Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y ="

Transkript

1 MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β 0 + β x + β 2 x 2 + ε. llr Y n = β 0 + β x n + β 2 x 2n + ε n Y x x 2. =... Y n x n x 2n Y = Xβ + ε β 0 β β 2 + ε. ε n Md d oppgitt datan har vi at X = og y = Vi har fra pnsum at stimatorn for β r dn b som minimrr SSE = n i= (y i ŷ i ) 2 = (y i b 0 b x b 2 x 2 ) 2 = (y Xb) T (y Xb) og dnn r gitt vd b = (X T X) X T y. Md datan i dnn oppgavn blir dtt b = b 0 b b 2 = (XT X) X T y = som vi lsr ut av datautskriftn. Dvs stimrt rgrsjonslinj blir ŷ = ˆµ Y x,x 2 = x x 2

2 MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. 2) Oppgav 2.2 (utg. 9) Rgrssion Statistics Multipl R 0,996 R Squar 0,99 Adjustd R Squar 0,987 Standard Error 633,30 Obsrvations 7 df SS MS F Significanc F Rgrssion , ,9 246,8 6,5876E- Rsidual , ,6 Total ,9 Cofficints Standard Error t Stat P-valu Lowr 95% Uppr 95% Intrcpt 70, ,38,66 0,34-68, ,249 x -9,625 96,20-0,00 0,922-22, ,32 x2 0,056 0,02 2,685 0,02 0,00 0,02 x3,377 3,047 0,452 0,660-5,329 8,083 x4-3,988 7,06-0,565 0,584-9,530,554 x5-358, ,06 -,729 0,2-83,84 97,836 a) Ja. Vi sr at F -tstn for H 0 : β = β 2 = β 3 = β 4 = β 5 = 0 mot H : minst én av β j 'n r ulik null, har n p-vrdi < 0.05, og dtt indikrr forkast H 0 ; minst én av x-variabln har btydning for forvntt vrdi av Y i. b) Forklaringsvariabl nr j har btydning (for forvntt vrdi av Y i ) drsom β j 0. Vi kan gjnnomfør tst av H 0 : β j = 0 mot H 0 : β j 0 f.ks. vha. p-vrdin i ndrst dl av tablln i utskriftn. Vi sr da at for j = 2 har vi p-vrdi = 0.02 < 0.05 som indikrr at dnn variabln har btydning. Variabl 5 har også rlativt lav p-vrdi (= 0.2), mn dn r ikk lavr nn c) Vi bør undrsøk rsultatn vi får md modllr som bstår av kun t utvalg av d aktull forklaringsvariabln. (Stgvis prosdyrr, forlngs og baklngs.) Drsom vi prøvr md n modll md kun variabl 2 og 5, blir rsultatn: Rgrssion Statistics Multipl R 0,962 R Squar 0,925 Adjustd R Squar 0,95 Standard Error 630,024 Obsrvations 7 df SS MS F Significanc F Rgrssion , ,2 86,92 0,0000 Rsidual , ,2 Total ,9 Cofficints Standard Error t Stat P-valu Lowr 95% Uppr 95% Intrcpt -3364,46 65,66-2,083 0, ,649 99,726 x2 0,224 0,02 0,465 0,000 0,78 0,270 x5 79,8 288,693 2,49 0,026 99, ,367 Vi sr at nå har bgg diss variabln signikant forklaringsvrdi.

3 MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. 3) d) Rsidualr: i = y i ŷ i ; vi bør sjkk plott av: i v.s. ŷ i (rsidual v.s. prdikrt vrdi) i v.s. i (rsidual v.s. datainnsamlingsrkkfølg) i v.s. x ji for d j'n vi har md i modlln (rsidual v.s. vrdi på x-variabl nr. j). For modlln md x-variabl 2 og 5, får vi plottn: Rsidual v.s. prdikrt Histogram ovr rsidualn Frquncy y.hat Rsidual v.s. x.2 Rsidual v.s. x x.2 x.5 Histogrammt skal ikk avvik vsntlig fra formn til n normalfordling (rsidualn forutstts å komm fra n normalfordling) som kjnntgns md éntoppt og symmtrisk form. Datahistogrammt sr nonlund grit ut. Plott av rsidual v.s.... skal vis n jvn sprdning omkring null som indikrr at rsidualn har forvntning null og varians som ikk ndrr sg som funksjon av x'n llr forvnttvrdi av Y i. D trgurn for å sjkk dtt, kunn vi sagt r nonlund ok. Mn (som vi ikk har vært inn på i pnsum) gurn illustrrr n utfordring som forkommr nå og da: non få punktr liggr t godt stykk fra d andr (mrkt md rødt). Slik punktr vil kunn få stor btydning for rsultatn av rgrsjonsanalysn (kraft gangr arm!). Man bør i slik tilfllr sjkk hva som skjr drsom man gjør analysn utn diss punktn.

4 MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. 4) Md kun aldr: Oppgav Rgrsjon 73, , ,47 0,0000 Rsidualr ,7039 0,7427 Md kun kjønn: Rgrsjon 0,36 0,36 0,264 0,7225 Rsidualr ,2087,045 Md kun høyd: Rgrsjon 9,0668 9,0668 9,020 0,0029 Rsidualr ,2735,0052 Md kun vkt: Rgrsjon 0,306 0,306 0,2984 0,5854 Rsidualr ,0297,0408 Vi sr at aldr r dn variabln som gir størst SSR og altså r dn som vlgs til først å bli inkludrt i modlln. F obs = 99.47, p-vrdi = ; variabln tas md i modlln. Vi sr at høyd også r signikant (p-vrdi = ), mn aldr har størst SSR, og dt r drfor dnn variabln som tas vidr i framlngs variablutvlgls.

5 MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. 5) Md aldr og kjønn: Rgrssion 2 73, , ,6622 0,0000 Rsidual ,3960 0, 7445 Total ,3403 Økning i SSR: = 0.3, F obs = 0.3 MSE = = 0.403, ikk signikant (f 0.05,, ); variabln tas ikk md i modlln i tillgg til aldr. Md aldr og høyd: df SS MS F Signicanc F Rgrssion 2 74, ,357 50,386 0,0000 Rsidual 245 8,6370 0, 744 Total ,3403 Økning i SSR: =.06, F obs =.06 MSE = =.43, ikk signikant (f 0.05,, ); variabln tas ikk md i modlln i tillgg til aldr. Md aldr og vkt: df SS MS F Signicanc F Rgrssion 2 74, , ,8525 0,0000 Rsidual ,946 0, 7437 Total ,3403 Økning i SSR: = 0.52, F obs = 0.52 MSE = = 0.70, ikk signikant (f 0.05,, ); variabln tas ikk md i modlln i tillgg til aldr. Sidn ingn av d tr aktull variabln utnom aldr, gir no signikant økning av SSR sammn md aldr, stoppr prosdyrn for variablutvlgls ttr dtt. Rsultat: kun variabln aldr i modlln.

6 MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. 6) Oppgav 2 Modll: Y i = β 0 + β x i + ε i dr ε,..., ε n u.i.f. N(0, σ 2 ) a) b = i=(x i x)y i i=(x i x) = 2 i= x i y i x b 0 = ȳ b x = i= y i i=(x i x) 2 = = Dvs stimrt rgrsjonslinj blir ŷ = b 0 + b x = x b) (48.8/27) = E(B ) = E ( (x i x)y i (x i x) 2 ) = (x i x)e(y i ) (x i x)(x i x) = (x i x)(β 0 + β x i ) (x i x)x i x n i= (x i x) = β 0 (x i x) + β ni= (x i x)x i (x i x)x i x n i= (x i x) (Sidn: = β n n n n n n (x i x) = x i x = x i n x = x i x i = 0) i= i= i= i= i= i= Dvs B r forvntingsrtt. ( ) ( ) 2 (x i x)y i n Var(B ) = Var = (x i x) 2 Var( (x (x i x) 2 i x)y i ) i= ( ) 2 uavh. n ( ) 2 = (x (x i x) 2 i x) 2 n Var(Y i ) = (x i= (x i x) 2 i x) 2 σ 2 i= σ 2 = (x i x) 2 c) Z = B E(B ) Var(B ) = B β σ 2 n i= (x i x) 2 N(0,) Når dn ukjnt σ 2 rstatts md stimatorn S 2 har vi fra pnsum at: T = B β S 2 n i= (x i x) 2 t n 2 dr S 2 = (Y n 2 i Ŷi) 2 = (Y n 2 i B 0 B x i ) 2 P ( t α/2,n 2 B β t α/2,n 2 ) = α S 2 n i= (x i x) 2 P (B t α/2,n 2 S (x i x) β 2 B + t α/2,n 2 S (x i x) ) 2. α

