MA1102 Grunnkurs i analyse II Vår 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MA1102 Grunnkurs i analyse II Vår 2014"

Transkript

1 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis at d kovrgrr mot f på hl kovrgsitrvallt. Sid f r si g drivrt, har vi for all. Drmd har vi Taylorrkk blir T f() f () () f () ().! ( ). For å kovrgsitrvallt, ka vi bruk forholdstst. Vi har (+)!( )+ ( )! ( + )!! <. + Dtt vil si at rkk kovrgrr for all, så kovrgsitrvallt r R. Vi vil å vis at taylorrkk kovrgrr mot f. For hvr har vi f() T f() + R f(), dr T f r taylorpolyomt til f av grad, og R f r dt tilhørd rstlddt. Dt r tilstrkklig å vis at R f() går mot ull år går mot udlig. Ata at vi har gitt R. La { hvis, M hvis <. For hvr N r da f (+) (t) t M for all t som liggr mllom og. Drmd får vi vd korollar.. at R f() M + ( + )! Vi brukr dtt til å s på grsvrdi av absoluttvrdi av rstlddt: Drmd har vi R M f() ( + )! +. R f(), og dt btyr at taylorrkk kovrgrr mot f. 3. mars 4 Sid av 5

2 Løsigsforslag Øvig 8 d) Md f() /, så får ma at f () /, f () / 3, f () 6/ 4. Grlt får vi at f () () ( )! (ka viss vd iduksjo). Drmd blir f () () ( )!. + Taylorrkk blir drmd T f() ( ) k ( ) k. Vi gjkjr rkk ovr som gomtrisk rkk, og fra dtt vt vi at for <, altså < <. ( ) k ( ) k ( ) k ( ) Lgg mrk til at vi hr ku gjort oppgav vd å s at ( ) ( ) k ( ) k ( ) k, vd forml for gomtrisk rkk dr <. Drmd vil ( )k ( ) k vær Taylor-rkk til f vd Stig c) Vi har fuksjo g() cos f() cos(3 ), og skal bruk taylorrkk til g til å taylorrkk til f (i puktt ). Vi vt fra stig.8. (sid 679) at taylorrkk til g r T g() ( ) k (k)! k, og at d rkk kovrgrr mot g, slik at vi for all har Vi har drmd g() T g() f() g(3 ) T g(3 ) ( ) k (k)! k. ( ) k (k)! (3 ) k ( ) k 9 k 4k. (k)! Stig.8.3 (sid 679) sir da at d rkk r taylorrkk til f, så vi har ) Vi har fuksjo g() T f() ( ) k 9 k 4k. (k)! f(), + og skal bruk taylorrkk til g til å taylorrkk til f (i puktt ). Vi r først taylorrkk til g. Vi bgyr md å brg o drivrt av g, og avd diss på : g() ( + ) / g() g () ( + ) 3/ g () 3. mars 4 Sid av 5

3 Løsigsforslag Øvig 8 Vi sr at vi grlt får og g () 3 4 ( + ) 5/ g () 3 4 g () 5 8 ( + ) 7/ g () 5 8 g (4) () 5 6 ( + ) 9/ g (4) () 5 6 g () () ( ) g () () ( ) Drmd sr vi at taylorrkk for g r 3 5 ( ) ( + ) (+)/ 3 5 ( ) T g() g () ()! ( ) ( ) ( ) 3 5 ( )! 3 5 ( ) ( 3 ) 3 5 ( ) 4 6 (). Dt r imidlrtid ikk ltt å vis at taylorrkk kovrgrr mot g, og ut å vis dt, ka vi ikk gå frm på samm måt som vi gjord i dloppgav (c). For t bvis på at d kovrgrr, så ka ma s på kapittl. hvor dtt gjørs øy (sid ). Taylorrkk til f blir drmd T f() 3 5 ( ) 4 6 ()..8. a) Fuksjo r gitt vd f() ( + ). For å ut hvor d rkk kovrgrr, så brukr vi forholdstst. + )+ ( ( + ) + + <. Rkk kovrgrr altså for < <, og divrgrr for >. I dpukt og så divrgrr rkk vd divrgstst. b) Sid f(t) ( + )t, så r tf(t) f() ( + )t+ md samm kovrgsradius. Da blir h() tf(t) dt ( + )t + dt + for < < hvor vi har brukt Stig.7. for itgralt av potsrkk. Dtt r da Taylor-rkk vd Stig.8.3. c) Vd forml for sum av gomtrisk rkk så har vi at +, 3. mars 4 Sid 3 av 5

4 Løsigsforslag Øvig 8 for < <. Vd fudamtaltormt i kalkulus så r h () f(). Dt vil si at Drmd r f() ( ) h () ( ) ( ) ( ) ( ) f(). (sjkk at dtt også gjldr for vd å stt i)..8.8 a) Vi skal kovrgsområdt til rkk + +. Vi brukr forholdstst, og rgr ut følgd: ( + ) + + ( + ) / + / + /. Dtt btyr at rkk kovrgrr hvis < og divrgrr hvis >. Dt gjstår å ut hva som skjr hvis, altså hvis ±. Md får vi rkk + Sid + + /, r d rkk divrgt vd divrgstst. Md får vi rkk + ( )+ Hr får vi at grsvrdi + ( )+ hllr ikk går mot. Drmd får vi også i dtt tilfllt at rkk blir divrgt vd divrgstst. Totalt har vi fut ut at kovrgsområdt til rkk r itrvallt (, ). b) Vi skal summ av rkk i (a) vd å bruk lddvis drivasjo og itgrasjo. Vi bgyr md å dr fuksjo f til å vær summ av rkk: Vi drivrr og får f() f () Så dlr vi på for å få rkk som blir klr drsom vi itgrrr d: f (). 3. mars 4 Sid 4 av 5

5 Løsigsforslag Øvig 8 Vd å itgrr på bgg sidr har vi drmd f (t) ( ) dt t dt t. Dtt btyr at f () r atidrivrt til f () d d Drmd r d drivrt av f gitt vd Vi itgrrr for å f: f() f (t) dt [ + l t t Dtt btyr at summ av rkk r ( f (), så vi har ) ( ) ( ) t ( t) dt ] ( + l + l( ) + l( ) l( ). ( ( t) ) dt t ) ( ) + l.. Bgyr md å obsrvr at md f() l( + + ) så blir f () + (/) ( + + ) Vi får hr at + ( + ) / ( ) ( ) 4 6 hvor utrgig r gjort i Eksmpl..3 i boka (forskjll r t fortg på ). Da får vi at l( + + ) som da gjldr for <. dt + ( ) 3 5 ( ) + t 4 6 ( + ) + For og får vi hholdsvis + ( ) 3 5 ( ) 4 6 ( + ) og ( ) 3 5 ( ) 4 6 ( + ) som r altrrd rkkr. Bgg kovrgrr vd tst for altrrd rkkr: Når voksr så gagr ma lddt md < i tillgg til at økr i +, m d r avtagd, så a + < a. Vd samm argumt har ma også 3 5 ( ) 4 6 ( + ) < + år går mot udlig. Vd Abls torm gjldr forml vi fat også for ±. 3. mars 4 Sid 5 av 5

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 TMA44 Statistikk Høst Norgs tkisk-aturvitskaplig uivrsitt Istitutt for matmatisk fag Øvig ummr, blokk II Løsigsskiss Oppgav a) Th probability is R.9.5 6x( x) dx = R.9.5 (6x 6x ) dx =[x x ].9.5 =.47. b)

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

Løsningsforslag til den obligatoriske oppgaven fra seminarlederne

Løsningsforslag til den obligatoriske oppgaven fra seminarlederne Løsigsforslag til d oligatorisk ogav fra siarldr Totalt og r ulig dt krvs 65 og for å få stått drso du ikk har lvrt o ogavr i Frotr. tallt og so krvs for å få stått ogav rdusrs d atall og oådd for å svar

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig 6..5g Ser på forholdet a + /a som er ( + )!4 + ( + ) + ( ) 4( + )! 4( + ) =!4 ( +

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag EKAMEN løigforlag 5. augut 6 Emkod: ITD5 Emav: Matmatikk adr dlkam Dato: 8. mai 6 Hjlpmidlr: - To A-ark md valgfritt ihold på bgg idr. Ekamtid: 9.. Faglærr: Chritia F Hid - Formlhft. Kalkulator r ikk tillatt.

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

Kap. 8-3 Sveiseforbindelser. Kap. 8-3 Sveiseforbindelser. Sveiseformer for lastbærende smeltesveis Gjennomgående sveis:

Kap. 8-3 Sveiseforbindelser. Kap. 8-3 Sveiseforbindelser. Sveiseformer for lastbærende smeltesveis Gjennomgående sveis: Kap. 8-3 Svisforbidlsr Kap. 8-3 Svisforbidlsr Svisformr for lastbærd smltsvis Gjomgåd svis: Svisig : prosss for sammføyig llr blggig av (i først rkk) mtallisk matrialr. bruks år dt r stor krav til styrk,

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matmati V-8 Løsigsorslag til øvig 7 OPPGVE Liigssttt på matrisorm: t b t y. t z t Et liært og vadratis liigsstt ar tydig løsig vis og bar vis dt Drsom dt må ølglig liigssttt a dlig mag løsigr llr ig løsig.

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

Løsning til seminar 5

Løsning til seminar 5 Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

Intervjuet. Bergen kino. Svømmetilbud

Intervjuet. Bergen kino. Svømmetilbud Nr. 2 Fbruar 2016 21. årgag Itrvjut Brg kio Svømmtilbud I o h ld Kjær lsr! Vil du vær md å das? Ellr dra på diskotk? Ellr kaskj du vil svømm? io k Brg Daskamp Faa og Ytrbygda Dt r litt av hvrt å dlta på,

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Oversiktskart. Figur 1 Oversiktskart [6] Ullensaker Kirkelige Fellesråd / Ullensaker kirke / 14086 Rapport 1 / RMV

Oversiktskart. Figur 1 Oversiktskart [6] Ullensaker Kirkelige Fellesråd / Ullensaker kirke / 14086 Rapport 1 / RMV 2 Ovrsitsart Figur 1 Ovrsitsart [6] Ullsar Kirlig Fllsråd / Ullsar ir / 1486 Rapport 1 / RMV 3 Bilag Situasjosplar og borput- /oordiatlistr A Situasjospla m/ bordybdr A1 Borput- og oordiatlist A2 Borrsultatr

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Lag et lavpass filter ved hjelp av et Butterworth polynom

Lag et lavpass filter ved hjelp av et Butterworth polynom FYS3 Forligotat.Balk Ihold LA ET LAVPASS FILTER VED JELP AV ET BUTTERWORT POLYNOM... a Start... b rgr baklg fra M til -...4 Studrr pol til...5 Ovrttr ytmfuko til lktroik krt...9 va md adr ordr?... Ektra

Detaljer

Håndbok 014 Laboratorieundersøkelser

Håndbok 014 Laboratorieundersøkelser Vdlgg 1 sid 1 av 5 Hådbok Vdlgg 1 Jordartsklassifisrig Vdlgg 1 Jordartsklassifisrig Vrsjo mars 2005 rstattr vrsjo juli 1997 Omfag Jord ka bstå av t miralsk matrial, orgaisk matrial llr bladig av diss.

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

Saksframlegg. Søknad om dispensasjon - Riving av eksisterende bolighus / oppføring av enebolig på 1 plan- GB 74/30 - Toftelandsveien 170

Saksframlegg. Søknad om dispensasjon - Riving av eksisterende bolighus / oppføring av enebolig på 1 plan- GB 74/30 - Toftelandsveien 170 øg kommu rkiv 74/3 aksmapp 4/3744-337/5 aksbhadlr Øysti ørs Dato..5 aksframlgg økad om dispsasjo - ivig av ksistrd bolighus / oppførig av bolig på pla- 74/3 - oftladsvi 7 Utv.saksr Utvalg øtdato /5 Pla-

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

Optimal pengepolitikk hva er det?

Optimal pengepolitikk hva er det? Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk

Detaljer

Tjen penger til klubbkassen.

Tjen penger til klubbkassen. DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Total fortjnst: 35000 kr Vårn 2015 God og lttsolgt! Vi tjnt 32000,- Ls mr! En nkl måt å tjn 1000-vis av kronr Hvrt

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1

Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1 Løigforlg EKSMEN Mtmti - Eltro dmbr 6 OPPGVE ltrtiv. yttr prgfujor og "tigigtllbtrtig" f ut ) t ) f ut) t ) ft) ) )tigigtll ) 5-5) ) t -5) -5 - f ut ) 5t ) 5) -5) -5 f ut ) 5t ) f t) f f f f ut) t ut )

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

R2 2011/12 - Kapittel 6: 6. februar 27. februar 2012

R2 2011/12 - Kapittel 6: 6. februar 27. februar 2012 R 0/ - Kittl :. frur. frur 0 Tommy & Tigr id sid ø ølgr og rr: ølgr og rr r mtmtis mr som sillr sg dl fr dr. Egtlig u dt vært udrvist i dt llrd tidlig i grusol sjøl om mt li gs vidløftig. r følg vi hr

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert ). 2. ADFERDSRISIKO 2.1 ADFERDSRISIKO -PROBLEMET

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert ). 2. ADFERDSRISIKO 2.1 ADFERDSRISIKO -PROBLEMET FOREESNINGSNOTATER I INFORMASJONSØKONOMI Gr B. Ash, år odatrt.... ADFERDSRISIKO Otal kotraktr dr asytrsk forasjo. Agts sats r kk rfsrbar; ds., kotraktr ka kk btgs å. Agt å gs str tl å lg d sats rsal øskr.

Detaljer

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

Asker 17.03.12. Kaare Granheim: Askers rolle i den regionale utviklingen. Konsekvenser for befolkning og boligmarked i Asker

Asker 17.03.12. Kaare Granheim: Askers rolle i den regionale utviklingen. Konsekvenser for befolkning og boligmarked i Asker Askr 17.03.12 Kaar Grahim: Askrs roll i d rgioal utviklig. Koskvsr for bfolkig og boligmarkd i Askr Kaar Grahim Vidrgåd (KG) NTH bygigsigiør md økoomi for kraftkommur som ksamsoppgav Aspla 1970 md kommual

Detaljer

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Øvinger uke 42 løsninger

Øvinger uke 42 løsninger Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av

Detaljer

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005 2005/10 Notatr 2005 Ann Sofi Abrahamsn Notatr Analys av rvisjon Filkodr og ndringr i utnrikshandlsstatistikkn Sksjon for utnrikshandl Innhold 1. Innldning... 2 2. Filkodr... 2 3. Analys av filkodr - original

Detaljer

Høstfestival. Bergen kino. Ny teatergruppe

Høstfestival. Bergen kino. Ny teatergruppe Nr. 8 Sptmbr 2014 19. årgag Høstfstival Brg kio Ny tatrgrupp I o h ld Kjær lsr! kio g Br KulTur I ovmbr r dt høstfstival, og du ka opplv utstilligr, workshops, kofras og show! Kaskj du vil udrhold md musikk,

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

Oppgave 1 (15%) KANDIDAT NR.:

Oppgave 1 (15%) KANDIDAT NR.: ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvndt statistisk dataanalys i samfunnsvitnskap Forlsingsnotat, vår 2003 Erling Brg Institutt for sosiologi og statsvitnskap NTNU Vår 2004 Erling Brg 2004 Forlsing X Logistisk rgrsjon II Hamilton

Detaljer

ISE matavfallskverner

ISE matavfallskverner ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Å rspla n.. fo r. Aursmoen Barnehage Rugdeveien 8 1930 Aurskog

Å rspla n.. fo r. Aursmoen Barnehage Rugdeveien 8 1930 Aurskog O A Å rspla n.. fo r 4 1 0 2 Aursmon Barnhag Rugdvin 8 1930 Aurskog kontor: 67 20 59 20 Faks: 67 20 59 77 rvgjng: 67 20 59 23 Askladdn: 67 20 59 21 Bukkn Brus: 67 20 59 22 Vslfrikk: 67 20 59 24 Vl ko m

Detaljer

Tjen penger til klubbkassen.

Tjen penger til klubbkassen. DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 3 Total fortjnst: 32000 kr Høstn 2014 God og lttsolgt! Vi tjnt 25000,- Ls mr! En nkl måt å tjn

Detaljer

Ukens tilbudsavis fra

Ukens tilbudsavis fra Uks tilbudsavis fra Hvorda blar ma i tilbudsavis? For å bla i tilbudsavis så klikkr du t i t av hjør, llr du ka klikk på pil d på mylij. S ærmr på produkt? Du ka zoom i på produkt vd å klikk på produktt

Detaljer

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1 HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T

Detaljer

Årsrapport 2014. N.K.S.Veiledningssenter for pårørende i Nord Norge AS

Årsrapport 2014. N.K.S.Veiledningssenter for pårørende i Nord Norge AS Årsrapport 2014 N.K.S.Vildigsstr for pårørd i Nord Norg AS vildigsstr.o parordnn facbook.com/vildigsstr 03 Ihold Ihold Ildig... sid 04 Asvarlig for N.K.S. vildigsstr for pårørd i Nord Norg AS...sid 06

Detaljer

Kjøp av bolig. Skrevet av: Juristenes informasjonssenter (jus.no)

Kjøp av bolig. Skrevet av: Juristenes informasjonssenter (jus.no) Kjøp av bolig Skrvt av: Juristns informasjonssntr (jus.no) Kjøp og salg av bolig r for folk flst dn størst økonomisk transaksjonn d bfattr sg md. Går no galt, kan dt kost dg dyrt. Du gjør drfor lurt i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

Tilkoblingsveiledning

Tilkoblingsveiledning Sid 1 av 6 Tilkoblingsvildning Windows-instruksjonr for n lokalt tilkoblt skrivr Mrk: Når du installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og dokumntasjon, må du bruk

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

JT 366 www.whirlpool.com

JT 366 www.whirlpool.com JT 366.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som

Detaljer

BALANCE. Sunniva. Vi har snakket med. Flerkulturell bakgrunn 13. FEBRUAR 2015 BALANCE

BALANCE. Sunniva. Vi har snakket med. Flerkulturell bakgrunn 13. FEBRUAR 2015 BALANCE BALANCE k s i r f D i h o o sm p p o a r a h i V A M E T G I VIKT Flrkulurll bakgru Klub b bl m som bar r kl ubb Vi har sakk md Suiva magasi.idd 1 1 13.02.2015 13:02:52 Ldr Ihold I d ugav av BALANCE ka

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

Håndlaget kvalitet fra Toten. For hus og hytte

Håndlaget kvalitet fra Toten. For hus og hytte Håndlagt kvalitt fra Totn For hus og hytt Md stolpr Md Kloppn-søylr S forskjlln! Vakr fasadr md Kloppn-Søyla Bærnd laminrt søyl i tr Kloppn-søyln r n limtrkonstruksjon i gran av god kvalitt. Dtt gir god

Detaljer

Korrosjon. Innledning. Korrosjonens kjemi. HIN Allmenn Maskin RA 09.01.03 Side 1 av 10

Korrosjon. Innledning. Korrosjonens kjemi. HIN Allmenn Maskin RA 09.01.03 Side 1 av 10 Sid 1 av 10 Korrosjon Innldning Rnt språklig btyr korrosjon å gnag bort. Gnrlt bruks ordt om uønskd raksjonr mllom matrialr og drs bruksmiljø. I dn vitnskaplig dfinisjonn bruks ordt korrosjon om all matrialr,

Detaljer

LSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter

LSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter c UIVERSITETET I TRODHEIM ORGES TEKISKE HGSKOLE Institutt for datatknikk og tlmatikk sid av 5 Faglig kontakt undr ksamn: avn: Baak Amin Farshchian Tlf.: 9 4427 LSIGSFORSLAG TIL EKSAME I FAG 4560 SYSTEMERIG

Detaljer

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015 Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt

Detaljer

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav.

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav. 220 C10 RAMMER OG FAGVERK 10.2 FAGVERK Bjlk-fagvrk Dtt r konstruksjonr som r aktull for stor spnnviddr llr spsill funksjonskrav. a) akbjlk b) I-bjlk c) Etasjfagvrk Figur C 10.4.a r n typisk takkonstruksjon,

Detaljer

Faun rapport 003-2011

Faun rapport 003-2011 Faun rappor 003-2011 Aldrsrgisrring og bsandsvurdring for lg på Ringrik r jaka 2010 Oppdragsgivr: -Ringrik kommun Forfar: Lars Erik Gangsi 1 Forord Rapporn for Ringrik r dn førs jg frdigsillr r jaka 2010.

Detaljer

OPPDRAGSLEDER. Eirik Nordvik OPPRETTET AV. Joacim Olsson

OPPDRAGSLEDER. Eirik Nordvik OPPRETTET AV. Joacim Olsson OPPDRAG Kvislatut, - Lvagr kou OPPDRAGSNUMMER 281020 OPPDRAGSLEDER Eirik Nordvik OPPRETTET AV Joaci Olsso DATE 20.06.2013 GEOTEKNISK VURDERING KVISLATUNET VERDAL Ildig Swco Norg AS r gasjrt av Kvro AS

Detaljer

Kino. KulTur. Nattevandring Akvariet

Kino. KulTur. Nattevandring Akvariet Nr. 4 April 2013 18. årgang Kino KulTur Nattvandring Akvarit In o nh ld sn l t y ø Kino md h Risbrv Kjær lsr! ing Pitch Prfct Hr r aprilutgavn av Infopostn! Dt r my å gjør i april! KulTur, kino og konsrt

Detaljer

JT 369 www.whirlpool.com

JT 369 www.whirlpool.com JT 369.hirlpool.com 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som

Detaljer

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen Si 1 av 6 Tilkobling Winows-instruksjonr or n lokalt tilkoblt skrivr Mrk: Når u installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og okumntasjon, må u bruk Vivisr or skrivrinstallasjon.

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK Sid av 7 NTNU Norgs tknisk-naturvitnskapig univrsitt Fakutt for informasjonstknoogi, matmatikk og ktrotknikk Institutt for datatknikk og informasjonsvitnskap KONTINUASJONSEKSAEN I ENE TDT495 BILDETEKNIKK

Detaljer

Faun rapport 018-2011

Faun rapport 018-2011 Faun rappor 18-211 Aldrsrgisrring og bsandsvurdring for lg og hjor i Gjrsad r jaka 21 Oppdragsgivr: -Gjrsad Villag Forfar: Lars Erik Gangsi 1 Forord Undrgnnd må bar bklag a min Pugo Parnr fan d for god

Detaljer

ØVING 2: DIMENSJONERING MHT KNEKKING. Likevekt: Momentlikevekt om punkt C (venstre del av figur (b)): M +Hx - Fy = 0 M = Fy - Hx. Fy EI. Hx EI.

ØVING 2: DIMENSJONERING MHT KNEKKING. Likevekt: Momentlikevekt om punkt C (venstre del av figur (b)): M +Hx - Fy = 0 M = Fy - Hx. Fy EI. Hx EI. MSK0 Masiosrusjo ØSNINGSOSG TI ØVINGSOPPGV Kap. Oppgav.5.8 ØVING : DIMNSJONING MT KNKKING Oppgav.5 a) Uldig av ulr ilfll III iv: Momliv om pu C (vsr dl av figur ()): M +x - y 0 M y - x Vi v fra fashslær

Detaljer

Oppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen.

Oppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen. NTNU Istitutt for matematiske fag SIF53 Matematikk 4N eksame 453 Løsigsforslag Oppgavesettet har pukter, ab, abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelse a Vi har h(t = t e (t τ f(τ dτ = e t f(t

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 4 Total fortjnst: 94000 kr Vårn 2015 God og lttsolgt! Vi tjnt 67500,- Ls mr! En nkl

Detaljer

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies. FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Samfunnsøkonomisk tilnærming (vlfrdsøkonomi): vlfrdstormr, markdssvikt og fordling (Kapittl 3 arr; Kapittl 3 Rosn & Gayr) Maksimr sosial vlfrd gnrlt likvktsproblm Maks: W W(U,U ) Sosial vlfrdsfunksjon

Detaljer

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk Fgvluring FYS3120 - Klssisk mknikk og lktroynmikk vår/høst 2009 Forlsr: Jon Mgn Lins Rgnøvlsr: Pr Øyvin Solli Fysisk Fgutvlg 1. mi 2009 Bsvrlsn r nonym, mn vi gjør oppmrksom på t orlsr hr tilgng til ll

Detaljer

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller r d i v r Vi klatr Vi firr md 20-års jubilumspakkr på flr av vår mst populær modllr Hyundai i40 stolt vinnr av EuroCarBody 2011 Fra 113g/km 0,43 l/mil Utdrag av utstyrsnivå i40 Prmium: Hyundai i40 I dn

Detaljer

lindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer

lindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer ind prisist rktnguært Prisist Rktnguær knr og dtjr Gydig fr 1. pri 2015 Sgs- og vringstingsr n i prisistn r produsrt i nod ti d spsifiksjonr som finns i Linds Vntisjonsktog. Prisistn innodr t utvg v vårt

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

MAT I ARV Melkemat før og nå

MAT I ARV Melkemat før og nå 2vi Foto: Bård Ek MAT I ARV Mlkmat før og å Flr makfull oppkriftr md mlk i fir du på www.mlk.o Varummr: 2009 01/100 000 Potbok 1011 Strum 0104 Olo Bøkadr: Borggata 1, oppgag A Tlf 23 30 20 10 Fax 23 30

Detaljer

-40% side 2 og FOR. Lettsaltet torskefilet og fersk seifilet Pr kg. Kyllingfilet. Et utvalg Jif og Ajax rengjøringsprodukter Fra 250 ml

-40% side 2 og FOR. Lettsaltet torskefilet og fersk seifilet Pr kg. Kyllingfilet. Et utvalg Jif og Ajax rengjøringsprodukter Fra 250 ml Ssktoukr! fi Lttsaltt torskfilt og frsk sifilt DSH. 750 g. Pr pk 106,53 Jif og Ajax rngjøringsproduktr Fra 250 ml Nidar favorittr Fra 300 g fra 97,06. 1 pk fra 37,60 79-40% Et stort utvalg Big On og Grandiosa

Detaljer

reklamebørsen oktober 2014 tv

reklamebørsen oktober 2014 tv rlambrs otobr 2014 tv rlambrs otobr 2014 t v m la r rs brs m blam rla lam r rs rbrs brslam m brslambrlamrlarsrbrs m m la r rs brs mb lam rla r rs b lam la rrs brsmb m la rs brslambrlam r rs r b b lam la

Detaljer

s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1

s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1 TMA400 Høst 06 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 0 9.3.30 Me vil fia det miste itervallet som me ka vera sikker på at summe s k k + 4 ligg i. Om

Detaljer

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk Sd v 8 NTNU Norgs tksk-turvtskpg uvrstt Fkutt for formsostkoog, mtmtkk og ktrotkkk Isttutt for dttkkk og formsosvtskp KONTINUASJONSEKSAEN I FAG SIF8 BILDETEKNIKK LØRDAG 6. AUGUST KL. 9.. Løsgsforsg - grfkk

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Høstn 2014 Antall salgspriodr: 3 Total fortjnst: 67500 kr God og lttsolgt! Vi tjnt 20000,- Ls mr! En nkl

Detaljer