EKSAMEN Løsningsforslag

Størrelse: px
Begynne med side:

Download "EKSAMEN Løsningsforslag"

Transkript

1 . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn. Eksamnstid: 9.. Faglærr: Christian F Hid Om ksamnsoppgavn og pongbrgning: Oppgavsttt bstår av sidr inklusiv dnn orsidn og t vdlgg på én sid. Kontrollr at oppgavsttt r kompltt ør du bgnnr å bsvar spørsmåln. Oppgavsttt bstår av oppgavr. Vd snsur vil all d oppgavn tll lik m. Dr dt r mulig skal du vis utrgningr og hvordan du kommr ram til svarn. Snsurrist: 8. juni 7 Karaktrn r tilgjnglig or studntr på Studntwb snst virkdagr ttr oppgitt snsurrist.

2 Oppgav Gitt ølgnd vktorr i dt uklidsk rommt R : v = i j + k w = i j + k Finn krssproduktt mllom diss vktorn, altså v w. v w = i j k i j k (( ) ( )) i ( ( )) j + ( ( ) ( ) ( )) k = ( + 6) i (8 + ) j + ( 6 ) k = i j 7k Oppgav Gitt to komplks tall z i 6 w i Finn summn av diss, altså z w. For å summr diss talln, r dt nklst drsom vi ørst konvrtrr dm til rktangulær orm (også kalt kartsisk orm): i 6 z (cos 6 isin 6 ) i i w i i i (cos( ) isin( )) Vi år da z w i i ITD Matmatikk, ørst dlksamn, juni 7 Sid av

3 Oppgav Et lslskap har bstmt sg or ølgnd bgrnsningr på bagasjn: All bagasj må vær ormt som n rktangulær boks md kvadratisk grunnlat. Summn av lngd (l), dbd (d) og hød (h) må ikk ovrstig cm. Finn dimnsjonn av bagasjn som gir størst volum. h l d Sidn grunnlatn skal vær kvadratisk, må l og d vær lik. Vi kan kall dn om vi ønskr: h Volumt av boksn r da V ldh h h Vidr har vi bgrnsningn at summn av sidkantn skal vær cm, altså og altså h h Sttr vi dtt inn i uttrkkt or volumt, år vi V ( ) h ( ) Vi kan så drivr or å inn hvilk -vrdir som gjør unksjonn maksimal/minimal: dv d 6 Ekstrmalvrdin innr vi dr dn drivrt r : som gir 6 ITD Matmatikk, ørst dlksamn, juni 7 Sid av

4 6 og altså 6 = gir i volum, så dtt r ikk t maksimum. = kan vær t maksimum llr t minimum. At dt r t maksimum kan bgrunns på lr måtr. For ksmpl kan vi s på dn annndrivrt til volumt: d V d I punktt = blir dnn 6. Vi sr at dn annndrivrt r ngativ, og volumunksjonn V () krummr dror ndovr. Altså r = t lokalt maksimum. Dimnsjonn som gir bagasjn størst volum r ølglig = l = d = cm og h = cm. Vi år altså størst volum md bagasj hvor all sidn r lik lang (altså n kub). Oppgav Finn ølgnd grnsvrdi drsom dn ksistrr: lim Vi sr at dtt r t ubstmt uttrkk: lim Sidn dtt r t lim uttrkk, kan vi bntt l Hôpitals rgl: lim Vi sr at dtt igjn blir t uttrkk, sidn ITD Matmatikk, ørst dlksamn, juni 7 Sid av

5 lim Vi må dror bruk l Hôpitals rgl n gang til, og innr: lim lim lim Oppgav Drivr ølgnd unksjon: ln ( (hint: bntt logaritmisk drivasjon) ) Før vi drivrr tar vi logaritmn på bgg sidr: ln ( ) ln ln Vi brukr så rgln ln a b bln a på hør sid av uttrkkt, og år ln ( ) ln ln Vi kan så drivr bgg sidr. Når vi drivrr vnstr sid må vi bruk kjrnrgln, og når vi drivrr hør sid må vi bruk produktrgln: ( ) ( ) ln ln Så gangr vi bgg sidr md () og år ln ln ln ln ln ( ) ( ) ( ) ln ln ln ln ln ln ITD Matmatikk, ørst dlksamn, juni 7 Sid av

6 Oppgav 6 Bstm ølgnd intgral: cos d cos d d cos d d d sin C sin C Oppgav 7 Bstm ølgnd intgral: cos( ) d Hr kan vi bruk substitusjonn som gir u og altså du d d du Brukr vi dtt i intgralt, år vi cos( ) d cosu du sin u C sin C cosu du ITD Matmatikk, ørst dlksamn, juni 7 Sid 6 av

7 Oppgav 8 Bstm ølgnd intgral: ln d Hr kan vi bruk dlvis intgrasjon. Rgln or dlvis intgrasjon kan skrivs Hr vlgr vi u v d uv uv d som gir u og v ln Vi år da u og v ln d ln d ln d ln C ln ln C C Oppgav 9 Følgnd ligning bskrivr n kurv i plant: ln Bstm ligningn til tangntn til kurvn i punktt (, ). Vi kan bntt implisitt drivasjon or å inn stigningn til tangntn: Ordnr vi dnn, år vi ITD Matmatikk, ørst dlksamn, juni 7 Sid 7 av

8 Stigningskoisintn i punktt (, ) r ølglig (,) Vi kan så bruk ttpunktsormln or å inn ligningn til tangntn: a( ) ( ( )) Oppgav Gitt ølgnd unksjon: (, ) Finn d partilldrivrt av. og. ordn til dnn unksjonn. 6 ITD Matmatikk, ørst dlksamn, juni 7 Sid 8 av

9 Oppgav Følgnd ligning har én rll løsning i intrvallt [, ]: Bruk Nwtons mtod md to itrasjonr til å inn. Bntt Løsningn av dn gitt ligningn, r altså Nwtons mtod kan skrivs slik: som startpunkt. n n ( n) ( ) n Hr r ( ), og ølglig ( ). Vi år da ( ) ( ) 6 8. ( ).. ( ).. ITD Matmatikk, ørst dlksamn, juni 7 Sid 9 av

10 - -,6 -, -,8 -,,,8,,6 Oppgav Gitt n kontinurlig unksjon () som r dinrt på dt åpn intrvallt D,. Funksjonn r ukjnt, mn vi kjnnr gran til unksjonns drivrt, altså gran til Dnn gran r vist i igurn ndnor () (). Du kan anta at gran til dn drivrt (altså dn blå kurvn i igurn) skjærr -aksn i punktn.8,.8,. 8 og..8 () i) Angi i hvilk intrvallr unksjonn r voksnd og avtagnd. Funksjonn r voksnd dr dn drivrt r positiv og avtagnd dr dn drivrt r ngativ. () r voksnd i ølgnd intrvallr:,.8.8,.8.8, () r avtagnd i ølgnd intrvallr:.8,.8.8,.8 ii) For hvilkn llr hvilk -vrdir har unksjonn sin lokal maksimums- og minimumsvrdir? Forklar og bgrunn ditt svar. Sidn unksjonn r dinrt på t åpnt intrvall, har dn ingn kstrmalvrdir i dinisjonsmngdns ndpunktr. Funksjonn har sin kstrmalvrdir dr dn drivrt r null. Funksjonn har lokal maksima or ølgnd -vrdir:.8 og.8. Funksjonn har lokal minima or ølgnd -vrdir:.8 og.8. ITD Matmatikk, ørst dlksamn, juni 7 Sid av

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løsnngsorslag Emnkod: ITD Dato:. dsmbr Emn: Matmatkk Eksamnstd:.. Hjlpmdlr: To A-ark md valgrtt nnhold på bgg sdr. Formlht. Kalkulator r kk tllatt. Faglærr: Chrstan F Hd Eksamnsoppgavn: Oppgavsttt

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag EKAMEN løigforlag 5. augut 6 Emkod: ITD5 Emav: Matmatikk adr dlkam Dato: 8. mai 6 Hjlpmidlr: - To A-ark md valgfritt ihold på bgg idr. Ekamtid: 9.. Faglærr: Chritia F Hid - Formlhft. Kalkulator r ikk tillatt.

Detaljer

Øvinger uke 42 løsninger

Øvinger uke 42 løsninger Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK Sid av 7 NTNU Norgs tknisk-naturvitnskapig univrsitt Fakutt for informasjonstknoogi, matmatikk og ktrotknikk Institutt for datatknikk og informasjonsvitnskap KONTINUASJONSEKSAEN I ENE TDT495 BILDETEKNIKK

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

122-13 Vedlegg 3 Rapportskjema

122-13 Vedlegg 3 Rapportskjema Spsifikasjon 122-13 Vdlgg 3 Rapportskjma Dok. ansvarlig: Jan-Erik Dlbck Dok. godkjnnr: Asgir Mjlv Gyldig fra: 2013-01-22 Distribusjon: Åpn Sid 1 av 6 INNHOLDSFORTEGNELSE SIDE 1 Gnrlt... 1 2 Tittlflt...

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matmati V-8 Løsigsorslag til øvig 7 OPPGVE Liigssttt på matrisorm: t b t y. t z t Et liært og vadratis liigsstt ar tydig løsig vis og bar vis dt Drsom dt må ølglig liigssttt a dlig mag løsigr llr ig løsig.

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Avstandsmålr no Brusvldnng www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Innldnng Tn dg

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : AG: MA-9 Matmatikk ÆRER: P Hnik Hogstad Klass: Dato:.. Eksamnstid, fa-til: 9.. Eksamnsoppgavn bstå av følgnd Antall sid: 6 inkl. fosid vdlgg Antall

Detaljer

Optimal pengepolitikk hva er det?

Optimal pengepolitikk hva er det? Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk

Detaljer

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies. FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

Oppgave 1 (15%) KANDIDAT NR.:

Oppgave 1 (15%) KANDIDAT NR.: ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!

Detaljer

Forelesning uke 36 Laplace v(t)=u(t)*vb. u(t) er en nyttig funksjon. kan brukes til å modulere et batteri med bryter. Signalbyggesett. t=0.

Forelesning uke 36 Laplace v(t)=u(t)*vb. u(t) er en nyttig funksjon. kan brukes til å modulere et batteri med bryter. Signalbyggesett. t=0. Forlning uk 6 aplac 9 ut r n nyttig funkon vt=ut*vb kan bruk til å modulr t battri md brytr. Signalbyggtt t= d t t ut -ut-d d ut -ut-d Ekmpl på andr mulghtr Figur. Mang ulik ignalr kan lag av trinnfunkonn.

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005 2005/10 Notatr 2005 Ann Sofi Abrahamsn Notatr Analys av rvisjon Filkodr og ndringr i utnrikshandlsstatistikkn Sksjon for utnrikshandl Innhold 1. Innldning... 2 2. Filkodr... 2 3. Analys av filkodr - original

Detaljer

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2. Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

VT 261 www.whirlpool.com

VT 261 www.whirlpool.com VT 261.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som r plassrt

Detaljer

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

hele egg, verken med reduserte fysiske, sensoriske eller mentale evner, eller mangel

hele egg, verken med reduserte fysiske, sensoriske eller mentale evner, eller mangel VIKTIGE SIKKERHETSANVISNINGER LESES NØYE OG OPPBEVARES FOR FREMTIDIG REFERANSE IKKE VARM OPP ELLER BRUK BRANNFAR- EGG LIGE MATERIALER i llr nær ovnn. IKKE BRUK MIKROBØLGE- Dampn kan forårsak brann llr

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

Eksempel B Knekklengde av søyle leddlagret i begge ender, konstant aksiallast og konstant stivhet

Eksempel B Knekklengde av søyle leddlagret i begge ender, konstant aksiallast og konstant stivhet 58 B5 RAMMEFORMLER, KEKKLEGDER, VRIDD AVSRTIVIG 5. MODELLSØYLEMETODE BRUKT TIL Å BESTEMME KEKKLEGDER Mtodn går kort ut på å gi søn r søn i ksmpn n utbøning =. Dt kn mn gjør fordi knkning r krktrisrt bnt

Detaljer

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen Si 1 av 6 Tilkobling Winows-instruksjonr or n lokalt tilkoblt skrivr Mrk: Når u installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og okumntasjon, må u bruk Vivisr or skrivrinstallasjon.

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Brukerkurs i matematikk Mandag 4. desember 9, kl. 9-4 BOKMÅL Tillatte hjelpemidler: Lærebok og kalkulator i samsvar

Detaljer

Løsning til seminar 5

Løsning til seminar 5 Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t

Detaljer

EKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er -

EKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er - I I høgskln i sl EKSAMESPPGAVE Emn: Fysikalsk kjmi Grupp(r): 2KA Eksamnsppgavn bstår av: Antall sidr (inkl frsidn): 4+1 Emnkd: L040IK Dat: 08.06.04 Antall ppgavr: 5 Faglig vildr Ingrid Gigstad Eksamnstid

Detaljer

ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010

ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010 ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010 Dn først Hom- Start avdlingn i Norg bl startt opp i Trondhim i 1995, og vi har firt 15 års jubilum dtt årt. Avdlingn bl startt som t bydlstiltak,

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD Kap. DIMNSJONRINGSPRINSIPPR INNHOLD. Innldning. lting vd nakst spnningstilstand. lting vd to akst spnningstilstand. Mohrs sirkl 5. lthpotsr Når bgnnr flting? 6. Inhomogn spnningstilstand MSK0 Maskinkonstruksjon

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

B15 TILLEGG: RAMMEFORMLER, KNEKKLENGDER, VRIDD AVSTIVNING

B15 TILLEGG: RAMMEFORMLER, KNEKKLENGDER, VRIDD AVSTIVNING B5 TILLEGG: RAMMEFORMLER, KEKKLEGDER, VRIDD AVSTIVIG 5. MODELLSØYLEMETODE BRUKT TIL Å BESTEMME KEKKLEGDER Mtodn går kort ut på å gi søn r søn i ksmpn n utbøning =. Dt kn mn gjør fordi knkning r krktrisrt

Detaljer

JT 369 www.whirlpool.com

JT 369 www.whirlpool.com JT 369.hirlpool.com 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som

Detaljer

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller r d i v r Vi klatr Vi firr md 20-års jubilumspakkr på flr av vår mst populær modllr Hyundai i40 stolt vinnr av EuroCarBody 2011 Fra 113g/km 0,43 l/mil Utdrag av utstyrsnivå i40 Prmium: Hyundai i40 I dn

Detaljer

VT 265 VT 295. www.whirlpool.com

VT 265 VT 295. www.whirlpool.com VT 265 VT 295.hirlpool.com 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som

Detaljer

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...

Detaljer

Eksamensoppgave i SØK3005 Informasjons- og markedsteori Information and Marked Theory

Eksamensoppgave i SØK3005 Informasjons- og markedsteori Information and Marked Theory Institutt for samfunnsøkonomi Eksamnsoppgav i ØK3005 Informasjons- og markdstori Information and Markd Thory Faglig kontakt undr ksamn: Asl Gautplass Tlf.: 73 59 14 0 / Mobil: 98 65 88 06 Eksamnsdato:

Detaljer

Håndbok 014 Laboratorieundersøkelser

Håndbok 014 Laboratorieundersøkelser Vdlgg 1 sid 1 av 5 Hådbok Vdlgg 1 Jordartsklassifisrig Vdlgg 1 Jordartsklassifisrig Vrsjo mars 2005 rstattr vrsjo juli 1997 Omfag Jord ka bstå av t miralsk matrial, orgaisk matrial llr bladig av diss.

Detaljer

Fag: Menneskef maskin - interaksjon. Fagnr: LV "'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE.

Fag: Menneskef maskin - interaksjon. Fagnr: LV 'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE. Fag: nnskf maskin intraksjn Fagnr: LV "'i3a Faglig vildr: Annari Trvatn Grupp(r): 3AA 3AB 3A3AD3A Dat: 200401 ks amnstid fra til: 900 1200 ksamnsppgavn bstår av Antall sidr: inkl frsid 9 Antall ppgavr:

Detaljer

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG Christiania Spigrvrk AS, Postboks 4397 Nydaln, 0402 Oslo BYGNINGSBESLAG www.spigrvrkt.no www.gunnbofastning.com Bygningsbslag fra Christiania Spigrvrk AS Dimnsjonringsundrlag Bygningsbslag r produsrt av

Detaljer

Postboks 133 Sentrum 7901 RØRVIK KOM 1750 V I K N A. vikna@vikna.kommune.no. www.vikna.kommune.no

Postboks 133 Sentrum 7901 RØRVIK KOM 1750 V I K N A. vikna@vikna.kommune.no. www.vikna.kommune.no S k j mr ua t f ya lv t Fornavn Ettrnavn Fødslsdato Informasjon om søkr N N E - U T H J N G D - En søknad må altid ha én søkr som har ansvart, slv om flr samarbidr om prosjktt. - Tilskudd som Hlsditoratt

Detaljer

JT 366 www.whirlpool.com

JT 366 www.whirlpool.com JT 366.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som

Detaljer

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har

Detaljer

ISE matavfallskverner

ISE matavfallskverner ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j

Detaljer

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav.

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav. 220 C10 RAMMER OG FAGVERK 10.2 FAGVERK Bjlk-fagvrk Dtt r konstruksjonr som r aktull for stor spnnviddr llr spsill funksjonskrav. a) akbjlk b) I-bjlk c) Etasjfagvrk Figur C 10.4.a r n typisk takkonstruksjon,

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 4 Total fortjnst: 94000 kr Vårn 2015 God og lttsolgt! Vi tjnt 67500,- Ls mr! En nkl

Detaljer

Del 1 GENERELT... 2 1.1 Om planen... 2 1.2 Hva er beredskap?... 2 1.3 Organisering av beredskapen ved AHO... 2 1.4 Krisecenarier...

Del 1 GENERELT... 2 1.1 Om planen... 2 1.2 Hva er beredskap?... 2 1.3 Organisering av beredskapen ved AHO... 2 1.4 Krisecenarier... BEREDSKAPSPLAN Arkitktur- og dsignhøgskoln i Oslo Dl 1 GENERELT... 2 1.1 Om plann... 2 1.2 Hva r brdskap?... 2 1.3 Organisring av brdskapn vd AHO... 2 1.4 Kriscnarir... 3 Dl 2 ORGANISERING OG INSTRUKSER...

Detaljer

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud Eldr i Vrdal Mulightr Rttightr Aktivittr/tilbud Eldrrådt Omsorg og vlfrd Omsorg og vlfrd i Vrdal r dlt inn i to virksomhtsområdr: Øra omsorg-og vlfrdsdistrikt Vinn og Vuku omsorg-og vlfrdsdistrikt Hva

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Shonglap er en ettårig utdanning for jenter mellom 11 og 19 år som har gått glipp av skolen på grunn av fattigdom.

Shonglap er en ettårig utdanning for jenter mellom 11 og 19 år som har gått glipp av skolen på grunn av fattigdom. Shonglap Kavlifondts jubilumsprosjkt Rapport mars 2013 Shonglap r n ttårig utdanning for jntr mllom 11 og 19 år som har gått glipp av skoln på grunn av fattigdom. Målt r å gjør jntn stolt og slvstndig,

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

Detaljregulering for Greåkerveien 27-29 i Sarpsborg kommune, planid 010522066. Varsel om oppstart av planarbeid.

Detaljregulering for Greåkerveien 27-29 i Sarpsborg kommune, planid 010522066. Varsel om oppstart av planarbeid. Brørt myndightr ihht. adrsslist Drs rf Vår rf. 10.11.2014 Dtaljrgulring for Gråkrvin 27-29 i Sarpsborg kommun, planid 010522066. Varsl om oppstart av planarbid. I mdhold av plan- og bygningslovn (pbl)

Detaljer

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Høstn 2014 Antall salgspriodr: 3 Total fortjnst: 67500 kr God og lttsolgt! Vi tjnt 20000,- Ls mr! En nkl

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

Løsningsforslag til den obligatoriske oppgaven fra seminarlederne

Løsningsforslag til den obligatoriske oppgaven fra seminarlederne Løsigsforslag til d oligatorisk ogav fra siarldr Totalt og r ulig dt krvs 65 og for å få stått drso du ikk har lvrt o ogavr i Frotr. tallt og so krvs for å få stått ogav rdusrs d atall og oådd for å svar

Detaljer

ny student06 Published from to responses (10 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_MASTER) a b c d e f

ny student06 Published from to responses (10 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_MASTER) a b c d e f ..6 :: QustBk xport - ny stunt6 ny stunt6 Pulish rom..6 to 8..6 rsponss ( uniqu) Currnt iltr (SAMFØK_MASTER) "Hvilkt stuiprorm sturr u v? (Du kn inn inormsjon om hvilkt stuiprorm u hr ått opptk til i tilut

Detaljer

INNHOLDSFORTEGNELSE 1 INNLEDNINGSKAPITTEL... 3 2 EMPIRISKE OG TEORETISKE VARIABILITETSFUNN... 9 3 TEORIBAKGRUNN... 19 4 DEN TEORETISKE MODELLEN...

INNHOLDSFORTEGNELSE 1 INNLEDNINGSKAPITTEL... 3 2 EMPIRISKE OG TEORETISKE VARIABILITETSFUNN... 9 3 TEORIBAKGRUNN... 19 4 DEN TEORETISKE MODELLEN... INNHOLDSFORTEGNELSE INNLEDNINGSKAPITTEL... 3 EMPIRISKE OG TEORETISKE VARIABILITETSFUNN... 9. EN HISTORISK OVERSIKT: VALUTAKURSVARIABILITET OG ULIKE REGIMER... 9. HVORFOR ER VARIABILITETEN ULIK UNDER FORSKJELLIGE

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg:

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Tjen penger til klubbkassen.

Tjen penger til klubbkassen. DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Total fortjnst: 35000 kr Vårn 2015 God og lttsolgt! Vi tjnt 32000,- Ls mr! En nkl måt å tjn 1000-vis av kronr Hvrt

Detaljer

Brukerhåndbok. Elektronisk målesystem. KPR 2000 Versjon 01/2011

Brukerhåndbok. Elektronisk målesystem. KPR 2000 Versjon 01/2011 Brukrhåndbok Ektronisk måsystm KPR 2000 Vrsjon 01/2011 W rsrv th right for tchnica changs and mistaks Norway g - KPR2000-Brukrhåndbok u n d Tfon +47 67166990 Tfax J +47 67166811 E-Mai: Post@brttvitajr.no

Detaljer

ung med mening! - medlemsblad for Framfylkingen LOs barne- og familieorganisasjon nr.1 2011

ung med mening! - medlemsblad for Framfylkingen LOs barne- og familieorganisasjon nr.1 2011 ung md mning! - mdlmsblad for Framfylkingn LOs barn- og familiorganisasjon nr.1 2011 ung md mning! Mdlmsblad for Framfylkingn LOs barn- og familiorganisasjon Rdaktør Mart Oraug Skogtrø Ansvarlig rdaktør

Detaljer

Produktspesifikasjon S100 Kartdata, versjon oktober 2015. Produktspesifikasjon: S100 Kartdata

Produktspesifikasjon S100 Kartdata, versjon oktober 2015. Produktspesifikasjon: S100 Kartdata Produktspsifikasjon S100 Kartdata, vrsjon oktobr 2015 Produktspsifikasjon: S100 Kartdata Norsk Polarinstitutt Vrsjon oktobr 2015 Produktspsifikasjon S100 Kartdata, vrsjon oktobr 2015 Norsk Polarinstitutt

Detaljer

Tjen penger til klubbkassen.

Tjen penger til klubbkassen. DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 3 Total fortjnst: 32000 kr Høstn 2014 God og lttsolgt! Vi tjnt 25000,- Ls mr! En nkl måt å tjn

Detaljer

AMW 526 www.whirlpool.com

AMW 526 www.whirlpool.com AMW 526.hirlpool.com 1 INSTALLASJON MONTERE APPARATET FØLG DEN VEDLAGTE gn montringsanvisningn når du skal installr apparatt. FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Samfunnsøkonomisk tilnærming (vlfrdsøkonomi): vlfrdstormr, markdssvikt og fordling (Kapittl 3 arr; Kapittl 3 Rosn & Gayr) Maksimr sosial vlfrd gnrlt likvktsproblm Maks: W W(U,U ) Sosial vlfrdsfunksjon

Detaljer

Foroppgave i usikkerhetsanalyse Viskositet i glyserol

Foroppgave i usikkerhetsanalyse Viskositet i glyserol Oppgav 1 Lab i TFY4180 Foroppgav i usirhtsanalys Visositt i glysrol Institutt for fysi, NTNU 0B1. Innldning Hnsitn md dnn oppgavn r først og frmst å få øvls i analys av filildr og filforplanting. Måling

Detaljer

åpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars

åpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars åpningstidr 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanlbollfrokost skattjakt psalg 12. - 16. mars amfi orkangr Følg Prisfstn på facbook www.facbook.com/amfiorkangr Kanlbollfrokost Tirsdag 12. mars PROGRAM

Detaljer

Denne rapporten er erstattet av en nyere versjon. FFI-rapport 2006/02989

Denne rapporten er erstattet av en nyere versjon. FFI-rapport 2006/02989 FFI RAPPORT RISIKOVURDERING AV FORSVARETS BRUK AV HVITT FOSFOR I TROMS md tillggsnotat FFI/NOTAT-2006/00512: Analystknisk problmr vd bstmmls av konsntrasjonn til hvitt fosfor i vann STRØMSENG Arnljot Enrid,

Detaljer

Tilkoblingsveiledning

Tilkoblingsveiledning Sid 1 av 6 Tilkoblingsvildning Windows-instruksjonr for n lokalt tilkoblt skrivr Mrk: Når du installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og dokumntasjon, må du bruk

Detaljer