7 y MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. 7) Innsatt b = og i=(x i x) 2 = 3.866, s = = 0.66 og md t 0.025,25 = får vi 95% kondnsnintrvall for β : [ , ] = [0.598, 0.946] H 0 : β = 0 mot H : β 0 β = 0 r ikk innhold i kondnsintrvallt, dvs vi forkastr H 0 på 5% nivå og kan påstå at luft/damp-forholdt har btydning for koksforbrukt. d) x Figur : Eksmpl på ok rsidualplott. Et rsidualplott bør s ut omtrnt som på gurn ovr drsom modllantaglsn r oppfylt, dvs dt bør ha - Ingn klar mønstr - Gjnnomsnitt 0 - Konstant variasjon U-mønstrt vi sr i rsidualn i gur 2 i oppgavtkstn tydr på at dn tilpassd modlln ikk r tilfrdstillnd. Dnn typn avvik indikrr ntn ikk-linær sammnhng mllom x og y llr avhngightr i datan. (Plottt av datan i gur i oppgavtkstn tydr på at vi har n ikk-linær sammnhng mllom x og y.)

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvndt statistisk dataanalys i samfunnsvitnskap Forlsingsnotat, vår 2003 Erling Brg Institutt for sosiologi og statsvitnskap NTNU Vår 2004 Erling Brg 2004 Forlsing X Logistisk rgrsjon II Hamilton

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

Kp. 12 Multippel regresjon

Kp. 12 Multippel regresjon Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction

Detaljer

Oppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-

Oppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek- MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under

Detaljer

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005 2005/10 Notatr 2005 Ann Sofi Abrahamsn Notatr Analys av rvisjon Filkodr og ndringr i utnrikshandlsstatistikkn Sksjon for utnrikshandl Innhold 1. Innldning... 2 2. Filkodr... 2 3. Analys av filkodr - original

Detaljer

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1 MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i: MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller r d i v r Vi klatr Vi firr md 20-års jubilumspakkr på flr av vår mst populær modllr Hyundai i40 stolt vinnr av EuroCarBody 2011 Fra 113g/km 0,43 l/mil Utdrag av utstyrsnivå i40 Prmium: Hyundai i40 I dn

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

Løsning til seminar 5

Løsning til seminar 5 Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høsten 2011 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 30. oktober, 2011 Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 15 -tabell

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har

Detaljer

Korrosjon. Innledning. Korrosjonens kjemi. HIN Allmenn Maskin RA 09.01.03 Side 1 av 10

Korrosjon. Innledning. Korrosjonens kjemi. HIN Allmenn Maskin RA 09.01.03 Side 1 av 10 Sid 1 av 10 Korrosjon Innldning Rnt språklig btyr korrosjon å gnag bort. Gnrlt bruks ordt om uønskd raksjonr mllom matrialr og drs bruksmiljø. I dn vitnskaplig dfinisjonn bruks ordt korrosjon om all matrialr,

Detaljer

Denne rapporten er erstattet av en nyere versjon. FFI-rapport 2006/02989

Denne rapporten er erstattet av en nyere versjon. FFI-rapport 2006/02989 FFI RAPPORT RISIKOVURDERING AV FORSVARETS BRUK AV HVITT FOSFOR I TROMS md tillggsnotat FFI/NOTAT-2006/00512: Analystknisk problmr vd bstmmls av konsntrasjonn til hvitt fosfor i vann STRØMSENG Arnljot Enrid,

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

Forelesning 8 STK3100/4100

Forelesning 8 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

Optimal pengepolitikk hva er det?

Optimal pengepolitikk hva er det? Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk

Detaljer

ISE matavfallskverner

ISE matavfallskverner ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j

Detaljer

Høring - regional vannforvaltningsplan med tilhørende tiltaksprogram og tiltakstabell

Høring - regional vannforvaltningsplan med tilhørende tiltaksprogram og tiltakstabell HOVEDKONTORET S list ovr mottakr Drs rf.: Vår rf.: 2014/2096-4 Arkiv nr.: 413.1 Saksbhandlr: Elisabth Voldsund Andrassn Dato: 19.12.2014 Høring - rgional vannforvaltningsplan md tilhørnd tiltaksprogram

Detaljer

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG Christiania Spigrvrk AS, Postboks 4397 Nydaln, 0402 Oslo BYGNINGSBESLAG www.spigrvrkt.no www.gunnbofastning.com Bygningsbslag fra Christiania Spigrvrk AS Dimnsjonringsundrlag Bygningsbslag r produsrt av

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD Kap. DIMNSJONRINGSPRINSIPPR INNHOLD. Innldning. lting vd nakst spnningstilstand. lting vd to akst spnningstilstand. Mohrs sirkl 5. lthpotsr Når bgnnr flting? 6. Inhomogn spnningstilstand MSK0 Maskinkonstruksjon

Detaljer

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016. Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for

Detaljer

vekt. vol bruk

vekt. vol bruk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

LSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter

LSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter c UIVERSITETET I TRODHEIM ORGES TEKISKE HGSKOLE Institutt for datatknikk og tlmatikk sid av 5 Faglig kontakt undr ksamn: avn: Baak Amin Farshchian Tlf.: 9 4427 LSIGSFORSLAG TIL EKSAME I FAG 4560 SYSTEMERIG

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

Jfe^. BRUKERMANUAL. Skruklyper for stål (for løft i alle retninger)

Jfe^. BRUKERMANUAL. Skruklyper for stål (for løft i alle retninger) BRUKERMANUAL Skruklypr for stål (for løft i all rtningr) Modllr SBE, SBBE, SBbE og SBCE Jf^. Ls dnn brukrmanualn før skruklypn anvnds. Sørg for at nhvr prson som skal bruk skruklypn får n kopi av dnn manualn.

Detaljer

Produktspesifikasjon S100 Kartdata, versjon oktober 2015. Produktspesifikasjon: S100 Kartdata

Produktspesifikasjon S100 Kartdata, versjon oktober 2015. Produktspesifikasjon: S100 Kartdata Produktspsifikasjon S100 Kartdata, vrsjon oktobr 2015 Produktspsifikasjon: S100 Kartdata Norsk Polarinstitutt Vrsjon oktobr 2015 Produktspsifikasjon S100 Kartdata, vrsjon oktobr 2015 Norsk Polarinstitutt

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Fylkesmannen i Sør-Trøndelag Miljøvernavdelingen Statens Hus 7468 Trondheim Tlf. 73 19 90 00 Telefaks 73 19 91 01. Rapport. Nr.

Fylkesmannen i Sør-Trøndelag Miljøvernavdelingen Statens Hus 7468 Trondheim Tlf. 73 19 90 00 Telefaks 73 19 91 01. Rapport. Nr. Fylksmannn i Sør-Trøndlag Miljøvrnavdlingn Statns Hus 7468 Trondhim Tlf. 73 19 90 00 Tlfaks 73 19 91 01 Rapport Nr. 4-2009 Tittl: Forvaltningsplan for Lira og Lauglolia naturrsrvatr 2010-2020 Forfattr/saksbhandlr:

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer

Oppgave 1 (15%) KANDIDAT NR.:

Oppgave 1 (15%) KANDIDAT NR.: ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Forelesning 3 STK3100

Forelesning 3 STK3100 Eks. Fødselsvekt mot svangerskapslengde og kjønn Forelesning 3 STK3100 8. september 2008 S. O. Samuelsen Plan for forelesning: 1. Generelt om lineære modeller 2. Variansanalyse - Kategoriske kovariater

Detaljer

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Avstandsmålr no Brusvldnng www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Innldnng Tn dg

Detaljer

Håndbok 014 Laboratorieundersøkelser

Håndbok 014 Laboratorieundersøkelser Vdlgg 1 sid 1 av 5 Hådbok Vdlgg 1 Jordartsklassifisrig Vdlgg 1 Jordartsklassifisrig Vrsjo mars 2005 rstattr vrsjo juli 1997 Omfag Jord ka bstå av t miralsk matrial, orgaisk matrial llr bladig av diss.

Detaljer

INNHOLDSFORTEGNELSE 1 INNLEDNINGSKAPITTEL... 3 2 EMPIRISKE OG TEORETISKE VARIABILITETSFUNN... 9 3 TEORIBAKGRUNN... 19 4 DEN TEORETISKE MODELLEN...

INNHOLDSFORTEGNELSE 1 INNLEDNINGSKAPITTEL... 3 2 EMPIRISKE OG TEORETISKE VARIABILITETSFUNN... 9 3 TEORIBAKGRUNN... 19 4 DEN TEORETISKE MODELLEN... INNHOLDSFORTEGNELSE INNLEDNINGSKAPITTEL... 3 EMPIRISKE OG TEORETISKE VARIABILITETSFUNN... 9. EN HISTORISK OVERSIKT: VALUTAKURSVARIABILITET OG ULIKE REGIMER... 9. HVORFOR ER VARIABILITETEN ULIK UNDER FORSKJELLIGE

Detaljer

AVSNITT 1: Identifikasjon av stoffet/stoffblandingen og selskapet/foretaket

AVSNITT 1: Identifikasjon av stoffet/stoffblandingen og selskapet/foretaket Sikkrhtsdatablad Opphavsrtt, 2016, 3M Company. All rttightr rsrvrt. Kopiring og/ llr ndlasting av dnn informasjonn md dn hnsikt å sørg for riktig bruk av 3M produktr r tillatt forutsatt at: (1) informasjonn

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Hans Holmengen Merverdiavgift i reiselivsbedrifter (Arbeidsnotat 2000:100)

Hans Holmengen Merverdiavgift i reiselivsbedrifter (Arbeidsnotat 2000:100) Han Holmngn Mrvrdiavgift i rilivbdriftr (Arbidnotat 2000:100) Forord Dagn mrvrdiavgiftytm har kitrt idn 1. januar 1970. I hl dnn tidn har ovrnatting og tranport vært holdt utnfor lovn rammr. Hvorvidt di

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

«Elgnytt» - informasjonsblad til personer som er interessert i elg og hjort i Oslo, Akershus og Østfold.

«Elgnytt» - informasjonsblad til personer som er interessert i elg og hjort i Oslo, Akershus og Østfold. «Elgnytt» - informasjonsblad til prsonr som r intrssrt i lg og hjort i Oslo, Akrshus og Østfold. Utmarksavdlingn vil lansr t nklt tidsskrift for lgvald, lglag, utmarkslag, grunnir og prsonr som r intrssrt

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Nytt Dobbeltspor Oslo Ski

Nytt Dobbeltspor Oslo Ski Nytt Dobbltspor Oslo Sk Fagrapport støy 01B Rttls a tkstfl 25.04.2013 Adsul IVr HJ 00B Først utga; for rgulrngsplan 17.04.2013 AdSul IVr HJ Rsjon Rsjonn gjldr Dato Utarb. a Kontr. a Godkj. a ttl: Antall

Detaljer

Kp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt

Kp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt uten med Kp 14 Flerfaktor-eksperiment Bjørn H Auestad Kp 14: To-faktor eksperiment 1 / 20 Kp 14: Flerfaktor-eksperiment; oversikt uten med 141 Introduction 142 Interaction in the Two-Factor Experiment

Detaljer

Kapittel 6 - modell seleksjon og regularisering

Kapittel 6 - modell seleksjon og regularisering Kapittel 6 - modell seleksjon og regularisering Geir Storvik 21. februar 2017 1/22 Lineær regresjon med mange forklaringsvariable Lineær modell: Y = β 0 + β 1 x 1 + + β p x p + ε Data: {(x 1, y 1 ),...,

Detaljer

Øvinger uke 42 løsninger

Øvinger uke 42 løsninger Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av

Detaljer

Kap. 12: Variansanalyse

Kap. 12: Variansanalyse 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene

Detaljer

Tjen penger til klubbkassen.

Tjen penger til klubbkassen. DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Total fortjnst: 35000 kr Vårn 2015 God og lttsolgt! Vi tjnt 32000,- Ls mr! En nkl måt å tjn 1000-vis av kronr Hvrt

Detaljer

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2. Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer