KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK"

Transkript

1 Sid av 7 NTNU Norgs tknisk-naturvitnskapig univrsitt Fakutt for informasjonstknoogi, matmatikk og ktrotknikk Institutt for datatknikk og informasjonsvitnskap KONTINUASJONSEKSAEN I ENE TDT495 BILDETEKNIKK ANDAG 6. AUGUST 27 KL LØSNINGSFORSLAG - GRAFIKK OPPGAVE Grafikk Paraprojksjonr ( 5 pong ) ( p, p, ) α Projksjonspan φ (,, vp ) (,, ) Figur

2 Sid 2 av 7 a) d gitt objkt r dt to fundamnta bsutningr som må tas for at n paraprojksjon ska vær ntdig: Passring av projksjonspan Fastgg projksjonsrtning b) Enhtsvktorn par i projksjonsrtningn har samm rtning som injn fra punktt (,, ) ti punktt (,, ). -komponntn av nhtsvktorn må da bi: ( par ) = sinα p p vp Komponntn av nhtsvktorn i projksjonspant bir. ( par ) = cosα vp Komponntn i hnhodsvis - og -rtningn bir drmd: ( par ) = cosα cosφ ( par ) = cosα sinφ Dn søkt nhtsvktorn i projksjonsrtningn bir: cos cos cos sin sin T par = α φ α φ α [ ] (Sidn dnn vktorn at r n nhtsvktor, trngr dn ikk normaisring.) c) Lngdn L av injstkkt fra punktt (,, vp ) ti punktt ( p, p, vp) r: L = = D søkt projisrt koordinatn bir: p = + Lcosφ = + cosφ p = + Lsinφ = + sinφ

3 Sid 3 av 7 d) d: p = vp i tigg, gir dtt føgnd matris for avbidning i projksjonspant: para cosφ cosφ sinφ sinφ = OPPGAVE 2 Grafikk Gomtrisk transformasjonr ( 5 pong ) ω 2 r ω P() t R Figur 2 a) I dtt tift iggr rotasjonsaksn fast. Føgnd pan r n av fr muig ti å bsvar doppgavns spørsmå:. Transr sik at aksn går gjnnom origo 2. Rotr sik at aksn bir iggnd angs -aksn 3. Rotr md vinkn ω t om -aksn 4. Utfør dn invrs transformasjonn av punkt 2 5. Utfør dt invrs transformasjonn av punkt

4 Sid 4 av 7. Transr sik at aksn går gjnnom origo Sidn kuas sntrum forbir i utgangsposisjonn, som r på -aksn, r føgnd transasjon gnt: R = 2. Rotr sik at aksn bir iggnd angs -aksn Vi vgr å utntt gnskapn ti ortogona matrisr. Vi tnkr oss t koordinatsstm ' ' ' md ' -askn angs dn transrt -aksn og ' -aksn iggnd i pant = (vikårig mn hnsiktsmssig vag). Vi trngr aksnhtsvktorn. Enhtsvktorn angs ' -aksn r: T ' = ' ' ' = T Sidn ' -aksn iggr i pant = får vi: ' ' ' T = ' r nhtsvktor og r ortogona ti ' ' ' = ' + ' = = + = ' ' ' ' ' ' hvikt gir: Dtt r t ikningssstm md to ukjnt som vi kan skriv om sik: ' = 2 2 ' ' [ + ( ) ] =

5 Sid 5 av 7 Vi har forutsatt av. Hr r dt ikgdig om vi vgr dn positiv r ngativ øsningn av ovnstånd andrgradsikning. Vi vgr dn positiv og får: ' ' ' = = + ( ) = = Komponntn av dn trdj nhtsvktorn = = ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' = = = = ' ' = ' ' ' ' = = Dn søkt rotasjonsmatrisn bir: fås av vktorproduktt: 2 ' ' ' ' ' ' + + = = ' ' ' + + +

6 Sid 6 av 7 3. Rotr md vinkn ω t om -aksn atrisn bir: cos( ωt) sin( ωt) 3 = sin( ωt) cos( ωt) 4. Utfør dn invrs transformasjonn av punkt T 4 = 2 = 2 = Utfør dn invrs transformasjonn av punkt R = = 5 atrisn konkatnrs i dnn rkkføgn: ω 2 = = b) Kuas sntrum rotrr om -aksn i avstandn R fra origo. Posisjonn ti kuas sntrum vd tidn t brgns vd bruk av dnn rotasjonsmatrisn: cos( ω2t) sin( ω2t) sin( ω t) cos( ω t) 6 =

7 Sid 7 av 7 Posisjonn av kusntrt vd tidn t bir da: cos( ω t) sin( ω t) R Rcos( ω t) 2 sin( ω2t) cos( ω2t) Rsin( ω2t) Psntr () t = 6 Psntr () = = Sidn rotasjonsaksn har fast orintring i rommt uavhngig av kuas banbvgs, kan posisjonn ti punktt P vd tidn t finns vd å anvnd transformasjonn ti 4 fra doppgav a). Transasjonn 5 rstatts md transasjonn 7 som bringr kusntrt ti dn posisjonn dt har vd tidspunktt t: 7 R cos( ω2t) Rsin( ω t) 2 = sik at konkatnringsføgn for dtt tift bir: ω2 = rk at drsom ω 2 = bntts som t først stg og kusntrt drttr brings ti sin ndig posisjon md n rotasjon om -aksn, bir rsutatt fi. d n sik frmgangsmåt vi orintringn av rotasjonsaksn ndr sg. c) Posisjonn Pt ( ) brgns hnhodsvis som: Pt () = P() ω = 2 og Pt () = P() ω 2 d) Probmt som oppstår når punktt P iggr på rotasjonsaksn r at vinkposisjonn om aksn vi vær udfinrt. Dtt vi kunn før ti probmr vd vidr animasjon.

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

Eksempel B Knekklengde av søyle leddlagret i begge ender, konstant aksiallast og konstant stivhet

Eksempel B Knekklengde av søyle leddlagret i begge ender, konstant aksiallast og konstant stivhet 58 B5 RAMMEFORMLER, KEKKLEGDER, VRIDD AVSRTIVIG 5. MODELLSØYLEMETODE BRUKT TIL Å BESTEMME KEKKLEGDER Mtodn går kort ut på å gi søn r søn i ksmpn n utbøning =. Dt kn mn gjør fordi knkning r krktrisrt bnt

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

B15 TILLEGG: RAMMEFORMLER, KNEKKLENGDER, VRIDD AVSTIVNING

B15 TILLEGG: RAMMEFORMLER, KNEKKLENGDER, VRIDD AVSTIVNING B5 TILLEGG: RAMMEFORMLER, KEKKLEGDER, VRIDD AVSTIVIG 5. MODELLSØYLEMETODE BRUKT TIL Å BESTEMME KEKKLEGDER Mtodn går kort ut på å gi søn r søn i ksmpn n utbøning =. Dt kn mn gjør fordi knkning r krktrisrt

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, matematikk og informatikk Fredag 1. desember 2000 Tid:

BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, matematikk og informatikk Fredag 1. desember 2000 Tid: Sid av 5 Nrgs tknisk-naturvitnskaplig univrsitt Institutt fr fysikk Faglig kntakt undr ksamn: Navn: Ola Hundri Tlf.: 934 BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultt fr fysikk, matmatikk

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

hvor A er arealet på endeflaten. Ladningen innesluttet av den valgte Gaussflaten: Q.E.D.

hvor A er arealet på endeflaten. Ladningen innesluttet av den valgte Gaussflaten: Q.E.D. LØSNNGSFORSLAG EKSAMEN EMNE SF5 FYSKK Fo kjmi og mtitknoogi Onsdg 6. ugust k. 9... Oppgv. z fuksintgt fo d to ndftn: EdA E A, Dt ktisk ftt undt n undig sto pt finns vd å uk Guss ov. Rtningn på dt ktisk

Detaljer

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 10. september 2014

Oppgaver MAT2500. Fredrik Meyer. 10. september 2014 Oppgaver MAT500 Fredrik Meyer 0. september 04 Oppgave. Bruk forrige oppgave ti å vise at hvis m er orienteringsreverserende, så er m en transasjon. (merk: forrige oppgave sa at ae isometrier er på formen

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK MANDAG 2. AUGUST 2004 KL LØSNINGSFORSLAG - GRAFIKK

KONTINUASJONSEKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK MANDAG 2. AUGUST 2004 KL LØSNINGSFORSLAG - GRAFIKK Si av 9 TU ogs tknisk-natuvitnskalig univsitt Fakultt fo infomasjonstknologi, matmatikk og lktotknikk Institutt fo atatknikk og infomasjonsvitnska KOTIUASJOSEKSAE I EE TDT95/SIF83 BILDETEKIKK ADAG. AUGUST

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

LØSNING AV EKSAMEN I EMNE TKT 4123 MEKANIKK 2

LØSNING AV EKSAMEN I EMNE TKT 4123 MEKANIKK 2 LØSNNG A EKSAMEN EMNE TKT MEKANKK Tirsdag 6. ai 9 Oga F F F Dforasjon a innkragt bjk (tab 5 F F x og x, hor x r utsing E E t ti d tynn søyn og x r utsingt ti dn idtrst søyn. E Ech Dt gir: F x x og E Ec

Detaljer

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD Kap. DIMNSJONRINGSPRINSIPPR INNHOLD. Innldning. lting vd nakst spnningstilstand. lting vd to akst spnningstilstand. Mohrs sirkl 5. lthpotsr Når bgnnr flting? 6. Inhomogn spnningstilstand MSK0 Maskinkonstruksjon

Detaljer

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016. Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for

Detaljer

Oppgave 1 (15%) KANDIDAT NR.:

Oppgave 1 (15%) KANDIDAT NR.: ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

VT 265 VT 295. www.whirlpool.com

VT 265 VT 295. www.whirlpool.com VT 265 VT 295.hirlpool.com 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som

Detaljer

VT 261 www.whirlpool.com

VT 261 www.whirlpool.com VT 261.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som r plassrt

Detaljer

Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger

Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 007 Løsninger 1a En konjugasjonskasse i SO(3 består av ae rotasjoner med en gitt rotasjonsvinke α og vikårig rotasjonsakse. En konjugasjonskasse i

Detaljer

hele egg, verken med reduserte fysiske, sensoriske eller mentale evner, eller mangel

hele egg, verken med reduserte fysiske, sensoriske eller mentale evner, eller mangel VIKTIGE SIKKERHETSANVISNINGER LESES NØYE OG OPPBEVARES FOR FREMTIDIG REFERANSE IKKE VARM OPP ELLER BRUK BRANNFAR- EGG LIGE MATERIALER i llr nær ovnn. IKKE BRUK MIKROBØLGE- Dampn kan forårsak brann llr

Detaljer

Postboks 133 Sentrum 7901 RØRVIK KOM 1750 V I K N A. vikna@vikna.kommune.no. www.vikna.kommune.no

Postboks 133 Sentrum 7901 RØRVIK KOM 1750 V I K N A. vikna@vikna.kommune.no. www.vikna.kommune.no S k j mr ua t f ya lv t Fornavn Ettrnavn Fødslsdato Informasjon om søkr N N E - U T H J N G D - En søknad må altid ha én søkr som har ansvart, slv om flr samarbidr om prosjktt. - Tilskudd som Hlsditoratt

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

JT 366 www.whirlpool.com

JT 366 www.whirlpool.com JT 366.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud Eldr i Vrdal Mulightr Rttightr Aktivittr/tilbud Eldrrådt Omsorg og vlfrd Omsorg og vlfrd i Vrdal r dlt inn i to virksomhtsområdr: Øra omsorg-og vlfrdsdistrikt Vinn og Vuku omsorg-og vlfrdsdistrikt Hva

Detaljer

Optimal pengepolitikk hva er det?

Optimal pengepolitikk hva er det? Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk

Detaljer

Løsning til seminar 5

Løsning til seminar 5 Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

VG2 Naturbruk Hest Stalldrift

VG2 Naturbruk Hest Stalldrift VG2 Naturbruk Hst Stalldrift Årsplan i Vg2 Hst- og hovslagrfag vd Stnd vidargåand skul for skolårt 2010-2011. Innhold: Prsntasjon av tilbudt. Fag og timfordling. Plan for når vi skal jobb md d ulik tman

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form Esamn i SIF4 Fsi 7. smb 999 LØYSINGAR Oppgav a S [ÃÃÃÃÃÃÃ[Ã [ S DVVHÃ ÃÂÃ [ÃÃ$NVHOHUDVMRQÃ t Kaft opp: S sinα -Ssinα S α S S Nwtons. lov gi som bølgjlininga, av fom S µ t µ S t v t m v bølgjfat som v v

Detaljer

Kvalitetssikring ved Ifi. Undervisningsplan

Kvalitetssikring ved Ifi. Undervisningsplan Forsr: Vkommn Dino Karabg, Stin Krogdah, Pttr Kristiansn dino@ifi.uio.no stinkr@ifi.uio.no pttkr@ifi.uio.no Gruppærr: Vkommn Dg? post@studnt.matnat.uio.no Lærbok: Agorithms: Squntia, Para, and Distributd,

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Løsningsforslag til øving 10

Løsningsforslag til øving 10 FY11/TFY4145 Meanis fysi. Institutt for fysi, NTNU. Høsten 211. Løsningsforslag til øving 1 Vi utleder aller først ligningen som fastlegger vinelen φ r, dvs overgangen fra ren rulling til sluring. N2 for

Detaljer

Brukerhåndbok. Elektronisk målesystem. KPR 2000 Versjon 01/2011

Brukerhåndbok. Elektronisk målesystem. KPR 2000 Versjon 01/2011 Brukrhåndbok Ektronisk måsystm KPR 2000 Vrsjon 01/2011 W rsrv th right for tchnica changs and mistaks Norway g - KPR2000-Brukrhåndbok u n d Tfon +47 67166990 Tfax J +47 67166811 E-Mai: Post@brttvitajr.no

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matmati V-8 Løsigsorslag til øvig 7 OPPGVE Liigssttt på matrisorm: t b t y. t z t Et liært og vadratis liigsstt ar tydig løsig vis og bar vis dt Drsom dt må ølglig liigssttt a dlig mag løsigr llr ig løsig.

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal

Detaljer

Håndlaget kvalitet fra Toten. For hus og hytte

Håndlaget kvalitet fra Toten. For hus og hytte Håndlagt kvalitt fra Totn For hus og hytt Md stolpr Md Kloppn-søylr S forskjlln! Vakr fasadr md Kloppn-Søyla Bærnd laminrt søyl i tr Kloppn-søyln r n limtrkonstruksjon i gran av god kvalitt. Dtt gir god

Detaljer

KONTINUASJONSEKSAMEN I FAG SIF8039 GRAFIKK, BILDEBEHANDLING OG MENNESKE-MASKINGRENSESNITT ONSDAG 31. JULI 2002 KL

KONTINUASJONSEKSAMEN I FAG SIF8039 GRAFIKK, BILDEBEHANDLING OG MENNESKE-MASKINGRENSESNITT ONSDAG 31. JULI 2002 KL Sid a NTNU Norgs tknisk-naturitnskaplig unirsitt Fakultt for informasjonstknologi, matmatikk og lktrotknikk Institutt for datatknikk og informasjonsitnskap KONTINUASJONSEKSAMEN I FAG SIF89 GRAFIKK, BILDEBEHANDLING

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

Elevtallsgrunnlag Verdal kommune Jon Marius Vaag Iversen Trainee Innherred Samkommune

Elevtallsgrunnlag Verdal kommune Jon Marius Vaag Iversen Trainee Innherred Samkommune Evtagunnag Vda kommun.. Jon Maiu Vaag Ivn Tain Innhd Samkommun Poitik vdtak ommuntymøtt Novmb VEDTA: Vuku oppvktnt utbygg fo to paa ( v) på ungdomtinnt innnfo n kotnadamm på mi. kon Vdaøa ungdomko nov

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

JT 369 www.whirlpool.com

JT 369 www.whirlpool.com JT 369.hirlpool.com 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN AUGUST 2006

LØSNINGSFORSLAG TIL EKSAMEN AUGUST 2006 NTNU Norgs tknisk-naturvitnskaplig univrsitt Fakultt for naturvitnskap og tknologi Institutt for matrialtknologi Sksjon uorganisk kjmi TMT4110 KJEMI LØSNINGSFORSLAG TIL EKSAMEN AUGUST 2006 OPPGAVE 1 a)

Detaljer

Produktspesifikasjon S100 Kartdata, versjon oktober 2015. Produktspesifikasjon: S100 Kartdata

Produktspesifikasjon S100 Kartdata, versjon oktober 2015. Produktspesifikasjon: S100 Kartdata Produktspsifikasjon S100 Kartdata, vrsjon oktobr 2015 Produktspsifikasjon: S100 Kartdata Norsk Polarinstitutt Vrsjon oktobr 2015 Produktspsifikasjon S100 Kartdata, vrsjon oktobr 2015 Norsk Polarinstitutt

Detaljer

april 2017 En av norges artigste cuper! GRATIS PIZZA GRATIS HOTELL - GRATIS DISCODANCEPARTY

april 2017 En av norges artigste cuper! GRATIS PIZZA GRATIS HOTELL - GRATIS DISCODANCEPARTY 28. 30. apri 2017 En av norgs artigst cupr! GRATIS PIZZA GRATIS HOTELL - GRATIS DISCODANCEPARTY VELKOMMEN Vkommn ti Mod by, Roscup og n hg md idrttsgd! Roscup r mr nn bar håndba. Gjnnom, unik oppvsr og

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00 Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

Plan. I dag. Neste uke

Plan. I dag. Neste uke Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

ØVING 2: DIMENSJONERING MHT KNEKKING. Likevekt: Momentlikevekt om punkt C (venstre del av figur (b)): M +Hx - Fy = 0 M = Fy - Hx. Fy EI. Hx EI.

ØVING 2: DIMENSJONERING MHT KNEKKING. Likevekt: Momentlikevekt om punkt C (venstre del av figur (b)): M +Hx - Fy = 0 M = Fy - Hx. Fy EI. Hx EI. MSK0 Masiosrusjo ØSNINGSOSG TI ØVINGSOPPGV Kap. Oppgav.5.8 ØVING : DIMNSJONING MT KNKKING Oppgav.5 a) Uldig av ulr ilfll III iv: Momliv om pu C (vsr dl av figur ()): M +x - y 0 M y - x Vi v fra fashslær

Detaljer

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Forelesning uke 36 Laplace v(t)=u(t)*vb. u(t) er en nyttig funksjon. kan brukes til å modulere et batteri med bryter. Signalbyggesett. t=0.

Forelesning uke 36 Laplace v(t)=u(t)*vb. u(t) er en nyttig funksjon. kan brukes til å modulere et batteri med bryter. Signalbyggesett. t=0. Forlning uk 6 aplac 9 ut r n nyttig funkon vt=ut*vb kan bruk til å modulr t battri md brytr. Signalbyggtt t= d t t ut -ut-d d ut -ut-d Ekmpl på andr mulghtr Figur. Mang ulik ignalr kan lag av trinnfunkonn.

Detaljer

AMW 526 www.whirlpool.com

AMW 526 www.whirlpool.com AMW 526.hirlpool.com 1 INSTALLASJON MONTERE APPARATET FØLG DEN VEDLAGTE gn montringsanvisningn når du skal installr apparatt. FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN

JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN R E G E J! I P M JIP O S K R E T S LIKE! I P P I P Nyttig hjer Nfød Fo å sik jnin ntakt hos små ban anbfal Hlsdiktoat

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Sentral FKB (SFKB) FDV-årsmøter, Sunndal 21.3 og Skodje Konseptet Innføring Økonomi Status Møre og Romsdal

Sentral FKB (SFKB) FDV-årsmøter, Sunndal 21.3 og Skodje Konseptet Innføring Økonomi Status Møre og Romsdal Sntral FKB (SFKB) FDV-årsmøtr, Sunndal 21.3 og Skodj 23.3.2017. Konsptt Innføring Økonomi Status Mør og Romsdal Mn først, snurr film. http://vido.kartvrkt.no/sntral-lagring-av-fkb-data NGIS-API Gosynkronisring

Detaljer

Hans Holmengen Merverdiavgift i reiselivsbedrifter (Arbeidsnotat 2000:100)

Hans Holmengen Merverdiavgift i reiselivsbedrifter (Arbeidsnotat 2000:100) Han Holmngn Mrvrdiavgift i rilivbdriftr (Arbidnotat 2000:100) Forord Dagn mrvrdiavgiftytm har kitrt idn 1. januar 1970. I hl dnn tidn har ovrnatting og tranport vært holdt utnfor lovn rammr. Hvorvidt di

Detaljer

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies. FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9

Detaljer

Læringsmål: Tileigne seg nye ord. Kunne formulere spørsmål rett. Rett plassering av adverb i setningar.

Læringsmål: Tileigne seg nye ord. Kunne formulere spørsmål rett. Rett plassering av adverb i setningar. Arbidpan for 9. trinn Vk: 39 og 41 Ordnvar: Andra og Oav Styringfag: Nork Tma for priodn: Lgd Informajon: Evfri dag tydag 28 ptmbr Hautfri i vk 40 Nork krivdag måndag 27, hug informajon om bok og forfattar.

Detaljer

mot mobbing 2011 2014 Manifest

mot mobbing 2011 2014 Manifest g t n s b f b n o a M ot m 014 m 11 2 20 dt mljø o g t rngs r o d f g læ rb st- o a sam pvk nd op t lk rnd p r o Et f nklud Manfst Et forplktnd samarbd for t godt nkludrnd oppvkst- lærngsmljø Forord All

Detaljer

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;

Detaljer

41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner

41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner 47 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner OPPGAVE. Den magnetiske ekvivalenten for den roterande maskina i figur. på oppgåve arket, er vist på figuren under.

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (3) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : AG: MA-9 Matmatikk ÆRER: P Hnik Hogstad Klass: Dato:.. Eksamnstid, fa-til: 9.. Eksamnsoppgavn bstå av følgnd Antall sid: 6 inkl. fosid vdlgg Antall

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav.

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav. 220 C10 RAMMER OG FAGVERK 10.2 FAGVERK Bjlk-fagvrk Dtt r konstruksjonr som r aktull for stor spnnviddr llr spsill funksjonskrav. a) akbjlk b) I-bjlk c) Etasjfagvrk Figur C 10.4.a r n typisk takkonstruksjon,

Detaljer

Røde Kors Hjelpekorps

Røde Kors Hjelpekorps Rgion Sø - Sommkusn 2013 Hov - Andal, 08. - 12. mai(himmlfatshlgn) Sjødning Kvnd lnd ls d R O l S s g L øknin s t (Et k B) a m Ba Idttsskadkus Vlkommn! Aust-Agd Rød kos sin pinsli ha lang tadisjon, mn

Detaljer