Plotting av grafer og funksjonsanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Plotting av grafer og funksjonsanalyse"

Transkript

1 Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave Oppgave Oppgave Å plassere et bilde i GeoGebra... 8 Oppgave Vektorregning med GeoGebra Oppgave Litt algebra Oppgave Noen beviser for Pytagoras læresetning Oppgave Oppgave

2 Alle oppgavene i dette heftet er hentet fra lærebøker i Sinus-serien fra Cappelen Damm. Plotting av grafer og funksjonsanalyse Oppgave 1 a) Tegn grafen til f(x) = -x 2 + 4x 3 digitalt. b) Løs likningene digitalt. 1) -x 2 + 4x 3 = 0 2) -x 2 + 4x 3 = x 7 c) Finn arealet som er avgrenset av de to grafene til funksjonene 2 f( x) x 4x 3 og g( x) x 7. Løsning a) Åpne GeoGebra og skriv f(x) = -x 2 + 4x 3. Du får fram 2 ved å holde nede Alttasten og trykke 2. Trykk Enter. For å få et passe stort utsnitt av grafen, kan du holde nede høyre musetast og dra et rektangel over det området av grafen som du vil vise. GeoGebra zoomer da inn slik at dette rektangelet fyller hele grafikkfeltet. b) 2

3 Skriv Nullpunkt[f] og trykk Enter. Når du har skrevet 2-3 bokstaver kommer forslaget Nullpunkt[ ]. Trykk da Enter for å komme mellom klammeparentesene og trykk Enter igjen. Vi får nå avmerket nullpunktene på grafen og får koordinatene til disse i algebrafeltet. Se figuren øverst på neste side. Likningen -x 2 + 4x 3 = 0 har løsningen x = 1 eller x = 3. Skriv i inntastingsfeltet g(x) = x 7 og trykk Enter., til begge grafene og skjærings- Dra i aksene med dette verktøyet punktene vises. Skriv i inntastingsfeltet Skjæring[f,g] og trykk Enter. Vi ser da koordinatene til skjæringspunktet i algebrafeltet. 3

4 -x 2 + 4x 3 = x 7 har løsningen x = -1 eller x = 4. c) Vi ser av figuren at f(x) > g(x) når 1 x 4. Skriv i inntastingsfeltet:. Trykk Enter. Vi ser at arealet er 20,83. Oppgave 2 a) Tegn grafen til f(x) = x 4-4x 2 digitalt. b) Finn nullpunktene til f. c) Finn topp- og bunnpunktene til f. 2 d) Finn topp og bunnpunktene til g( x) sin( x) x, x 0,6 e) Fyll inn verditabellen for g(x). x 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 g(x) Løsning a) Åpne GeoGebra og skriv f(x) = x 4-4x 2. Du får fram 4 ved å holde nede Alttasten og trykke 4. Trykk Enter. 4

5 Still inn aksene slik at et passe utsnitt av grafen vises. b) Skriv i inntastingsfeltet Nullpunkt[f] og trykk Enter. Koordinatene til nullpunktene vises nå i algebrafeltet. c) f(x) har nullpunktene x = -2, x = 0 og x = 2. Skriv i inntastingsfeltet Ekstremalpunkt[f] og trykk Enter. Koordinatene til toppunktet og bunnpunktene vises nå i algebrafeltet. f(x) har toppunktet (0,0) og bunnpunktene (-1.41,4) og (1.41,4). 5

6 d) Åpne ei ny GeoGebra-fil. For å avgrense grafen til definisjonsmengden 2 0,6, skriver du: g(x)= Funksjon sin( x) x,0,6. Trykk Enter. Når du har skrevet de første to-tre bokstavene av ordet Funksjon, foreslår GeoGebra resten av den kommandoen du ønsker. Dette er merket med blått.. Trykk Enter for å komme mellom hakeparentesene. Når du ikke har en ren polynomfunksjon, kan du ikke bruke kommandoen Ekstremalpunkt for å finne topp- og bunnpunkter. Gå til nettsiden og last ned og installer verktøyet Ekstremalpunkt2.ggt som ligger der. For å lære hvordan du bruker dette verktøyet, kan du se de to opplæringsvideoene Last ned nyttige tilleggsverktøyer og Nullpunkter og ekstremalpunkter. Opplæringsvideoene er av typen flv (flashvideo), og krever gjerne at du laster ned flv-spilleren fra lenka øverst på den samme nettsiden. Ekstremalpunktene er merket med rødt på figuren nedenfor. 6

7 e) Se ev. opplæringsvideoen Verditabell på Klikk på Vis på verktøylinja og merk av for Regneark. Skriv 0.5 (husk punktum som desimaltegn) i celle A1. Skriv 1 i celle A2. Merk de to cellene og klikk på den lille firkanten nede i høyre hjørne på celle A2. Dra nedover med venstre musetast nede til og med til celle A13. Skriv =g(a1) i celle B1, og trykk Enter. Kopier nedover til og med celle B13. Du har nå en verditabell for g(x), og kan kopiere disse verdiene inn i tabellen i oppgaven. Du kunne også ha laget denne tabellen horisontal. Da er det lettere å kopiere direkte til en digital tabell. 7

8 Oppgave 3 a) Tegn grafen til f(x) = x 5 5x 3 + 4x. Hvor mange nullpunkter har grafen? b) Hvor mange topp og bunnpunkter har grafen? c) Hvor mange nullpunktert tror du en funksjon av grad n kan ha maksimalt? d) Hvor mange topp- og bunnpunkter tror du en funksjon av grad n kan ha maksimalt? Løsning Åpne GeoGebra og skriv i inntastingsfeltet f(x) = x 5 5x 3 + 4x. Trykk Enter. Still inn aksene slik at et passe utsnitt av grafen vises. a) Grafen har fem nullpunkter. b) Grafen har til samen fire toppunkter/bunnpunkter. c) En funksjon av grad n kan ha maksimalt n nullpunkter. d) En funksjon av grad n kan ha maksimalt n - 1 topp- og bunnpunkter. Å plassere et bilde i GeoGebra Oppgave 4 Gå til og last ned bildet Nattverden av Leonardo da Vinci. Åpne GeoGebra. Skjul regneark, algebrafelt, akser og rutenett ved å klikke på Vis på verktøylinja og velge bort disse. 8

9 Klikk på den lille trekanten nede i høyre hjørne på dette verktøyet verktøyet Sett inn bilde. og velg Klikk på grafikkfeltet der du vil ha nedre venstre hjørne av bildet. Nå dukker det opp en meny der du skal finne fram til bildet som du lagret, merke dette og klikke OK. Velg verktøyet Stråle gjennom to punkter og trekk perspektivlinjene for å finne forsvinningspunktet på bildet. For at strålene skal vise bedre, kan du høyreklikke på en av dem og velge Egenskskaper. Deretter kan du klikke på overskriften Stråler, slik at alle strålene er merket og velge en gul farge fra arkfanen Farge. Velg verktøyet Skjæring mellom to objekter og klikk deretter på to av perspektivlinjene. 9

10 Hvorfor tror du Leonardo da Vinci har plassert forsvinningspunktet akkurat der? Vektorregning med GeoGebra Oppgave 5 a) Vi har vektorene v [6,4] og u [ 2,3]. Tegn vektorene som piler i koordinatsystemet. (Mål VG2T-G-1, R1-G-5) b) Finn ut om vektorene står på hverandre. (Mål VG2T-G-2, R1-G-6) c) Hva blir summen av vektorene? (Mål VG2T-G-2, R1-G-6) d) Regn ut 1 w v 2 u (Mål VG2T-G-2, R1-G-6) 2 e) Du starter i punktet A, som har koordinatene (10,1) Hva er koordinatene til B om w AB? (Mål VG2T-G-2, R1-G-6). Løsning på oppgave 5 Først litt om vektorer i GeoGebra: Dersom du skriver A=(2,5) får du punktet A. Dersom du skriver a=(7,3) får du vektoren a avtegnet som ei pil med start i origo og som ender i punktet (7,3) Dersom du skriver A + a, får du avtegnet et punkt B, som har koordinatene til endepunktet for en vektor a med start i A. Skriver du v = A + a, får du tegnet en vektor med start i origo og som ender i punktet B. 10

11 a) Åpne ei ny GeoGebra-fil. Vis akser og rutenett. Skriv v = (6,4) og trykk Enter. Skriv u = (-2,3) og trykk Enter. b) Skriv inn: Skalarproduktet = u*v og trykk Enter. Vi ser at Skalarproduktet blir 0. Det betyr at u v. c) Skriv: sum = u + v og trykk Enter. Vi ser at summen av vektorene blir [4,7], men GeoGebra skriver verktorkoordinater slik: (4,7) Skriver vi Sum i stedet for sum, får vi et punkt fordi vi startet med stor bokstav. Vi trenger ikke skrive Skalarproduktet = eller sum =, men det gjør det lettere å se hva vi har regnet ut. Vi kunne ha skrevet bare u*v og u+v. Da hadde GeoGebra valgt navn på resultatene ved å starte på første ubrukte bokstav i alfabetet.. d) Skriv w = 1/2*v+2*u og trykk Enter. Vi får tegnet svaret som en vektor med start i origo og som ender i (-1,8). I algebrafeltet står det w = (-1,8) Vi kan se at dette stemmer med utregningene: 1 [6,4] 2 [ 2,3] [3,2] [ 4,6] [3 4,2 6] [ 1,8] 2 11

12 e) Skriv A = (10,1). Skriv B = A + w og trykk Enter. Vi ser at koordinatene til B blir (9,9). Dersom vi skriver vektor[a,b] og trykker Enter, finner vi at denne vektoren (som GeoGebra kaller z) har koordinatene [-1,8]. Dette skriver GeoGebra slik: (-1,8). Vi ser at z w Litt algebra Oppgave 6 Hittil har det vært mye funksjoner og geometri og lite av algebra. Algebra-delen til GeoGebra avgrenser seg stort sett til å finne uttrykk for den deriverte, ubestemte integral og utregning av parenteser som inneholder x. GeoGebra kan altså utføre litt algebra med x 12

13 a) Finn en tredjegradsfunksjon som har ekstremalpunkt for x 1 = -3 og x 2 = 7. Konstantleddet i tredjegradsfunksjonen er 0. b) Finn den femtederiverte av x 2 sin( x). c) Multipliser ut 4 ( x 2). Løsning på oppgave 6 a) Åpne ei ny GeoGebra-fil. Merk av for Algebrafelt. Klikk og dra i kanten mellom algebrafeltet og grafikkfeltet slik at algebrafeltet blir litt bredere. Skriv: f(x)=(x+3)(x-7) og trykk Enter. Skriv: Integral[f] og trykk Enter. Du får at den søkte funksjonen g(x) = 1 3 x3-2x 2 21x Høyreklikk på f(x) i algebrafeltet og fjern merkinga av Vis objekt. Høyreklikk på grafikkfeltet, klikk på x-akse:y-akse og la forholdet være 1:10 Bruk verktøyet for å flytte grafikkfeltet og flytt på grafen slik at du får med både toppunktet og bunnpunktet. b) Åpne ei ny GeoGebra-fil. Skriv f(x) = x 2 sin(x) og trykk Enter. Du får fram eksponenten 2 ved å holde nede Alt-tasten på tastaturet og deretter trykke 2. Vi finner den deriverte ved å skrive f (x), den dobbelderiverte ved å skrive f (x) og den femtederiverte ved å skrive f (x) For å få en ferdig forkortet versjon av den femtederiverte skriver vi i inntastingsfeltet:..trykk Enter. Svaret blir da: g x x x x x x 2 ( ) cos( ) 20cos( ) 10 sin( ) c) Åpne ei ny GeoGebra-fil. Skriv RegnUt[(x 2) 4 ] eller Polynom[(x - 2) 4 ] og trykk Enter. Da får du at: ( x 2) x 8x 24x 32x 16 13

14 Her er en interessant variant, der vi utnytter glidere og kan bruke dette til å finne binomialkoeffisienter: Skriv inn n=1 og trykk Enter. Skriv a=1 og trykk Enter. Skriv f(x) = Polynom[(x-a)^n] og trykk Enter. Høyreklikk etter tur på n og a og lag glidere for disse ved å merke av for Vis objekt. Høyreklikk på gliderne, velg Egenskaper og la dem gå frå 1 til 5. La animasjonstrinnene være 1. Klikk på verktøyet for å flytte objekter, og flytt på glideren for n. Vi finner binomialkoeffisientene når a = 1. Flytt på glideren for a og se hvordan utregningen forandrer seg. Noen beviser for Pytagoras læresetning Oppgave 7 Gå til nettsiden: Forklar de ulike overgangene og hvorfor dette er et bevis for Pytagoras læresetning. Oppgave 8 Gå til nettsiden og last ned GeoGebra-fila Bevis for Pytagoras.ggb Forklar at opplysningene stemmer før du går videre i beviset ved å flytte på gliderne. Dette var noen smakebiter på hvordan en kan bruke GeoGebra i forhold til de nye læreplanmålene i LK-06. Lykke til med bruken av programmet i 14

15 klasserommet. Her er det nesten bare fantasien som setter grenser for hva en kan få til. Send gjerne spørsmål, innspill og kommentarer til: Mobilnr

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

GeoGebra-opplæring i Matematikk 2T

GeoGebra-opplæring i Matematikk 2T GeoGebra-opplæring i Matematikk 2T Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt. Vinkel mellom to vektorer 1.6 Parameterframstilling 1.8 Binomialkoeffisient I 2.7 Binomialkoeffisient

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

GeoGebra-opplæring i Matematikk 1T

GeoGebra-opplæring i Matematikk 1T GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

GeoGebra-opplæring i Matematikk R1

GeoGebra-opplæring i Matematikk R1 GeoGebra-opplæring i Matematikk R1 Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt og vinkel mellom to vektorer 1.6 Forenkle uttrykk 2.1 Faktorisering 2.1 Grafisk løsning av eksponentiallikninger

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

GeoGebra på vgs. Versjon 3.0

GeoGebra på vgs. Versjon 3.0 GeoGebra på vgs. Versjon 3.0 Bokmål Lær å bruke et gratis program for graftegning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhold: HVA ER GEOGEBRA?... 3 HVOR KAN JEG FÅ

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

GeoGebra 3.2. for. ungdomstrinnet

GeoGebra 3.2. for. ungdomstrinnet GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Brukermanual i GeoGebra

Brukermanual i GeoGebra Brukermanual i GeoGebra for Vg1T, Vg1P, Vg2T, Vg2P, R1 og R2. GeoGebra er et program for Geometri og AlGebra. GeoGebra er en dynamisk matematisk programvare, som binder sammen geometri, algebra og utregninger.

Detaljer

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter 3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet Skolelaboratoriet for matematikk, naturfag og teknologi Kurshefte i GeoGebra Ungdomstrinnet Astrid Johansen - NTNU Skolelaboratoriet - 29.10.2013 GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse Eksamensoppgave, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare se på løsningen av oppgavene c og d. Åpne GeoGebra.

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Nullpunkt. Side 11 i læreboka... 3 Andregradslikninger. Side 18 i læreboka... 3 Momentan vekstfart. Side 47 i læreboka...

Detaljer

GeoGebra på vgs. Versjon 2.7

GeoGebra på vgs. Versjon 2.7 GeoGebra på vgs. Versjon 2.7 Bokmål Lær å bruke et gratis program for graftegning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhold: HVA ER GEOGEBRA?... 3 HVOR KAN JEG FÅ

Detaljer

GeoGebra-opplæring i 2P-Y

GeoGebra-opplæring i 2P-Y GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner

Detaljer

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet Opplæringshefte i GeoGebra for mellomtrinnet og ungdomstrinnet av Sigbjørn Hals Bokmål 1 Innhold: Del 1. Generell informasjon om GeoGebra...3 Kva er GeoGebra?...3 Kvar kan eg få tak i dette programmet?...3

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Eg har lasta ned ei installasjonsfil frå www.geogebra.org og installert programmet, men får det ikkje til å fungere. Kva kan dette skuldast? Den mest vanlege

Detaljer

GeoGebra på vgs. Versjon 2.7

GeoGebra på vgs. Versjon 2.7 GeoGebra på vgs. Versjon 2.7 Nynorsk Lær å bruke eit gratis program for grafteikning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhald: KVA ER GEOGEBRA?... 3 KVAR KAN EG

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Flytt inntastingsfeltet

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Lineær optimering med GeoGebra

Lineær optimering med GeoGebra Lineær optimering med GeoGebra av Sigbjørn Hals Eksempler fra læreboka Sinus S1 Cappelen, 2007 1 Før vi viser fremgangsmåten for lineær optimering, vil vi vise noen nyttige kommandoer og menyvalg i GeoGebra,

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet e......................................

Detaljer

Regresjon med GeoGebra 4.0

Regresjon med GeoGebra 4.0 Regresjon med GeoGebra 4.0 av Sigbjørn Hals Innhold Liste over kommandoene... 2 Lineær regresjon... 3 Potensregresjon... 5 Eksponentiell regresjon... 5 Logaritmisk regresjon... 6 Logistisk regresjon...

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

GeoGebra 6. GeoGebra 6 kan lastes ned fra:

GeoGebra 6. GeoGebra 6 kan lastes ned fra: GeoGebra 6 Den vanlige GeoGebra brukeren må bruke litt tid til å sette seg inn i GeoGebra 6. Noen viktige endringer blir vist i dette dokumentet. Tema er valgt spesielt med tanke på arbeid med elever.

Detaljer

Oppgaver om derivasjon

Oppgaver om derivasjon Oppgaver om derivasjon Oppgave 1 Gitt funksjonen g(x) = x 3 6x 48x + 13 a) Finn g (x). b) Bruk den deriverte til å finne x-koordinaten til topp/bunn-punktene til grafen. Finn også de tilhørende y-koordinatene,

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt

Detaljer

Geometri med GeoGebra

Geometri med GeoGebra Geometri med GeoGebra Del 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals

Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra Av Sigbjørn Hals 1 Innhold Innledning... 3 Typeoppgave 1... 3 Oppgaven... 3 Fremgangsmåten... 4 Løsningen... 4

Detaljer

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1. Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner GeoGebra arbeidsark 1 Judith og Marcus Hohenwarter www.geogebra.org Oversatt av Anders Sanne og Jostein Våge Tilpasset

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

QED 1 7 Matematikk for grunnskolelærerutdanningen

QED 1 7 Matematikk for grunnskolelærerutdanningen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære, 2. utgave Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse. Eksamensoppgåve, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse. Eksamensoppgåve, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse Eksamensoppgåve, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare sjå på løysinga av oppgåvene c og d. Opne GeoGebra.

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8].

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. 413 GeoGebra i S2 Grafer Nullpunkter GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. Topp- og bunnpunkter GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. GeoGebra

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsning eksamen 2T våren 2008

Løsning eksamen 2T våren 2008 Løsning eksamen 2T våren 2008 Del 2 løst med pc Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke sier noe annet, kan du fritt

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer