Grunntall 10 Kapittel 2 Algebra Fordypning

Størrelse: px
Begynne med side:

Download "Grunntall 10 Kapittel 2 Algebra Fordypning"

Transkript

1 Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls ror også å kvrr. Når vi kvrrr, år vi ori: = =. En prnts m to l kn også kvrrs. D rukr vi kvrtstningn, som r to rglr som gjør utrgningn nklr. Dn ørst kvrtstningn Vi rukr og som symol or tll og rgnr ut kvrtt v summn v m. ( ) = ( )( ) = =. V å s på svrt vi ikk, kn vi lg n rgl som gjør t nklr å rgn ut svrt. Dnn rgln lir klt n ørst kvrtstningn. HUSK! Når vi skl kvrr summn v to tll, år vi kvrtt v t ørst tllt, pluss t olt prouktt v to tlln, pluss kvrtt v t nr tllt. Eksmpl Rgn ut ( y). Løsning ( y) = () y (y) =. y 9y. Dn nr linjn kn vær n nyttig mllomrgning, mn u trngr ikk t n m rsom u grir å rgn ut svrt irkt.. y y y y. Rgn ut. ( ) ( y) ( y). Rgn ut. ( ) ( ) ( ). 0 9 Kopiringsoriginl

2 Grunntll 0 Kpittl Algr Forypning. Rgn ut. ( ) ( y) ( ). Rgn ut. ( y) ( y) ( ). Rgn ut. ( ) (y y ) ( y y ). Rgn ut. ( ) ( ) Fsit:. 9 y y 8. 9 y y 0y y. 9 y y y y y 9 y..7 Rgn ut. ( ) ( ) ( ) ( ) Rgn ut. ( ) ( ) ( y) ( y).8 9 y 8y Dn nr kvrtstningn Dn nr kvrtstningn r gnsk lik n ørst. Forskjlln r t vi innr kvrtt v irnsn mllom to tll. ( ) = ( )( ) = =. HUSK! Når vi skl kvrr irnsn mllom to tll, år vi kvrtt v t ørst tllt, minus t olt prouktt v to tlln, pluss kvrtt v t nr tllt. Eksmpl Rgn ut ( ). Løsning ( ) = () =. 9. Dn nr linjn kn vær n nyttig mllomrgning, mn u trngr ikk t n m rsom u grir å rgn ut svrt irkt. Kopiringsoriginl

3 Grunntll 0 Kpittl Algr Forypning.9 Rgn ut. ( y) ( ) ( y).0 Rgn ut. ( ) ( ) ( ). Rgn ut. ( ) ( ) ( y). Rgn ut. ( y ) (y ) ( y ). Rgn ut. ( ) ( ) ( ) ( ) Fsit:.9 y y 9 y y y y. y 9y y y 9 y y Rgn ut. ( ) ( ) ( ) ( ). 8. Rgn ut. ( ) ( ) ( y) ( y). 0 8y y. Rgn ut. ( ) ( ) ( ) ( y) y( ) ( y). 8 7 y y y.7 Rgn ut. ( ) ( ) ( ) ( ) ( ) ( ) Rgn ut. ( ) ( ) ( ) ( ) ( ) ( ) Rgn ut. ( ) ( ) ( ) ( ) ( ) ( ).9 7 Kopiringsoriginl

4 Grunntll 0 Kpittl Algr Forypning Konjugtstningn Fsit: Konjugtstningn lir også klt n trj kvrtstningn, mn hr skl vi ikk kvrr t uttrykk. Vi skl multiplisr summn og irnsn v to tll. ( )( ) =. HUSK! Når vi skl multiplisr summn v to tll m irnsn mllom smm to tlln, år vi kvrtt v t ørst tllt minus kvrtt v t nr tllt. Eksmpl Rgn ut ( )( ). Løsning ( )( ) = () = Dn nr linjn kn vær n nyttig.. mllomrgning, mn u trngr ikk t n m rsom u grir å rgn ut svrt irkt..0 Multiplisr prntsn, og vis t u år kvrtt v t ørst tllt minus kvrtt v t nr tllt. ( y)( y) ( y)( y).0 y 9y. Rgn ut. ( )( ) ( )( ). 9. Rgn ut. ( y)( y) ( y)( y). 9 y y. Rgn ut. ( 7)( 7) ( 8)( 8). 9. Rgn ut. ( )( ) ( )( ) Kopiringsoriginl

5 Grunntll 0 Kpittl Algr Forypning. Rgn ut. ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) Fsit: Rgn ut. ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) Rgn ut. ( 7y)( 7y) ( y)( y) ( y)( y) ( y)( y) ( y) ( y) ( y) ( y) ( y) ( y)( y).7 8y 7 y 8y y y.8 Rgn ut. ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) 7( ) Rgn ut. ( ) ( ) ( )( ) ( y)( y) ( y) ( y) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) y y Rgn ut. ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) Kopiringsoriginl

6 Grunntll 0 Kpittl Algr Forypning Fktorisring v lrlt uttrykk Fsit: Kvrtstningn og konjugtstningn kn også ruks til å ktorisr. Når ( )( ) =, kn vi gå n motstt vin og ktorisr: = ( )( ). Fktorisr v å ruk konjugtstningn. 00. Fktorisr v å ruk konjugtstningn. 9 y 9 9. Fktorisr. 0, 0,9 0,y 9 Eksmpl. ( ) ( ) ( ) ( ) ( ) ( ) (0 ) (0 ). ( ) ( ) ( ) ( ) ( y) ( y) (7 8) (7 8). ( 0,) ( 0,) ( 0,y) ( 0,y) ( 0,7) ( 0,7) ( ) ( ) Fktorisr. y 9y Løsning y 9y = y (y) = Vi ktorisrr v å ruk n ( y) ( y) ørst kvrtstningn.. Fktorisr v å ruk kvrtstningn. y y 9 y y 0. ( y) ( y) ( y) ( y) ( ) ( ) ( ) ( ). Fktorisr v å ruk kvrtstningn.. ( y) ( y) y 9y 9 8 ( ) ( ) 8 0 (7 ) (7 ) ( ) ( ). Fktorisr.. ( 7) ( 7) 9 9,8 0,09 (8,) (8,) 0, 7,89 ( 0,) ( 0,) (,7) (,7) 0 Kopiringsoriginl

7 Grunntll 0 Kpittl Algr Forypning.7 Fktorisr. y 0.8 Fktorisr Fktorisr. 0 9 y.0 Fktorisr. y 9y 7 y y 9 y 9 y. Fktorisr. y 0y y y 7. Fktorisr y. Fktorisr. 98 7y y 8 y 7. Fktorisr. 0y 0y Fsit:.7 ( ) ( ) ( ) ( ) ( y) ( y) ( ).8 ( ) ( ) ( ) ( ) ( ) ( 7 ) ( 7 ).9 ( ) ( ) (y ) ( ) ( ) ( ) ( ).0 ( ) ( y) ( y) ( y) ( y) y ( y) ( y). ( y ) 7 ( y ) ( y ) ( y) ( y) 7 ( ) ( ). ( ) ( ) ( ) ( ) ( ) ( ) ( y). (7 y) (7 y) 7 ( y ) ( y ) (0 ) (0 ) ( ) ( ). ( y ) ( y ) ( ) ( ) ( ) ( ) ( ) ( ) Kopiringsoriginl

8 Grunntll 0 Kpittl Algr Forypning Forkorting v røkr m lrlt tllr og nvnr Fsit Du må kunn ktorisr v å ruk kvrtstningn og konjugtstningn når u skl løs iss oppgvn.. Forkort røkn.. y y y y y =. Forkort røkn.. y y y y y y.7 Forkort røkn..7.8 Forkort røkn. y y y y 8 y y 9 y 9y y 9y y y 9y.8 y y y y 9 y y.9 Forkort røkn Forkort røkn. y y y 8y y 8 8y 8.0 y y y y Kopiringsoriginl

9 Grunntll 0 Kpittl Algr Forypning Aisjon og sutrksjon v røkr m lrlt nvnr Fsit: Du må kunn ktorisr v å ruk kvrtstningn og konjugtstningn når u løsr iss oppgvn. Når vi rr og sutrhrr røkr, må ll røkn h lik nvnr. HUSK! For å inn llsnvnrn ktorisrr vi ll nvnrn. Hvr v nvnrn skl h m ll sin ktorr i llsnvnrn. Eksmpl Rgn ut. Løsning = = ( ) = = ( ) Fllsnvnr: ( ) Vi ktorisrr nvnrn. Hvr v nvnrn skl h m ll sin ktorr i llsnvnrn. Dn ørst nvnrn må utvis m, og n nr må utvis m, or t røkn skl å lik nvnr. ( ) ( ) 9 = ( ) ( ) 9 ( ) ( ). Rgn ut.. Rgn ut. 9 = = = Vi utvir røkn. Vi multiplisrr i tllr og lr nvnr stå uornrt. Vi rgnr ut og orkortr rsom t r mulig. (Dt r ikk mulig hr.) Kopiringsoriginl

10 Grunntll 0 Kpittl Algr Forypning Fsit:. Rgn ut.. 9. Rgn ut. 0 9 y 8 y. 0 9 y. Rgn ut Rgn ut. y y y 9 y y y y y. 0 y.7 Rgn ut Rgn ut Kopiringsoriginl

11 Grunntll 0 Kpittl Algr Forypning Brun røk Fsit: Er tllrn og nvnrn i n røk også røk, hr vi t vi kllr n run røk. r n run røk. I nn røkn r tllrn og nvnrn. Hovrøkstrkn r tgnt litt lngr nn to nr røkstrkn or t t skl vær tylig hv som r skill i røkn. Eksmpl Rgn ut, og skriv svrt som n vnlig røk. Løsning Fori røkstrkn r t ivisjonstgn, kn oppgvn løss som n ivisjon. : = = 8 Løsning D to røkn i tllrn og nvnrn hr også hvr sin nvnr ( og ). Vi kllr m smånvnr. Oppgvn kn løss v å multiplisr tllr og nvnr i røkn m llsnvnrn or smårøkn. = = 8.9 Rgn ut, og skriv svrt som vnlig røk Rgn ut, og skriv svrt som vnlig røk Kopiringsoriginl

12 Grunntll 0 Kpittl Algr Forypning Fsit:. Rgn ut, og skriv svrt som vnlig røk Rgn ut, og skriv svrt som vnlig røk. y y. Rgn ut, og skriv svrt som vnlig røk. y y 8 y y 0y 7. y 0 9 y 8 y. Rgn ut, og skriv svrt som vnlig røk.. 8. Rgn ut, og skriv svrt som vnlig røk Kopiringsoriginl

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (3) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

Tillegg til kapittel 2 Grunntall 10

Tillegg til kapittel 2 Grunntall 10 8.09.0 Kvrtsetningene Tillegg til kpittel Grunntll 0 Ne læringsmål i reviert lærepln 0 Mål for et u skl lære: kunne ruke kvrtsetningene til å multiplisere to prentesuttrkk kunne fktorisere ve å ruke kvrtsetningene

Detaljer

Ved å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor.

Ved å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor. Mtmtikk for ungomstrinnt KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET FLERE UTFORDRINGER Oppgv 1 Osr h htt tr ulik mtmtikkprøvr. Hn h rgnt riktig 90 % på n først prøvn, 80 % på n nr prøvn og 75 % på n trj prøvn.

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (2) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

Fagevaluering FYS Kvantefeltteori

Fagevaluering FYS Kvantefeltteori Fvlurin FYS4170 - Kvntlttori høst 05 Forlsr: Jn Olv E Fysisk Futvl 22. novmr 2005 Bsvrlsn r nonym, mn vi jør oppmrksom på t orlsr hr tiln til ll skjmn. Evlurinn lir orttt v Fysisk Futvl, som slv vlr hvilk

Detaljer

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk Fgvluring FYS3120 - Klssisk mknikk og lktroynmikk vår/høst 2009 Forlsr: Jon Mgn Lins Rgnøvlsr: Pr Øyvin Solli Fysisk Fgutvlg 1. mi 2009 Bsvrlsn r nonym, mn vi gjør oppmrksom på t orlsr hr tilgng til ll

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

MAYERS LIVSSITUASJONS - SKJEMA (1)

MAYERS LIVSSITUASJONS - SKJEMA (1) Nvn: MAYERS LIVSSITUASJONS - SKJEMA (1) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i n ktull rurikkn. 1. TA VARE PÅ DEG SELV: f g h i j k l m n o p q r s t u Er u i stn til å: - komm g

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

Evaluering av NGU-dagen

Evaluering av NGU-dagen .. :: QustBk xport - Evlurin v NGU-n Evlurin v NGU-n Pulis rom.. to.. rsponss ( uniqu). Forrn på NGU-n vr li rlvnt 9 9,9 %, %,8 %,8 %, %, % Avr,9,,. Tmn or rupprit vr o, % %, % 8, %, %, %, % Avr, 9,8,

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

Høring- Forslag til forskrift om evakuerings- og redningsredskaper på flyttbare innretninger

Høring- Forslag til forskrift om evakuerings- og redningsredskaper på flyttbare innretninger Vår to Vår rfrns Vår skshnlr 23.10.2015 2015/65015 Nin Hnssn Ås Drs rfrns Arkivko Dirkt tlfon 33-16 52 74 52 51 Høringsinstnsr iht. list Høring- Forslg til forskrift om vkurings- og rningsrskpr på flyttr

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Øvinger uke 42 løsninger

Øvinger uke 42 løsninger Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

(urettede) Grafer. Sterke og 2-sammenhengende komponeneter, DFS. Rettede grafer. Sammenhengende grafer

(urettede) Grafer. Sterke og 2-sammenhengende komponeneter, DFS. Rettede grafer. Sammenhengende grafer Strk o -smmnnn komponntr, DFS Grr (urtt o rtt) Dy Først-Søk (DFS) Smmnnn komponntr.. DFS Topolosk sortrn / Løkkr.. DFS Strkt smmnnn komponntr... DFS -smmnnn komponntr... DFS (urtt) Grr En r G=(V,E) står

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

Navn: Klasse: Ekstrahefte 2. Brøk

Navn: Klasse: Ekstrahefte 2. Brøk Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Kompetansevurdering av MTS utøver

Kompetansevurdering av MTS utøver Norwgin Mnhstr Trig Group Komptnsvurring v MTS utøvr Tortisk l Hvrt spørsmål i tt skjm står v t utsgn ttrfulgt v fm yttrligr uttllsr. Hvr v uttllsn kn vær snn llr usnn. Kryss v snn / usnn for hvr uttlls.

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Jeg har en venn. Ó j œ. # œ œ. œ œ. Ó J. œ œ. œ œ œ œ. œ œ. œ œ. œ œ œ. œ œ. œ œ œ. œ œ. œ œ. Norsk trad. arr Mattias Ristholm. Soprano.

Jeg har en venn. Ó j œ. # œ œ. œ œ. Ó J. œ œ. œ œ œ œ. œ œ. œ œ. œ œ œ. œ œ. œ œ œ. œ œ. œ œ. Norsk trad. arr Mattias Ristholm. Soprano. eg vn Norsk trd rr Mts Rstholm oprno 4 3 Ó # eg vn gett stt lv, for eg skll få le ve Det ss 4 3 Ó eg vn gett stt lv, for eg skll få le ve Det 6 fn nes n l t n tv Det nyt t å stre ve For d eg le v så Ó

Detaljer

Snarveien til. Photoshop CS6. Extended. Oppgaver

Snarveien til. Photoshop CS6. Extended. Oppgaver Snrvin til Photoshop CS6 Extn Oppgvr Kpittl 2 Arisområt Oppgv 1 Arisområt i Photoshop står v ulik nvngitt lmntr som or ksmpl mnylinj. Bruk skjrmumpn unr og påør tgnlsn som ruks på ulik lmntn. Oppgv 2 Tnk

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

Tidstypiske bygninger og bygningsdetaljer i Norge

Tidstypiske bygninger og bygningsdetaljer i Norge DEN SIST DTALjn DEKOR REKKVERK & Stolpr, DEKOR, Imprgnrt Tistypisk ygningr og ygningstaljr i Norg M Olavsrosa og portaln til Storgarn Bjørnsta på Maihaugn ønskr vi vlkommn til Söra sin Dkorkatalog. 1800

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Referanseguide for montører og brukere

Referanseguide for montører og brukere Rrnsgui or montørr og rukr Lutkonisjonringsnlgg i VRV IV systm REYQ8T7Y1B REYQ10T7Y1B REYQ12T7Y1B REYQ14T7Y1B REYQ16T7Y1B REYQ18T7Y1B REYQ20T7Y1B REMQ5T7Y1B Rrnsgui or montørr og rukr Lutkonisjonringsnlgg

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Periodisk emne-evaluering FYS Relativistisk kvantefetteori

Periodisk emne-evaluering FYS Relativistisk kvantefetteori Prioisk mn-vluring FYS4170 - Rltivistisk kvntttori høst 2009 Forlsr: Jn Olv Eg Forlsr r nsvrlig or skjmt 23. novmr 2009 Svr på tt skjmt r nonym, mn orlsr, SUFU og stuimonistrsjonn v Fysisk institutt hr

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

INF 3/ oktober Fra kap 10 : Dybde-først og branch-and-bound søk Fra kap 23: A*-søk

INF 3/ oktober Fra kap 10 : Dybde-først og branch-and-bound søk Fra kap 23: A*-søk INF 3/4130 19. oktor 2006 Dgns: Kpittl 10 og 23 i hovok Fr kp 10 : Dy-først og rnh-n-oun søk Fr kp 23: A*-søk Olig 2 hr liggt ut n stun. Frist 27 oktor. Konkurrns: Kommr i løpt v n uk (15-spill?) Frist.

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

Spørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse

Spørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse Appniks til Tori Flttn Hlvorsn, Ol Rikr Hvt, Birgit Johnn Ryså, Tov Skrø, Elin Olug Rosvol. Psintrfringr m llmnnlgrs oppfølging v lvorlig spisforstyrrls. Tisskr Nor Lgforn 2014; 134: 2047-51. Dtt ppnikst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

Referanseguide for montører og brukere

Referanseguide for montører og brukere Rrnsgui or montørr og rukr Lutkonisjonringsnlgg i VRV IV systm REYQ8T7Y1B REYQ10T7Y1B REYQ12T7Y1B REYQ14T7Y1B REYQ16T7Y1B REYQ18T7Y1B REYQ20T7Y1B REMQ5T7Y1B Rrnsgui or montørr og rukr Lutkonisjonringsnlgg

Detaljer

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2. Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

d2x/dt2 dx/dt x F _ 1/m D F m K x m t-plan: x m s-plan: x m Transferfunksjon: m K m D m Standard form for en 2.orden transferfunksjon: 2

d2x/dt2 dx/dt x F _ 1/m D F m K x m t-plan: x m s-plan: x m Transferfunksjon: m K m D m Standard form for en 2.orden transferfunksjon: 2 Mknik. jær, fjærkrf v pr, pkr En [kg] r f il fjær/pr- og lir påvirk n r krf. Mn vil opp okrfn: [ N ] [ kg ] [ ] jær vil opp okrfn: kg f [ N] [ ] [ ] pr vil opp okrfn: kg [ N] ] [ ] v[ rfln for : f or å

Detaljer

Snarveien til. Photoshop CS5. Extended. Oppgaver

Snarveien til. Photoshop CS5. Extended. Oppgaver Snrvin til Photoshop CS5 Extn Oppgvr Kpittl 4 Lg Oppgv 1 Bruk t u hr lært om lg og gjør nringr i oppgvil slik t rsulttt lir som nnor. Åpn il månsklnr.ps Sltt lg som orkommr to gngr Enr rkkølg på lg Kopl

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Disse strømforhold og strømretninger kan vi regne ut med metodene nedenfor.

Disse strømforhold og strømretninger kan vi regne ut med metodene nedenfor. 3.6 KOPLNGE MED ASYMETSKE ENEGKLDE 3.6 KOPLNGE MED ASYMMETSKE ENEGKLDE Nå fl spnningskild ll ngikild koplt sammn og ha foskjllig ind sistans og lktomotoisk spnning dt asymmti. Dt fl mtod som kan bnytts

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I GDE Gimsa E K M E N O P P G V E : G: M-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8.8. Eksamnsi a-il: 9.. Eksamnsoppgan bså a ølgn nall si: 5 inkl. osi nall oppga: nall lgg: Tilla hjlpmil :

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

INF 3/ oktober Søk i tilstandsrom. Modeller for avgjørelsessekvenser. Modeller for avgjørelsessekvenser

INF 3/ oktober Søk i tilstandsrom. Modeller for avgjørelsessekvenser. Modeller for avgjørelsessekvenser INF 3/4130 19. oktor 2006 Dgns: Kpittl 10 og 23 i hovok Fr kp 10 : Dyførst og rnhnoun søk Fr kp 23: A*søk Olig 2 hr liggt ut n stun. Frist 27 oktor. Konkurrns: Kommr i løpt v n uk (15spill? Frist. 20 novmr

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mer øving til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Finn svret ve hoeregning. Velg to v oppgvene og forklr hvilken strtegi u hr rukt. 27 + 38 e 160 70 i 130 4 35 + 75 f 19 5 j 6 7,5 58 + 42

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen Si 1 av 6 Tilkobling Winows-instruksjonr or n lokalt tilkoblt skrivr Mrk: Når u installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og okumntasjon, må u bruk Vivisr or skrivrinstallasjon.

Detaljer

Referanseguide for montører og brukere

Referanseguide for montører og brukere Rrnsgui or montørr og rukr Lutkonisjonringsnlgg i VRV IV systm RYYQ8T7Y1B RYYQ10T7Y1B RYYQ12T7Y1B RYYQ14T7Y1B RYYQ16T7Y1B RYYQ18T7Y1B RYYQ20T7Y1B RYMQ8T7Y1B RYMQ10T7Y1B RYMQ12T7Y1B RYMQ14T7Y1B RYMQ16T7Y1B

Detaljer

Løsningsforslag til eksamen i INF2270

Løsningsforslag til eksamen i INF2270 Løsningsforslg til eksmen i INF2270 Omi Mirmothri (oppgve 1 4) Dg Lngmyhr (oppgve 5 6) 13. juni 2014 Eksmen 2270 V2013 - Fsit 1) Konverter følgene tll til inært. Vis utregning (5%). (43)es 43 / 2 = 21

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Avstandsmålr no Brusvldnng www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Innldnng Tn dg

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

Arbeidsinnvandring etter EU-utvidelsen - konsekvenser for byggenæringen

Arbeidsinnvandring etter EU-utvidelsen - konsekvenser for byggenæringen Areidsinnvndring etter EU-utvidelsen - konsekvenser for yggenæringen Norsk Ståldg 4 Advokt Kirsti Stoklnd 1 Tem BNL undersøkelse om ruk v utenlndsk reidskrft Kort om regelverket Den seriøse yggenæringen

Detaljer

Microsoft PowerPoint MER ENN KULEPUNKTER

Microsoft PowerPoint MER ENN KULEPUNKTER Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:

Detaljer

BARN og DIGITALE MEDIER 2012 Foreldreundersøkelsen, 1-12 år

BARN og DIGITALE MEDIER 2012 Foreldreundersøkelsen, 1-12 år BARN og DIGITALE MEDIER 2012 Forelreunersøkelsen, 1-12 år Weunersøkelse 1500 forelre me rn i leren 1-12 år Bkgrunnsinformsjon Kjønn Mnn Kvinne Aler (netrekksmeny?) Hr u rn i leren mellom 1-12 år? (FILTER:

Detaljer

ISE matavfallskverner

ISE matavfallskverner ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer