EKSAMEN Løsningsforslag

Størrelse: px
Begynne med side:

Download "EKSAMEN Løsningsforslag"

Transkript

1 EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn: Oppgav bår av fm idr inkluiv dnn foridn og o vdlgg. Konrollr a oppgav r kompl før du bgnnr å bvar pørmåln. Oppgav bår av k oppgavr md i al dloppgavr. Vd nur vil all dloppgavr ll omrn lik m. Dr d r mulig kal du: vi urgningr og hvordan du kommr fram il varn bgrunn din var, lv om d ikk r kplii ag i hvr pørmål Snurdao: 8. mai Karakrn r ilgjnglig for udnr på udnwb n virkdagr r oppgi nurfri. Følg inrukjonr gi på: ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av

2 Oppgav,5,5 -,5,,6,,,5,8,,,,,6,, in co - -,5 Figurn vir grafn il inu og coinu. Finn aral av d kravr områd. Grafn kjærr hvrandr i punk. Aral av d kravr fl blir A = in d co d co in co co in in Oppgav Lø følgnd iniialvrdiproblm: 6, Hr må vi før ordn diffrnialligningn å dn kommr på andard form. D gjør vi vd å dl hl ligningn md lik a blir ånd md koffiin : Så finnr vi ingrrnd fakor vd før å ingrr fakorn foran : d d ln Sidn vi har få oppgi a > vil = og vi kan kriv ln ln ln ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av

3 Ingrrnd fakor om of bgn md dn grk bokavn blir da ln Vi gangr diffrnialligningn md dn ingrrnd fakor og får om gir Drr ingrrr vi bgg idr: d d om gir C Så lør vi md hnn på vd å gang md C og får Til lu må vi finn konann C vd å bn iniialbingln = 6: om gir 6 C C 5 Løningn på iniialvrdiproblm blir følglig 5 Oppgav a Dn laplacranformr il n funkjon f r gi vd: F Finn f, alå dn invr laplacranformajonn il F. ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av

4 ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av Sidn båd laplacranformajonn og dn invr laplacranformajonn r linær, kan vi dl opp urkk ovr lik: f L L L Av ablln i vdlgg framgår d a L a a. D innbærr a L og L Følglig r f b Bruk laplacranformajon il å lø følgnd iniialvrdiproblm:, hvor r n nhpul Dirac dla vd =. Vi laplacranformrr diffrnialligningn og får: Y Y Y om gir, når vi flr al på vnr id om ikk innholdr Y ovr på hør id, Y Y Y Vi rkkr Y u om n fll fakor Y og lør å md hnn på Y: Y Vi må å om vi kan dlbrøkopppal. Vi fakorirr før nvnrn: gir

5 dv. Vi kan følglig fakorir nvnrn lik: Så gjør vi dlbrøkopppalingn: A B Gangr md og får A B Sr vi å inn i d urkk får vi: dv. A Sr vi inn får vi: dv. B A B A B Vi kan følglig dlbrøkopppal lik D r d amm urkk om vi invrranformr i oppgav a. Vi kan nå kriv urkk for Y om Y Vi brukr å rula fra oppgav a ammn md følgnd om vi hnr fra ablln i vdlgg : a a u a Y I vår ilfll br d a L ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid 5 av

6 ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid 6 av L u og L u D gir o følgnd løning på iniialvrdiproblm: u u Drom vi ønkr kan vi omform løningn lik: For < da r u = : For da r u = : Løningn da kriv lik Oppgav Gi følgnd mari: A a Finn all løningr av ligningm A =. D kan vi finn vd å gjør lmnær rkkoprajonr på koffiinmarin innil dn r på rdur rappform. Sidn vi har homogn ligningm rngr vi ikk å dra md o høridn om jo allid vil bå av bar -r, og rngr drfor ikk å bruk oalmarin. Vi br før om på rkk og, og får:

7 ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av Nå r koffiinmarin på rdur rappform, og vi kan kriv nd løningn. Av. rkk r vi a Variabln r fri, og vi r. rkk gir da

8 og følglig. rkk gir og følglig Oppummr:,,, Skrv på vkorform: b i Forklar hva om mn md a vkorr r linær avhngig llr uavhngig. Vkorr r linær avhngig drom n av dm kan kriv om n linærkombinajon av d andr. I innbærr d a vkorn har amm llr moa rning alå a d pkr lang amm linj. I innbærr d a vkorn liggr i amm plan. I moa fall r d linær uavhngig. ii Er kolonnvkorn i A linær uavhngig? Bgrunn var. Vkorn r ikk linær uavhngig. Alå: d r linær avhngig. D kan bgrunn på o mår om nil r dn amm bgrunnln:. Kolonnvkorn i A har r komponnr og liggr drfor i. Fir vkorr om bor i rdimnjonal rom kan ikk vær linær uavhngig, da d r «n dimnjon for li». Dn i vkorn har ikk non n dimnjon å pk u. Følglig r vkorn linær avhngig.. Drom kolonnvkorn i A r linær uavhngig br d a linærkombinajonn av dm r nullvkor kun drom all koffiinn i linærkombinajonn r null. En linærkombinajon av kolonnvkorn i A kan urkk om A hvor r vkorn av koffiinn i linærkombinajonn. Alå: drom A = kun har dn rivill løningn r kolonnvkorn i A linær uavhngig. Som vi å i oppgav a hadd d ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid 8 av

9 ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av ligningm ogå ikk-rivill løningr, og vkorn r drfor linær avhngig. c Finn n bai for kolonnromm og n bai for nullromm il marin. Marin på rdur rappform om vi fan i oppgav a kan bruk il å finn n bai for kolonnromm. Marin var lik: Vi r a kolonn, og har ldnd lmnr, og di r kolonnn i mari A vil drfor dann n bai for kolonnromm il A, alå: 5,, En bai for nullromm il marin r gi av løningn på A = om vi fan i a. På vkorform var dnn løningn og n bai for nullromm r drfor d For mari A, finn i dimnjonn il kolonnromm Dimnjonn il kolonnromm r gi vd anall vkorr i bain. Hr bår bain av r vkorr d fan vi i oppgav c, og dimnjonn il kolonnromm r følglig. ii rangn angn il marin r lik dimnjonn il kolonnromm. Følglig r rank A =

10 iii nullin Nullin r dimnjonn il nullromm. Vi å a bai for nullromm bo av kun n vkor. Følglig r nullin il A lik. Oppgav 5 a Gi følgnd mari. 5 A Finn marin gnvrdir og d ilhørnd gnvkorn. Egnvrdin og gnvkorn r d λ og om ilfrdillr ligningn A = λ om kan omform il A I =. Vi finnr før gnvrdin. D r d om gir ikk-rivill løningr av ligningn A I =, alå d λ om gjør drminann il koffiinmarin lik. Drminann il koffiinmarin r 5 d A I Vi finnr å hvilk om gjør dnn lik : 6 5 om gir følgnd gnvrdir og Egnvkorn r d -vkorn om r løningr av ligningm A I = : Egnvkor om ilhørr 6 : A I Løningn av ligningm A I = finnr vi nå vd lmnær rkkoprajonr på koffiinmarin: ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av

11 ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av Mang vil forrkk å ha marin på rdur rappform. I å fall må vi ndr forgn på før rkk d pillr rng a ingn roll: Hr vil vær n fri variabl, og vi r Før rkk gir da om gir Skrv på vkorform blir løningn, om r gnvkor ilhørnd 6 : =, Egnvkor om ilhørr : 5 5 I A Elmnær rkkoprajonr på dnn gir

12 Hr vil vær n fri variabl, og vi r Før rkk gir da om gir Skrv på vkorform blir løningn, om r gnvkor ilhørnd : =, b En linærranformajon T: pilr vkorr om linjn om figurn ndnfor vir. Hva r ranformajonn gnvrdir og ilhørnd gnvkor? Tv = v D om r karakriik for gnvkorr, r a d r ranformajonn fora vil pk lang dn amm linja, mn a d kan bli rukk llr krmp. D kan urkk om A = λ hvor r gnvkorn, A r ranformajonmarin og λ urkkr hvor m vkorn blir rukk llr krmp vd ranformajonn. En vkor om pkr lang pilinglinjn vil ikk ndr g når dn pil om linjn. All lik vkorr r drfor gnvkorr il linærranformajonn. En rningvkor for pilinglinja r r D gnvkor kan drfor urkk om ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av

13 , Fordi di vkorn hvrkn rkk llr krmp vd pilingranformajonn må gnvrdin om d gnvkor ilhørr vær. Vkorr om år orogonal vinklr på pilinglinja vil ogå vær gnvkorr il dnn linærranformajonn fordi d vd piling vil bli nudd mn vil fora pk lang linja om r orogonal på pilinglinja. En rningvkor for linja om r orogonal på vår pilinglinj r r D gnvkor kan drfor urkk om, Fordi di vkorn nu moa vi mn hvrkn rkk llr krmp vd pilingranformajonn må gnvrdin om d gnvkor ilhørr, vær. Oppgav 6 Finn vrdin av følgnd ugnlig ingral drom d konvrgrr: d d lim d lim d lim lim lim lim ITD5 Mamaikk, andr dlkamn, mai - løningforlag Sid av

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har

Detaljer

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005 2005/10 Notatr 2005 Ann Sofi Abrahamsn Notatr Analys av rvisjon Filkodr og ndringr i utnrikshandlsstatistikkn Sksjon for utnrikshandl Innhold 1. Innldning... 2 2. Filkodr... 2 3. Analys av filkodr - original

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag EKAMEN løigforlag 5. augut 6 Emkod: ITD5 Emav: Matmatikk adr dlkam Dato: 8. mai 6 Hjlpmidlr: - To A-ark md valgfritt ihold på bgg idr. Ekamtid: 9.. Faglærr: Chritia F Hid - Formlhft. Kalkulator r ikk tillatt.

Detaljer

VEDLEGG FAUSKE KOMMUNE - REGULERINGSBESTEMMELSER I TILKNYTNING TIL REGULERINGSPLAN FOR SJÅHEIA 1 D rgulr områd r på plann v md rgulrnggrn Innnfor dnn bgrnnnglnj kal bbyggln plarng

Detaljer

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016. Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

VEDLEGG Marikklrappor Bygg - 11112014_11:51 1841 Fausk Kommun Bygningsnr : 11212751 Bygningsdaa Bygningsyp Bygningssaus Enbolig (111) Ta i bruk (TB) - 24111984 Ufullsndig

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

Formelsamling for matematiske metoder 3.

Formelsamling for matematiske metoder 3. Formlsmli for mmis modr 3 f f Grdi Slrfl f r rdi f Risdrivr drivr il slrfl f i p o i ri r f f f os vor risvor r svor o r vil mllom rdi o risvor rivr v vorfl F m : F R F R vær diffrsirr i r F i d drivr

Detaljer

VEDLEGG EGENOPPGAVE Slgr/ir:,J air^ 0< K^ l,rn narrr' 5,/rzi{ rr? cnn, BNR l-, fl KoMMNR S*lrr/^ I Posnr: f Å,f0 Ko na^ l Grunnmur, fundamn og sokkl: L I Kjnnr du

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

Hans Holmengen Merverdiavgift i reiselivsbedrifter (Arbeidsnotat 2000:100)

Hans Holmengen Merverdiavgift i reiselivsbedrifter (Arbeidsnotat 2000:100) Han Holmngn Mrvrdiavgift i rilivbdriftr (Arbidnotat 2000:100) Forord Dagn mrvrdiavgiftytm har kitrt idn 1. januar 1970. I hl dnn tidn har ovrnatting og tranport vært holdt utnfor lovn rammr. Hvorvidt di

Detaljer

Faun rapport 018-2011

Faun rapport 018-2011 Faun rappor 18-211 Aldrsrgisrring og bsandsvurdring for lg og hjor i Gjrsad r jaka 21 Oppdragsgivr: -Gjrsad Villag Forfar: Lars Erik Gangsi 1 Forord Undrgnnd må bar bklag a min Pugo Parnr fan d for god

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Fag: Menneskef maskin - interaksjon. Fagnr: LV "'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE.

Fag: Menneskef maskin - interaksjon. Fagnr: LV 'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE. Fag: nnskf maskin intraksjn Fagnr: LV "'i3a Faglig vildr: Annari Trvatn Grupp(r): 3AA 3AB 3A3AD3A Dat: 200401 ks amnstid fra til: 900 1200 ksamnsppgavn bstår av Antall sidr: inkl frsid 9 Antall ppgavr:

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

Optimal pengepolitikk hva er det?

Optimal pengepolitikk hva er det? Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk

Detaljer

Vedlegg: Kart over kabler fra Alta Kraftlag AL og Telenor Norge

Vedlegg: Kart over kabler fra Alta Kraftlag AL og Telenor Norge Vdlgg: Kat ov kabl fa Alta Kaftlag AL og Tlno Nog p p p $ S S S S 362500 363000 7764500 7765000 7765500 Boas 16012 Dalbakkn Romsdal 16013 Tvlvdalsvin 16 0 100m Dato: Sign: 2012.01.09 ES Målstokk 1:5000

Detaljer

Øvinger uke 42 løsninger

Øvinger uke 42 løsninger Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud Eldr i Vrdal Mulightr Rttightr Aktivittr/tilbud Eldrrådt Omsorg og vlfrd Omsorg og vlfrd i Vrdal r dlt inn i to virksomhtsområdr: Øra omsorg-og vlfrdsdistrikt Vinn og Vuku omsorg-og vlfrdsdistrikt Hva

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

Detaljregulering for Greåkerveien 27-29 i Sarpsborg kommune, planid 010522066. Varsel om oppstart av planarbeid.

Detaljregulering for Greåkerveien 27-29 i Sarpsborg kommune, planid 010522066. Varsel om oppstart av planarbeid. Brørt myndightr ihht. adrsslist Drs rf Vår rf. 10.11.2014 Dtaljrgulring for Gråkrvin 27-29 i Sarpsborg kommun, planid 010522066. Varsl om oppstart av planarbid. I mdhold av plan- og bygningslovn (pbl)

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg:

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

Forelesning uke 38 Poler og stabilitet

Forelesning uke 38 Poler og stabilitet Forlning uk 38 Polr og abili Forlning uk 38 Polr og abili... Tranin analy bar å olr og nullunk... 0-unk... 3 Sabili... 5 Ekmlogav: Srømmn i n C rikr I... 8 Invr laalac ranformajon... AC-ron og bodlo...

Detaljer

122-13 Vedlegg 3 Rapportskjema

122-13 Vedlegg 3 Rapportskjema Spsifikasjon 122-13 Vdlgg 3 Rapportskjma Dok. ansvarlig: Jan-Erik Dlbck Dok. godkjnnr: Asgir Mjlv Gyldig fra: 2013-01-22 Distribusjon: Åpn Sid 1 av 6 INNHOLDSFORTEGNELSE SIDE 1 Gnrlt... 1 2 Tittlflt...

Detaljer

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller r d i v r Vi klatr Vi firr md 20-års jubilumspakkr på flr av vår mst populær modllr Hyundai i40 stolt vinnr av EuroCarBody 2011 Fra 113g/km 0,43 l/mil Utdrag av utstyrsnivå i40 Prmium: Hyundai i40 I dn

Detaljer

Andre ordens system og vibrasjoner

Andre ordens system og vibrasjoner Andr ordns sysm og vibrasonr Hvordan mål Hvordan s opp n modll Sidspor vibrasonr Transfrfunkson Elkrisk Mkanisk Rsonrnd snsorr Scion 3.4: Dynamic Modls (Fradn Scion 8: Vlociy and accllraion (Fradn Paynr:

Detaljer

Andre ordens system og vibrasjoner

Andre ordens system og vibrasjoner Andr ordns sysm og vibrasonr Hvordan mål Hvordan s opp n modll Sidspor vibrasonr Transfrfunkson Elkrisk Mkanisk Rsonrnd snsorr Scion 3.4: Dynamic Modls (Fradn Scion 8: Vlociy and accllraion (Fradn Scion

Detaljer

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart ÅRSPLAN Tinn: 5 Piod: Høst og vå U Omåd Komptansmål Dlmål/læingsmål Læmiddl/læv / mtod Kat og od Fag vis fosjll Himmltning Atlas Et synlig tntt Kat på data Knn ls og b papibast og digital at Kat Om attgn

Detaljer

Faun rapport 003-2011

Faun rapport 003-2011 Faun rappor 003-2011 Aldrsrgisrring og bsandsvurdring for lg på Ringrik r jaka 2010 Oppdragsgivr: -Ringrik kommun Forfar: Lars Erik Gangsi 1 Forord Rapporn for Ringrik r dn førs jg frdigsillr r jaka 2010.

Detaljer

BALANCE. Sunniva. Vi har snakket med. Flerkulturell bakgrunn 13. FEBRUAR 2015 BALANCE

BALANCE. Sunniva. Vi har snakket med. Flerkulturell bakgrunn 13. FEBRUAR 2015 BALANCE BALANCE k s i r f D i h o o sm p p o a r a h i V A M E T G I VIKT Flrkulurll bakgru Klub b bl m som bar r kl ubb Vi har sakk md Suiva magasi.idd 1 1 13.02.2015 13:02:52 Ldr Ihold I d ugav av BALANCE ka

Detaljer

Asker 17.03.12. Kaare Granheim: Askers rolle i den regionale utviklingen. Konsekvenser for befolkning og boligmarked i Asker

Asker 17.03.12. Kaare Granheim: Askers rolle i den regionale utviklingen. Konsekvenser for befolkning og boligmarked i Asker Askr 17.03.12 Kaar Grahim: Askrs roll i d rgioal utviklig. Koskvsr for bfolkig og boligmarkd i Askr Kaar Grahim Vidrgåd (KG) NTH bygigsigiør md økoomi for kraftkommur som ksamsoppgav Aspla 1970 md kommual

Detaljer

Krav om sikker påfyllingsanordning, transport og merking av emballasje for bioetanol til alkoholfyrte peiser.

Krav om sikker påfyllingsanordning, transport og merking av emballasje for bioetanol til alkoholfyrte peiser. D da Vår rfras Vår sasbhadlr Drs da Drs rfras gby, lf. 33 41 25 00 I hhld il lis 1 av 5 Arivd 422 Krav sir påfylligsardig, raspr g rig av ballasj fr bial il alhlfyr pisr. Dirra fr safssirh g brdsap (DSB)

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

Setersprell. Kulturdagar i Arna. Snøfritt-festivalen

Setersprell. Kulturdagar i Arna. Snøfritt-festivalen Nr. 5 Mai 2014 19. årgang Srprll Kulurdagar i Arna Snøfri-fivaln In o nh ld Kjær lr! Å mal på vann I mai-juni kan du opplv my fin undr Srprll på Hlgr. Og i juni arrangr Mangfoldfivaln på Chriigårdn - å

Detaljer

Vårt mål er å lage verdens beste iskrem og sorbet!

Vårt mål er å lage verdens beste iskrem og sorbet! Vårt ål r å lag vrdns bst iskr og sorbt! Historin o KULINARIS Dtt r dn lykklig historin o tr fyrr fra Kolbotn so ønskt sg no nytt i livt. Årt var 2002. Dt var Marius so fikk idn o å start iskrfabrikk.

Detaljer

KulTur. Kino med høytlesning. Aktivitetsleir

KulTur. Kino med høytlesning. Aktivitetsleir N. 8 Spmb 2012 17. ågang KulTu Kino md høylsning Akivisli In o nh ld sn l y ø h Kino md Ridkus Kjæ ls! ing I d numm av Infoposn kan du s flo fibild fa blan ann Danmak og Tykia. Du kan også ls om and gøy

Detaljer

FOLKETS PIMPER PØLSA!

FOLKETS PIMPER PØLSA! DET FINNES EN PØLSE MED 80% KJØTT, OG DET FINNES EN HEL VERDEN AV TILBEHØR. FOLKETS PIMPER PØLSA! Vi yn pøln frtjnr å få dn trni rin hburrn tcn. Drfr lnrr vi ått frh ppriftr til inpirjn! FOLKETS WIENER

Detaljer

d2x/dt2 dx/dt x F _ 1/m D F m K x m t-plan: x m s-plan: x m Transferfunksjon: m K m D m Standard form for en 2.orden transferfunksjon: 2

d2x/dt2 dx/dt x F _ 1/m D F m K x m t-plan: x m s-plan: x m Transferfunksjon: m K m D m Standard form for en 2.orden transferfunksjon: 2 Mknik. jær, fjærkrf v pr, pkr En [kg] r f il fjær/pr- og lir påvirk n r krf. Mn vil opp okrfn: [ N ] [ kg ] [ ] jær vil opp okrfn: kg f [ N] [ ] [ ] pr vil opp okrfn: kg [ N] ] [ ] v[ rfln for : f or å

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 4 Total fortjnst: 94000 kr Vårn 2015 God og lttsolgt! Vi tjnt 67500,- Ls mr! En nkl

Detaljer

DELTAKERINFORMASJON FEMUNDLØPET 2015

DELTAKERINFORMASJON FEMUNDLØPET 2015 DELTAKERINFORMASJON FEMUNDLØPET 015 Vdg finnr du vikig inforsjon o din dks. Vnnigs s vdg inforsjon nøy og sjkk også nsidn vår www.fundop.no d dn nys øypbskrivsn, vrinærinforsjon og rgr. Vi ønskr dg n god

Detaljer

Ukens tilbudsavis fra

Ukens tilbudsavis fra Ukns tilbudsavis fra Hvordan blar man i tilbudsavisn? For å bla i tilbudsavisn så klikkr du ntn i t av hjørnn, llr du kan klikk på piln nd på mnylinjn. S nærmr på produktn? Du kan zoom inn på produktn

Detaljer

mot mobbing 2011 2014 Manifest

mot mobbing 2011 2014 Manifest g t n s b f b n o a M ot m 014 m 11 2 20 dt mljø o g t rngs r o d f g læ rb st- o a sam pvk nd op t lk rnd p r o Et f nklud Manfst Et forplktnd samarbd for t godt nkludrnd oppvkst- lærngsmljø Forord All

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Evaluering av NGU-dagen

Evaluering av NGU-dagen .. :: QustBk xport - Evlurin v NGU-n Evlurin v NGU-n Pulis rom.. to.. rsponss ( uniqu). Forrn på NGU-n vr li rlvnt 9 9,9 %, %,8 %,8 %, %, % Avr,9,,. Tmn or rupprit vr o, % %, % 8, %, %, %, % Avr, 9,8,

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44 Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5

Detaljer

Tilfelle 1: Hent opp lønnsarten for fastlønn (lønnsart 1 i standard lønnsartregister). Kartotek Lønnsarter fane 2: Parameter.

Tilfelle 1: Hent opp lønnsarten for fastlønn (lønnsart 1 i standard lønnsartregister). Kartotek Lønnsarter fane 2: Parameter. Tilfelle 1: Den ansatte er i foreldrepermisjon hvor arbeidsgiver betaler full lønn, men den ansatte tar ut 80 % dekningsgrad. Den ansatte skal ha 100 % permisjon, men med 80 % av lønnen sin. Hvis arbeidsgiver

Detaljer

-40% side 2 og FOR. Lettsaltet torskefilet og fersk seifilet Pr kg. Kyllingfilet. Et utvalg Jif og Ajax rengjøringsprodukter Fra 250 ml

-40% side 2 og FOR. Lettsaltet torskefilet og fersk seifilet Pr kg. Kyllingfilet. Et utvalg Jif og Ajax rengjøringsprodukter Fra 250 ml Ssktoukr! fi Lttsaltt torskfilt og frsk sifilt DSH. 750 g. Pr pk 106,53 Jif og Ajax rngjøringsproduktr Fra 250 ml Nidar favorittr Fra 300 g fra 97,06. 1 pk fra 37,60 79-40% Et stort utvalg Big On og Grandiosa

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

Salgskatalog Støtt oss og kjøp kaker, karameller, kjekssjokolade og knekkebrød!

Salgskatalog Støtt oss og kjøp kaker, karameller, kjekssjokolade og knekkebrød! Salgskatalog Støtt oss og kjøp kakr, karamllr, kjkssjokolad og knkkbrød! Hjlp oss å nå vårt mål gjnnom å kjøp Nordkaks kjmpgod produktr. Hvr solgt boks tar oss nærmr vårt mål og gir dg no godt å by din

Detaljer

Deres ref Vår ref Dato. Oppdragsbrev - etterbruk og salg av statens eiendom på Adamstuen -

Deres ref Vår ref Dato. Oppdragsbrev - etterbruk og salg av statens eiendom på Adamstuen - Statbygg Potbok 8106 Dp 0032 OSLO Dr rf Vår rf Dato 16/1416-1 18.03.2016 Oppdragbrv - ttrbruk og alg av tatn indom på Adamtun - Statbygg gi md dtt i oppdrag å tart arbidt md ttrbruk og vntult alg og/llr

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata

Produktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...

Detaljer

EKSAMEN I EMNE TMA4245 STATISTIKK

EKSAMEN I EMNE TMA4245 STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt

Detaljer

åpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars

åpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars åpningstidr 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanlbollfrokost skattjakt psalg 12. - 16. mars amfi orkangr Følg Prisfstn på facbook www.facbook.com/amfiorkangr Kanlbollfrokost Tirsdag 12. mars PROGRAM

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIERSITETET I ADER imsad E K S A M E N S O P P A E : A: MA-9 Mamaikk LÆRER: P nik ogsad Klass: Dao:.5. Eksamnsid a-il: 9.. Eksamnsoppgavn bså av ølgnd Anall sid: 5 inkl. osid vdlgg Anall oppgav: 5 Anall

Detaljer

Styring av Mattilsynet ved hjelp av risikokart. Kristina Landsverk Tilsynsdirektør, Mattilsynet

Styring av Mattilsynet ved hjelp av risikokart. Kristina Landsverk Tilsynsdirektør, Mattilsynet Styrig av Mattilyt vd hjlp av riikokart Kritia Ladvrk Tilydirktør, Mattilyt Mattilyt amfuoppdrag Effktmål: Sikr hlmig trygg mat og trygt drikkva Frmm god hl ho platr, fik og dyr Frmm dyrvlfrd og rpkt for

Detaljer

ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010

ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010 ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010 Dn først Hom- Start avdlingn i Norg bl startt opp i Trondhim i 1995, og vi har firt 15 års jubilum dtt årt. Avdlingn bl startt som t bydlstiltak,

Detaljer

Muligheter og løsninger i norske innovasjonsmiljø: Hvordan møte den demografiske utviklingen med ny teknologi

Muligheter og løsninger i norske innovasjonsmiljø: Hvordan møte den demografiske utviklingen med ny teknologi Mulightr og løsningr i norsk innovasjonsmiljø: Hvordan møt dn dmografisk utviklingn md ny tknologi Pr Hasvold Administrativ ldr Tromsø Tlmdicin Laboratory SFI P H a s v o d A d m n s a v d T o m s ø T

Detaljer

VEDLEGG VEDTEKTER for Focus Trrass borslag org nr 992207205 vda på konsiurnd gnralforsamling dn 151107 sis ndr dn 080908 1 Innldnd bsmmlsr 1-1 Formål Focus Trrass borslag r samvirkforak

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Høstn 2014 Antall salgspriodr: 3 Total fortjnst: 67500 kr God og lttsolgt! Vi tjnt 20000,- Ls mr! En nkl

Detaljer

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav.

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav. 220 C10 RAMMER OG FAGVERK 10.2 FAGVERK Bjlk-fagvrk Dtt r konstruksjonr som r aktull for stor spnnviddr llr spsill funksjonskrav. a) akbjlk b) I-bjlk c) Etasjfagvrk Figur C 10.4.a r n typisk takkonstruksjon,

Detaljer

Disse strømforhold og strømretninger kan vi regne ut med metodene nedenfor.

Disse strømforhold og strømretninger kan vi regne ut med metodene nedenfor. 3.6 KOPLNGE MED ASYMETSKE ENEGKLDE 3.6 KOPLNGE MED ASYMMETSKE ENEGKLDE Nå fl spnningskild ll ngikild koplt sammn og ha foskjllig ind sistans og lktomotoisk spnning dt asymmti. Dt fl mtod som kan bnytts

Detaljer