 3 betyr 3 betyr 1 Eksempel 1 Trekk sammen. a b 5 3 c 3 5 a b 5 3 c 3 5 Tenk slik: Trekk sammen. a 7 + b 7 c 7 0 Trekk sammen. a + b 7 + c 03 Trekk sammen. a 7 6 b 7 8 c 5 04 Trekk sammen. a b c + 5 Eksempel Skriv uttrykket så enkelt som mulig Sorter leddene. Trekk sammen ledd av samme type.

5 Likninger Skriv uttrykkene så enkelt som mulig. a b c Skriv uttrykkene så enkelt som mulig. a b 4 + c Likninger En likning består av en venstreside og en høyreside som skal være lik hverandre. Derfor skriver vi mellom de to sidene. 4 9 er et eksempel på en likning.? Å løse en likning vil si å finne ut hvilket tall må være for at venstre og høyre side i likningen skal være lik. De fleste likninger er slik at du ikke ser løsningen uten å omforme likningen. Du skal lære tre regler som er nyttige når du løser likninger: 1 Flytte-bytte-regelen Deleregelen 3 Gangeregelen Flytte-bytte-regelen NB! Du kan flytte et ledd over på andre siden av hvis du samtidig skifter fortegn. Eksempel 3 Løs likningen

6 0 Likninger 07 Løs likningene ved å fylle inn riktig regnetegn og tall. a 8 7 b c a 3 5 b + 7 c Eksempel 4 Løs likningen a b c a b c

7 Likninger 1 Deleregelen NB! Du kan dele med det samme tallet på begge sider av Eksempel 5 Løs likningen Vi deler på begge sider med tallet foran. 11 a 8 8 b c 5, 10 5, 10 NB! + delt på + gir + delt på gir + + delt på gir delt på + gir 1 a b c

8 Likninger 13 Løs likningen 6,5 45,5. Skriv opp likningen Del på begge sider med tallet foran Forkort og regn ut Eksempel 6 Løs likningen Flytte-bytte-regelen Deleregelen 14 Løs likningene ved å bruke flytte-bytte-regelen og deleregelen. a b c

9 Likninger 3 15 Løs likningene ved å bruke flytte-bytte-regelen og deleregelen. a b c Gangeregelen NB! Du kan gange med det samme tallet på begge sider av Eksempel 7 Løs likningen Vi ganger på begge sider med tallet som er delt med. 16 a 8 b 3 7 c 75, 84, , 75,

10 4 Likninger NB! + ganger + gir + ganger gir + + ganger gir ganger + gir 17 a 8 b 6 4 c 4,8 1,5 ( 8) 6 4 1,5 ( 4,8) 18 Løs likningen 5, 84,. Skriv opp likningen Gang på begge sider med tallet er delt med Forkort og regn ut Eksempel 8 Løs likningen Gangeregelen

11 Likninger 5 19 a 3 4 b 5 6 c a b c 3 1,5 3,5 7 d 35 7

12 6 Likninger Potenslikninger NB! k har løsningen k. Undersøk hvor du finner kvadratrottasten på kalkulatoren din. Eksempel 9 Løs likningen Ta kvadratroten 5,1 Regn ut og rund av til én desimal 1 a 9 b 11 Ta kvadratroten Regn ut og rund av c 100 d 1000

13 3 Formler Eksempel 1 Gjennomsnittsfarten er v. Tilbakelagt strekning er s. Tiden er t. s Dette gir formelen v. t a Håvard sykler 6 km på timer. Hva er gjennom snittsfarten? s 6 a v t 3 Gjennomsnittsfarten er 3 km/h. b John sykler 6 km på en halvtime. Hva er gjennomsnittsfarten? s 6 b v t 05, 1 Gjennomsnittsfarten er 1 km/h. Legg merke til at å dele med 0,5 er det samme som å gange med. 301 a Nanna sykler 0 km på timer. Hva er gjennomsnittsfarten? s v t Gjennomsnittsfarten er. b Markus sykler 8 km på en halvtime. Hva er gjennomsnittsfarten?

14 8 3 Formler 30 Den årlige energiproduksjonen fra en type vindmølle er gitt ved formelen E 015, l E er den årlige produksjonen målt i kwh. l er lengden av vingene målt i cm. Regn ut den årlige produksjonen når lengden av vingene er a 50 cm Svar: b 60 cm E 0,15 Produksjonen er kwh. Produksjonen er kwh. 303 Makspulsen for friske voksne mennesker kan en finne ved å bruke formelen M 11 0,64 M er makspulsen i antall slag per minutt. er alderen i år. Hva er makspulsen ved alderen a 16 år Svar: b 0 år M , Makspulsen er slag per minutt. Makspulsen er slag per minutt. 304 Strømmen til en frysedisk blir slått av. Vi antar at timer etterpå er temperaturen gitt ved T 050, 0. Her er T målt i C. a Hva er temperaturen idet strømmen blir slått av? b Hva er temperaturen 8 timer etter at strømmen blir slått av? Svar: Temperaturen er C. c Hva er temperaturen 40 timer etter at strømmen blir slått av?

15 3 Formler t Noen dyr settes ut på en øy. Etter t år er antallet dyr N gitt ved formelen N ,. a Hvor mange dyr er det etter 5 år? b Hvor mange dyr ble satt ut på øya? Proporsjonalitet NB! Når to størrelser og y øker i samme i takt, kan vi skrive y k, der k er et fast tall. Tallet k kaller vi proporsjonalitetskonstanten. Eksempel Elin tjener 10 kr per time. Vi lar y kr være lønna når hun jobber timer. Er og y proporsjonale størrelser? Sammenhengen mellom y og kan vi skrive slik: y 10 og y er derfor proporsjonale størrelser. Proporsjonalitetskonstanten er Parth tjener 140 kr per time. a Skriv sammenhengen mellom lønna y kr og antall timer han jobber. b Er lønna y kr og antall timer han jobber, proporsjonale størrelser? c Hva er proporsjonalitetskonstanten? 307 I en butikk koster laksekaker 110 kr per kg. a Er prisen y kr proporsjonal med vekten kg vi kjøper? b Hva er proporsjonalitetskonstanten?

16 30 3 Formler 308 Vi setter kursen for euro lik 7,50. Sammenhengen mellom euro og y norske kroner er da y 750,. a Hva koster 10 euro? b Er norske kroner og euro proporsjonale størrelser? c Hva er proporsjonalitetskonstanten? g 3_3 309 Maria tjener 150 kr per time. Formelen for lønna til Maria er y 150. Vi tegner grafen til formelen for lønna. y y Bruk figuren til å finne y når 4. Regn ut y. y Av figuren ser vi at y 600 når 4. y a Bruk figuren til å finne y når 3. Regn ut y. y når 3 y b Bruk figuren til å finne y når. Regn ut y. y når y y I oppgave 309 er forholdet lik timelønna til Maria, som altså er 150 kr.

17 3 Formler 31 NB! Når og y er slik at y er fast tall, er y og proporsjonale. En graf som viser sammenhengen mellom to proporsjonale størrelser, vil alltid være en rett linje som går gjennom origo. Eksempel 3 I en kjøttdisk ligger det forskjellige pakker med karbonadedeig. Tabellen viser vekten m i kg og prisen P i kroner for pakkene. m (kg) 0,4 0,6 0,75 P (kr) 44,00 66,00 8,50 Er prisen og vekten proporsjonale størrelser? Hva er proporsjonalitetskonstanten? P m 44 04, 110 P m 66 06, 110 P m 8, , P m er konstant. Prisen og vekten er proporsjonale størrelser. Proporsjonalitetskonstanten er Vaskepulveret Superrent selges i pakninger på 0,5 kg, 0,8 kg og 1, kg. Vekt m i kg 0,5 0,8 1, Pris P i kr 0,00 3,00 48,00 a Er prisen og vekten proporsjonale størrelser? P m P m P m b Hva er kiloprisen på Superrent?

18 3 3 Formler 311 I en butikk finner vi paprika i pakninger med forskjellig vekt. Tabellen viser vekten og tilsvarende pris. Vekt m i kg 0,5 0,30 0,35 Pris P i kr 6,30 7,56 8,8 a Regn ut P for hver av de tre pakningene. m Hvis prisen og vekten skal være proporsjonale størrelser, må de tre for holdene du fant i oppgave a, være like. b Er prisen og vekten proporsjonale størrelser? c Hva er proporsjonalitetskonstanten, og hva sier den? Fig_3_0 31 Grafen viser bensinforbruket for en bil i antall liter y når bilen kjører mil. 6 y liter antall mil a Regn ut y når 4.

19 3 Formler 33 b Regn ut y når 8. c Er y og proporsjonale størrelser? d Sett opp en formel som viser hvor mye (y liter) som går med på en mil lang tur. e Hvor mye bensin går med på en 0 mil lang tur? Fig 3_4 313 a b c Figur 1 Figur Figur 3 y y y Er det noen av grafene som viser sammenhengen mellom proporsjonale størrelser? Begrunn svaret. Hva er i tilfellet proporsjonalitetskonstanten? Svar:

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen

Detaljer

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Matematikk 1P. forenklet

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Matematikk 1P. forenklet Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL Matematikk P forenklet 0 Funksjoner Funksjoner Koordinatsstemet Andreaksen (-aksen) På figuren til venstre ser du et vanlig koordinatsstem. Den vannrette

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

1P kapittel 2 Algebra

1P kapittel 2 Algebra 1P kapittel Algera Løsninger til oppgavene i oka.1 a a+ a a 5+ 4 9 c 8c 6c c d d d 0d 0. a + + 5+ 4+ 10 c 5 9 4 d 4 7. a 7 5+ + 8 5+ 8+ 7 + + 10 5y+ + y + 5y+ y 4 4y c 8y 8y + 8y 8y 4+ 0y 4.4 7r+ 10h+

Detaljer

( ) = ( ) = ( ) = + = ( ) = + =

( ) = ( ) = ( ) = + = ( ) = + = 6. Lineær modell I modell A (foregående side) la vi til grunn en tanke om like stor tilvekst pr. tidsenhet. Vi kan lage tabell: År 989 990 99 992 993 994 År etter 989 0 2 3 4 5 Antall elever 00 5 30 År

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, så regner symbolsk. Det vil si at

Detaljer

I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger "gratis").

I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger gratis). 1P 2012 høst LØSNING DEL EN Oppgave 1 Butikk A : I butikk A koster druene 100 kroner. (Du betaler for to beger = en kg, og får siste beger "gratis"). Butikk B: Oppgave 2 I butikk B koster druene 10 kr.

Detaljer

1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter

1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter 1 Tall og enheter KATEGORI 1 1.1 Regnerekkefølge Oppgave 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgave 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgave 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4 Oppgave 1.113

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Matematikk 1P. Hellerud videregående skole

Matematikk 1P. Hellerud videregående skole Matematikk 1P Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 1P. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være ganske

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Markus har vært på Island. I banken betalte han 5,25 norske kroner for 100 islandske kroner (ISK). Land Kode Kurs Island ISK 5,25 a) Markus besøkte Hallgrimskirka

Detaljer

-!4%-!4)++5.$%23 +%,3%.

-!4%-!4)++5.$%23 +%,3%. 6EDLEGG -!4%-!4)++5.$%23 +%,3%. Dette er en undersøkelse om forkunnskaper hos nye studenter. Den blir gjennomført ved alle universiteter og høgskoler i Norge. Ansvarlig for undersøkelsen er Norsk Matematikkråd.

Detaljer

Kapittel 3. Praktisk regning med målenheter

Kapittel 3. Praktisk regning med målenheter Kapittel 3. Praktisk regning med målenheter I praktiske oppgaver må du ofte regne med målenheter. For eksempel kan lengder måles i meter, masser i kg, volumer i liter og temperatur i grader celsius. Men

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Tema: Tall og algebra Kunne skrive tall på ulike måter. Skrive veldig store og små tall

Detaljer

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co.

MATEMATIKK Yrkesfag TALL I ARBEID P. Odd Heir / John Engeseth / Håvard Moe. Bokmål. Tall i arbeid P H. Aschehoug & Co. MATEMATIKK Yrkesfag TALL I ARBEID P Odd Heir / John Engeseth / Håvard Moe Bokmål Del 1 av 4 Dette er en elektronisk versjon av læreboka til bruk på skoler som har undertegnet en avtale med Aschehoug forlag

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Eneeth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkefa BOKMÅL 6 Pytaoraetninen I en rettvinklet trekant er den ene vinkelen 90. katet hypotenu Den lente iden kaller vi hypotenu. De

Detaljer

Prøveinformasjon. Høsten 2014 Bokmål

Prøveinformasjon. Høsten 2014 Bokmål Høsten 2014 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

Eksamen 25.05.2010. MAT0010 Matematikk Elever (10. årstrinn) Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 25.05.2010. MAT0010 Matematikk Elever (10. årstrinn) Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 25.05.2010 MAT0010 Matematikk Elever (10. årstrinn) Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Delprøve 1. 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han?

Delprøve 1. 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han? Delprøve 1 OPPGAVE 1 a) 1) Hvor mye er 3 delt på 1 2? 2) Per kjøper 17 skruer à kr 11,70 og 17 muttere à kr 8,20. Hvor mye betaler han? b) Når temperaturen i Rjukan er 16 o C, kan temperaturen x meter

Detaljer

Terminprøve i matematikk for 10. trinn

Terminprøve i matematikk for 10. trinn Terminprøve i matematikk for 10. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr 4 Hvordan du regner med bokstaver, likninger og formler (elementær algebra) Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com 1 Opplsning: Faste,

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng)

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng) Høsten 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

TERMINPRØVE SINUS 1M

TERMINPRØVE SINUS 1M TERMINPRØVE SINUS 1M Høsten 2005 Fellesoppgaver Oppgave 1 a) Regn ut. 1) 5 3 2 2) 3 2 4( 3 1) 3) 2 3( 2) + 2( 6 4) b) Skriv desimaltallene som brøker og forkort mest mulig. 1) 0,25 2) 1,325 c) Regn ut

Detaljer

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner Faktor 9 Grunnbok Bokmål Hei til deg som skal bruke Faktor! Dette er Faktor 9 Grunnbok. Til grunnboka hører det en oppgavebok. Her ser du ungdommene

Detaljer

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen

Detaljer

Sinus 1P Y > Tall og mengde

Sinus 1P Y > Tall og mengde 1 Book Sinus 1P-Y.indb Sinus 1P Y > Tall og mengde 2014-07-2 14:47:09 Tall og mengde MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale

Detaljer

Kapittel 5. Regning med forhold

Kapittel 5. Regning med forhold Kapittel 5. Regning med forhold Forholdet mellom to tall betyr det ene tallet delt med det andre. Regning med forhold er mye brukt i praktisk matematikk. I dette kapitlet skal vi bruke forhold i blant

Detaljer

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del

Detaljer

Læreplan i matematikk. Kompetansemål etter 10. årstrinn

Læreplan i matematikk. Kompetansemål etter 10. årstrinn Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med

Detaljer

Hastigheten til bob-en er 120 km/t. Hva vil det si?

Hastigheten til bob-en er 120 km/t. Hva vil det si? Hastigheten til bob-en er 120 km/t. Hva vil det si? 12 Hm, ett britisk pund koster 11,45 kr! Sammensatte enheter MÅL I dette kapitlet skal du lære om fart priser lønn valuta KOPIERINGSORIGINALER 12.1 Felles

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer

Lineære funksjoner - Elevark

Lineære funksjoner - Elevark Lineære funksjoner - Elevark -Navn: Oppgave 1 a) Hva koster det å reise for to personer? b) Hvor mange kan reise for 160 kr? c) Hva koster en billett? d) Vi kaller antall personer for x, og utgiftene for

Detaljer

Eksamen 1P, Høsten 2011

Eksamen 1P, Høsten 2011 Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med utdelt materiell Tone Elisabeth Bakken Dag 2 6.februar 2014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til

Detaljer

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål Eksamen 20.05.2011 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2 Bokmål Eksamensinformasjon for Del 2 Eksamenstid Hjelpemidler til Del 2 09.00 14.00, totalt 5 timer Del

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014

Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Hjemmearbeid matematikk eksamensklassen Ark 29 Leveres mandag 24. mars 2014 Løsningsforslag Oppgave 1. Regn ut. a) 3 2 + 5 (10 6) = 9 + 5 (4) = 9 + 20 = 29 b) -1 4 (-2) 3 + = -1 (-8) + 6 = 8 + 6 = 14 c)

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høsten 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksempel på løsning DEL 1

Eksempel på løsning DEL 1 Eksempel på løsning DEL 1 Eksamen MAT0010 Matematikk 10. årstrinn (Elever) 0.05.011 Bokmål Innledning Formålet med Eksempel på løsning av Del 1 i Eksamen MAT0010 Matematikk, 10. årstrinn, er blant annet

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Matematikk 2P-Y. Hellerud videregående skole

Matematikk 2P-Y. Hellerud videregående skole Matematikk 2P-Y Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 2P-Y. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være

Detaljer

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014 ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal

Detaljer

Scooter/moped Motorsykkel Thales

Scooter/moped Motorsykkel Thales Eksamen 20.05.2011 MAT0010 Matematikk 10. årstrinn (Elever) Del 2 Scooter/moped Motorsykkel Thales Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt. Del 1 og Del 2 skal

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Sinus 1P > Tallregning og algebra

Sinus 1P > Tallregning og algebra 1 Book Sinus 1P.indb Sinus 1P > Tallregning og algebra 01-0- 1:: Tallregning og algebra MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten

Detaljer

Eksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 25.11.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Grunnskoleeksamen 2002. Innholdsfortegnelse

Grunnskoleeksamen 2002. Innholdsfortegnelse Grunnskoleeksamen 2002 Innholdsfortegnelse Delprøve 1...1 Oppgave 1 (2p)...1 Oppgave 2...1 Oppgave 3...1 Oppgave 4...2 Oppgave 5...2 Oppgave 6...2 Oppgave 7 (1p)...3 Oppgave 8 (1p)...3 Oppgave 9 (1p)...4

Detaljer

Vet du hva vi kan bruke et regneark på pc-en til?

Vet du hva vi kan bruke et regneark på pc-en til? Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Eksamen 1P, Våren 2011

Eksamen 1P, Våren 2011 Eksamen 1P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Markus har vært på Island. I banken betalte

Detaljer

Eksempeloppgave 1 2008

Eksempeloppgave 1 2008 Eksempeloppgave 1 2008 MAT0010 Matematikk Elever i grunnskolen (10.årstrinn) Eksamen våren 2009 DEL 2 Pytagoras Tusenfryd Bokmål Bokmål Eksamensinformasjon for del 2 Eksamenstid: Hjelpemidler på del 2:

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Høsten 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Løsningsforslag til Eksamen 2P vår 2010 14 1 0,86 100

Løsningsforslag til Eksamen 2P vår 2010 14 1 0,86 100 Delprøve 1 OPPGAVE 1 a) 41,5 liter avrundet til 40 liter. 509,6 kroner avrundet til 500 kroner. 500 50 5 1,5 40 4 Ved å gjøre overslag ser vi at Liv må ha bensinbil. b) 4 3 3 3 1 16 5 4 3 5 16 1 5 5 3

Detaljer

Løsning eksamen 2P våren 2010

Løsning eksamen 2P våren 2010 Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,

Detaljer

Hverdagsmatte Fasit side 1

Hverdagsmatte Fasit side 1 Hverdagsmatte Fasit side 1 Del 1 Grunnleggende regning Tall Oppgave 1.16 Legge sammen og trekke fra Oppgave 1.19 a) 9 b) 6 c) 9 d) 9 e) 14 f) 10 g) 12 h) 13 Oppgave 1.20 a) 68 b) 189 c) 599 Oppgave 1.21

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt kan du maksimalt innta

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Universell Matematikk Ungdom etter læreplanmål

Universell Matematikk Ungdom etter læreplanmål Universell Matematikk Ungdom etter læreplanmål Læreplanmål Kapittel Innhold Tall og algebra Sammenligne og regne med hele tall, desimaltall, brøk, prosent, promille, tall på standardform og uttrykke slike

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

Øvingshefte. Velge regneart

Øvingshefte. Velge regneart Øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1

Detaljer

Kopieringsoriginal 1. 3x 2y x + 2y. x y. 2 + x. x + y. 4y 3x. Start/mål. y 2x. x ( y) 0 x + y 2x 2y. x + y. x + y

Kopieringsoriginal 1. 3x 2y x + 2y. x y. 2 + x. x + y. 4y 3x. Start/mål. y 2x. x ( y) 0 x + y 2x 2y. x + y. x + y Kopieringsoriginal 1 Algebraløpet Spill sammen to og to. Spillerne plasserer hver sin spillebrikke på startfeltet og slår to terninger med forskjellig farge annenhver gang. Den ene terningen representerer

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra 1 Tallregning og algebra + ØV MER 1.1 REGNEREKKEFØLGE Oppgave 1.1 a) b) 8 c) ( ) + 8 d) ( ) ( ) + Oppgave 1.111 a) b) + c) + d) 7 8 e) + f) Oppgave 1.11 a) ( + ) b) ( 1) c) ( 7) d) ( 9 8) e) ( ) f) (8

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets

Detaljer

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning Øyslebø oppvekstsenter ÅRSPLAN 2015-2016 Fag: Matematikk Trinn: 9. klasse Lærer: Tove Mørkesdal og Tore Neerland Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker,

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1(16 poeng) a) Bruk overslagsregning til å løse oppgave 1) og 2) nedenfor. 1) På flyplassen i Amsterdam koster en mp3-spiller 210 euro. En euro koster 8,33 norske kroner.

Detaljer

3 Formler, likninger og ulikheter

3 Formler, likninger og ulikheter Formler, likninger og ulikheter KATEGORI 1.1 Likninger Oppgave.110 4 + 4x = x + 8 5x 6 = 4x 5 1 x = x + 1 d) x = x 5 Oppgave.111 x + x = x 4 5x = x 14 x 1 = 4x + 4 d) x + x = 0 Oppgave.11 x = 4x 10 x 8

Detaljer

Kapittel 5. Lineære funksjoner

Kapittel 5. Lineære funksjoner Kapittel 5. Lineære funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. I dette kapitlet repeterer vi stoffet om lineære funksjoner

Detaljer

Faktor. Terminprøve i matematikk for 9. trinn. Våren 2008 bokmål. Delprøve 1. Navn:

Faktor. Terminprøve i matematikk for 9. trinn. Våren 2008 bokmål. Delprøve 1. Navn: Faktor Terminprøve i matematikk for 9. trinn Våren 2008 bokmål Navn: Oppgavesettet består av tre deler som alle skal besvares. Bruk blyant på figurer og konstruksjoner - ellers bruker du sort eller blå

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Løsning del 1 utrinn Vår 10

Løsning del 1 utrinn Vår 10 /15/016 Løsning del 1 utrinn Vår 10 - matematikk.net Løsning del 1 utrinn Vår 10 Contents Oppgave 1 4 + 465 = 799 854 8 = 56 c) d) 64 :4 = 66 Oppgave c) d)650 g = 650 : 1000 kg = 6,50kg Oppgave 4, 7 =

Detaljer

Eksamen 2P, Våren 2011

Eksamen 2P, Våren 2011 Eksamen 2P, Våren 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (20 poeng) a) Skriv på standardform 1) 36 200 36200 3,62

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Årsplan matematikk 9. klasse skoleåret 2015/2016

Årsplan matematikk 9. klasse skoleåret 2015/2016 Årsplan matematikk 9. klasse skoleåret 01/01 Læreverk: Faglærer: Grunntall, Elektronisk Undervisningsforlag AS Heidi Angelsen Arbeidsmåter Skriftlig oppgaveløsing, individuelt og i gruppe Muntlig bruk

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer