Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy"

Transkript

1 Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1

2 Innhold Litt om programmene... 4 GeoGebra wxmaxima... 4 Microsoft Mathematics... 4 WordMat... 4 TI-Nspire CAS... 5 Omforming av formler. Side 82 i læreboka... 5 GeoGebra wxmaxima... 5 Microsoft Mathematics... 6 WordMat... 6 TI-Nspire... 6 Rette linjer. Side 89 i læreboka... 7 GeoGebra 4.0 og wxmaxima... 8 Microsoft Mathematics... 8 WordMat... 9 TI-Nspire Digital løsning av likninger. Side 97 i læreboka GeoGebra 4.0 og wxmaxima Microsoft Mathematics WordMat TI-Nspire Digital løsning av likningssett. Side 97 i læreboka GeoGebra 4.0 og wxmaxima Microsoft Mathematics WordMat TI-Nspire Forsøk og simuleringer. Side 240 i læreboka GeoGebra 4.0 og Andregradsfunksjoner. Side 245 i læreboka

3 GeoGebra 4.0 og TI-Nspire Nullpunkt, toppunkt og bunnpunkt. Side 247 i læreboka GeoGebra 4.0 og wxmaxima Microsoft Mathematics WordMat TI-Nspire Momentan vekstfart. Side 267 i læreboka GeoGebra 4.0 og wxmaxima Microsoft Mathematics WordMat TI-Nspire

4 Litt om programmene Bak i læreboka står det forklart hvordan vi kan finne Iøsninger på noen oppgaver og eksempler med grafiske kalkulatorer. I dag har de fleste 1P-elevene egne datamaskiner som de kan bruke på del 2 av prøver og eksamener. Noen matematikkprogram er også godt egnet til utforskning og til å se og forstå matematiske sammenhenger. Vi presenterer her først kort de ulike programmene vi har valgt. GeoGebra 4.2 Gjeldene offisielle versjon av GeoGebra heter i skrivende stund (juli 2012) GeoGebra 4.0. Denne versjonen inneholder ikke en fullstendig CAS-del, slik versjon 4.2 og andre kommende versjoner gjør. GeoGebra 4.2 er bare tilgjengelig som en uferdig betaversjon. Den er likevel så god at vi velger å vise løsninger i utvalgte oppgaver også med denne versjonen, som kan lastes ned fra Klikk der på fila geogebra-42.jnlp. wxmaxima Den norske versjonen av wxmaxima er et gratisprogram som er bearbeidet og tilpasset den norske læreplanen av Bjørn Ove Thue ved Møglestu videregående skole i Lillesand. Programmet er menybasert og svært lett å bruke. Du kan laste ned wxmaxima fra denne adressen: Microsoft Mathematics Microsoft Mathematics inneholder to deler: - en frittstående del som m.a. kan brukes til å finne trinnvise løsninger av andregradslikninger og likningssett med flere ukjente. - en del som kan installeres som et tillegg i Word, og som gjør det svært enkelt å gjøre matematiske beregninger direkte i skriveprogrammet. Du kan lære mer om den generelle bruken av Microsoft Mathematics i heftet "Lær å bruke Microsoft Mathematics, matematikk-tillegget i Word og WordMat". WordMat WordMat er et avansert, gratis og brukervennlig dansk program, som kan installeres som et tillegg til Word. Det inneholder mange flere muligheter enn Microsoft Mathematics-tillegget, og er samtidig svært enkelt å bruke. Programmet vil etter hvert bli oversatt til norsk. Det kan lastes ned fra Du kan lære mer om den generelle bruken av WordMat i heftet "Lær å bruke Microsoft Mathematics, matematikk-tillegget i Word og WordMat". 4

5 TI-Nspire CAS TI-Nspire er en integrert pakke av matematikkverktøy, med svært mange muligheter. Programmet er ikke gratis. Prisen er avhengig av antallet lisenser som blir bestilt. TI-Nspire kan bestilles fra Alfasoft AS. Texas Instruments har gode og informative opplæringshefter i bruken av TI-Nspire CAS. Du finner heftet "Kom i gang med TI-Nspire CAS" av Kjetil Idås på denne adressen: Omforming av formler. Side 82 i læreboka Her viser vi hvordan vi kan omforme formelen U = 1.39x + 50, slik at vi får x alene på venstre side. I læreboka er det vist hvordan vi kan gjøre dette med vanlig regning. GeoGebra 4.2 Skriv inn Løs(U = 1.39x + 50, x) i CAS-vinduet i GeoGebra. Husk punktum som desimaltegn. Trykk Enter. wxmaxima Klikk på Likninger og på Løs likning. Skriv inn likningen og variabelen likningen skal løses med hensyn til, slik figuren nedenfor viser. Klikk OK. 5

6 Microsoft Mathematics Trykk Alt, Shift og 0 for å lage et matematisk felt. Skriv inn U = 1.39x Trykk Beregn, Løs og Løs for x. x = U = 1.39x U WordMat Trykk Alt og M for å lage et matematisk felt. Skriv inn U = 1,39x Trykk Alt og L for å løse likningen. Velg x som variabel. U = 1,39x + 50 x = 0,7194 U 35,97 TI-Nspire Sett inn et kalkulatorfelt i TI-Nspire. Skriv Solve(U = 1.39x + 50, x) og trykk Enter. Husk punktum som desimaltegn. 6

7 Rette linjer. Side 89 i læreboka Her viser vi hvordan vi tegner linja som er beskrevet i oppgave 3.62 i læreboka. For en familie er strømutgiftene i kroner per år gitt ved y = 0,42x der x er tallet på kilowattimer. Tegn linja digitalt når x er mellom 0 og GeoGebra 4.0 og 4.2 Skriv Funksjon[0.42x , 0, 30000] i inntastingsfeltet i GeoGebra, og trykk Enter. Husk å bruke punktum som desimaltegn. Bruk dette verktøyet til å dra i aksene, slik at hele grafen viser. Noen tips: o For å vise x og y langs aksene, høyreklikker vi et sted på grafikkfeltet, velger Grafikkfelt 1, velger fanen x-akse, og skriver x bak Navn på aksen. Deretter gjør vi tilsvarende for y-aksen. o Dersom vi ønsker å vise f(x) = 0.42x på grafikkfeltet, høyreklikker vi på grafen og velger Navn og verdi bak Vis. 7

8 wxmaxima Klikk på Grafer og velg Graf 2d Skriv inn opplysningene slik figuren nedenfor viser. (Dersom vi lar y gå fra 0 til 0, innstilles y-aksen automatisk til passende verdier.) Klikk OK. Microsoft Mathematics Trykk Alt, Shift og "0" for å lage et matematisk felt. Skriv y = 0.42x Velg Diagram og Plott i 2D. Klikk på ikonet som er ringet inn nedenfor for å få fjernet den ytre rammen. 8

9 Klikk på ikonet som er ringet inn nedenfor, og skriv inn plotteområdet, slik denne figuren viser. y = 0.42x Som vi ser, er ikke inndelingen langs aksene særlig fornuftig her. WordMat Klikk på WordMat og velg Show Graph. Velg GnuPlot og fyll inn opplysningene slik figuren nedenfor viser. 9

10 Klikk Update for å vise grafen, og OK for å få overført grafen til Word. TI-Nspire Sett inn et graf-felt. Skriv inn 0.42x < x < etter f1(x)= (Vi får fram " " ved å klikke på tasten til venstre for 1 på tastaturet.) 10

11 Dra i aksene for å få vist hele grafen. Dersom vi holder nede Shift-tasten, kan vi stille inn en av aksene om gangen. Digital løsning av likninger. Side 97 i læreboka Her vil vi vise hvordan vi kan løse likninger grafisk og ved hjelp av et CAS-verktøy. CAS står for Computer Algebra System, og er et verktøy som kan regne med både tall og bokstavuttrykk. Et CAS-verktøy er godt egnet til å løse likninger raskt og effektivt. Vi velger oppgave 3.83 d som eksempel. Løs likningen digitalt. 3 x 1 = GeoGebra 4.0 og 4.2 Grafisk løsning: Skriv y = 3/4x - 1/6 i inntastingsfeltet og trykk Enter. Skriv y = 7/2 i inntastingsfeltet. Bruk dette verktøyet til å stille inn aksene, slik at vi tydelig ser skjæringspunktet for grafene. Velg verktøyet Skjæring mellom to objekt, og klikk en gang på hver av de to grafene. 11

12 8 4, = 4 = CAS-løsning: Løsning av likningen: x = 9 Vi kan kontrollere dette i CAS-delen til GeoGebra 4.2. Skriv inn 3/4x - 1/6 = 7/2 og klikk på dette verktøyet for å løse likningen. Løsning av likningen: x = 44 9 wxmaxima Grafisk løsning: I wxmaxima er det mye bedre å bruke CAS-løsningen. Klikk på Grafer og Grad 2d 12

13 Skriv inn opplysningene slik det står i figuren nedenfor. Klikk OK. Som vi ser, er det ikke enkelt å lese av skjæringspunktet her nøyaktig. CAS-løsning: Skriv 3/4x - 1/6 = 7/2 i inntastingsfeltet, og klikk Regn ut. Løsning av likningen: x =

14 Microsoft Mathematics Grafisk løsning: CAS-løsningen er mye enklere og bedre enn den grafiske løsningen i MicrosoftMathematics. Vi viser likevel også den grafiske løsningen. Trykk Alt, Shift og "0" for å åpne et matematisk felt. Skriv inn y = 3/4x - 1/6. Gå til neste linje og lag et nytt matematisk felt. Skriv inn y = 7/2. Merk begge likningene, velg Diagram og Plott i 2D. y = 3 4 x 1 6 y = 7 2 Klikk på ikonet som er ringet inn på figuren til venstre nedenfor. Da får vi fjernet den ytre rammen, og får mer "vanlige" merkinger av aksene. Klikk på ikonet helt til høyre på den samme linja, og still inn aksene slik figuren til høyre nedenfor viser. Klikk OK. Som vi ser, er det ikke lett å lese av skjæringspunktet nøyaktig. 14

15 CAS-løsning: Trykk Alt, Shift og "0" for å åpne et matematisk felt. Skriv inn 3/4x - 1/6 = 7/2. Merk likningen og velg Beregn og Løs for x. 3 4 x 1 6 = 7 2 x = 44 9 WordMat Løsning av likningen: x = 44 9 Grafisk løsning: Klikk på WordMat på verktøylinja. Velg Show Graph, Equations og skriv inn likningene, slik figuren nedenfor viser. Klikk Update for å vise grafene, og klikk OK for å overføre grafen til Word. 15

16 Det er ikke lett å lese av skjæringspunktet nøyaktig her. CAS-løsning: Trykk Alt og M for å åpne et matematisk felt. Skriv inn 3/4x - 1/6 = 7/2. Trykk Alt og L for å løse likningen. Klikk OK i vinduet som dukker opp. (Der kan vi velge variabel, dersom det skulle være flere). 3 4 x 1 6 = 7 2 Løsning av likningen: x = 44 9 x = 44 9 TI-Nspire Sett inn et grafikkfelt og et kalkulatorfelt ved siden av hverandre. Skriv inn 3/4 x -1/6 bak f1(x) = i grafikkfeltet. Skriv inn 7/2 bak f2(x) = Still inn aksene ved å dra i dem. 16

17 Velg Analyser graf og Skjæringspunkt. Velg nedre grense og øvre grense for området der TI-Nspire skal lete etter skjæringspunkt. 8 4, = 4 = Løsning av likningen: x = 9 CAS-løsning: Skriv inn Solve(3/4 x - 1/6 = 7/2, x) i kalkulatorfeltet, og trykk Enter. Løsning av likningen: x =

18 Digital løsning av likningssett. Side 97 i læreboka VI vil her vise hvordan vi løser et likningssett med ulike CAS-verktøy. Dette kan også løses grafisk, på samme måte som forklart under "Digitale løsninger av likninger". y = 0,89x y = 1.39x + 50 Likningssett av typen som står på side i læreboka kan løses på nøyaktig tilsvarende måte. Vi tar her også med en grafisk løsning med GeoGebra, fordi GeoGebra er det mest brukte digitale matematikkverktøyet til tegning av grafer i den videregående skolen. GeoGebra 4.0 og 4.2 Grafisk løsning: Skriv inn y = 0.89x i inntastingsfeltet og trykk Enter. Husk punktum som desimaltegn. Skriv inn y = 1.39x + 50 i inntastingsfeltet og trykk Enter. Still inn aksene med dette verktøyet. Velg Skjæring mellom to objekt og klikk først på den ene og så på den andre grafen. De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. 18

19 CAS-løsning: Klikk på dette ikonet for å kontrollere og beholde inntastinger. Skriv inn y = 0.89x i linje 1 i CAS-verktøyet i GeoGebra 4.2. Skriv inn y = 1.39x + 50 i linje 2 i CAS-verktøyet. Merk begge de grå feltene 1 og 2 til venstre for inntastingene. Klikk på dette ikonet for å løse likningssettet. De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. wxmaxima Klikk på Likninger og på Løs likningssett. Skriv inn 2 for antallet likninger. Skriv inn likningene slik figuren nedenfor viser. Klikk OK. 19

20 De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. Microsoft Mathematics Lag et matematisk felt og skriv inn y = 0.89x Gå til ny linje og lag et nytt matematisk felt. Skriv inn y = 1.39x Merk begge linjene, velg Beregn og Løs for x, y. y = 0.89x y = 1.39x + 50 (x = 200, y = 328) De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. WordMat Lag et matematisk felt og skriv inn y = 0,89x Gå til ny linje og lag et nytt matematisk felt. Skriv inn y = 1,39x Merk begge linjene og trykk Alt og L for å løse likningssettet. Klikk OK i vinduet som dukker opp. y = 0,89x y = 1,39x + 50 y = 328 x = 200 De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. TI-Nspire Sett inn et kalkulatorfelt. Skriv inn Solve(y = 0.89x AND y = 1.39x + 50, x, y) og trykk Enter. De to abonnementene koster like mye dersom Mari ringer i 200 minutter hver måned. Begge abonnementene koster da 328 kr. 20

21 Forsøk og simuleringer. Side 240 i læreboka Vi vil her vise hvordan vi kan simulere et selvvalgt antall kast med en terning, og oppsummere resultatene for dette. Vi vil også vise hvordan vi kan simulere to kast med to terninger, og vise en fordeling av summen av disse kastene. Vi forklarer her bare hvordan vi utfører disse simuleringene ved hjelp av to ferdige GeoGebra-filer. På Sinussidene finnes også flere interaktive simuleringer i Flash. GeoGebra 4.0 og 4.2 Last ned GeoGebra-fila Kast med en terning.ggb. Denne finner du på Sinussidene. Still inn antall kast ved å dra i glideren for n, eller ved å skrive for eksempel n = 200 i inntastingsfeltet. Trykk F9 for å oppdatere resultatene. Last ned GeoGebra-fila Sum av to terninger.ggb fra Sinussidene. Still inn antall kast, og trykk F9 for å oppdatere resultatene. 21

22 Andregradsfunksjoner. Side 245 i læreboka Vi vil her vise hvordan vi avgrenser grafen til funksjonen f, gitt ved 2 f( x) = x 4x+ 3, for x-verdier mellom -1 og 5, og hvordan vi lager en verditabell digitalt med GeoGebra og med TI-Nspire. Disse programmene er best egnet til denne oppgaven. GeoGebra 4.0 og 4.2 Skriv inn Funksjon[x 2-4x + 3, -1, 5] og trykk Enter. Det var tilsvarende måte vi avgrenset lineære grafer i kapittel 3. Tips: Du får eksponenten 2 ved å holde nede Alt-tasten og trykke 2. Klikk på Vis og merk av for Regneark. Skriv inn x-verdiene i kolonne A. (Her kan vi spare litt arbeid ved å skrive inn de to første x-verdiene, merke disse og så dra nedover med musetasten til vi har fått med 5.) Skriv f(a1) i celle B1, trykk Enter og kopiere denne nedover til og med celle B7. TI-Nspire Sett inn et graffelt. Skriv x^2-4x + 3-1<=x<=5 bak f1(x) = og trykk Enter. x^2 blir automatisk omformet til x 2. Still inn aksene ved å dra i dem. Holder vi nede Shift, kan vi stille inn aksene uavhengig av hverandre. Trykk Ctrl og T for å vise en verditabell. Vi ser nå at verdimengdene bare er definerte for de x-verdiene som ligger innenfor 1 x 5. 22

23 Nullpunkt, toppunkt og bunnpunkt. Side 247 i læreboka Her skal vi vise hvordan vi kan finne nullpunktene og bunnpunktet til funksjonen f gitt ved f(x) = x 2-4x + 3. Vi viser hvordan vi kan finne nullpunktene med alle de valgte programmene. Bunnpunktet er lettest å finne med GeoGebra og TI-Nspire, så det viser vi bare for disse to programmene. GeoGebra 4.0 og 4.2 Skriv inn f(x) = x 2-4x + 3 og trykk Enter. Skriv Nullpunkt[f] og trykk Enter. Skriv Ekstremalpunkt[f] og trykk Enter. Dersom vi ønsker å vise koordinatene til disse punktene, i stedet for navnene, høyreklikker vi på et punkt, velger Egenskaper, merker overskriften Punkt, og skifter fra Navn til Verdi. Da får vi viste koordinatene til alle punktene samtidig. Disse koordinatene vises nå både i algebrafeltet og på figuren i grafikkfeltet. 23

24 I GeoGebra 4.2, kan vi også finne nullpunktene i CAS-delen. Det gjør vi slik: Skriv inn Nullpunkt[x 2-4x + 3] i CAS-delen, og trykk Enter. Nullpunkt: x = 1 og x = 3 wxmaxima Skriv inn x^2-4x+3 i inntastingsfeltet. Klikk på Nullpunkt. Nullpunkt: x = 1 og x = 3 24

25 Microsoft Mathematics Lag et matematisk felt i Word. Skriv inn x^2-4x+3=0. Dette blir automatisk omformet til x 2 4x + 3 = 0. Klikk på Beregn og velg Løs for x. Vi får da løsningen rett under likningen. x 2 4x + 3 = 0 x = 1 eller x = 3 OBS! For nullpunkt skriver vi: x = 1 og x = 3, selv om vi bruker eller i løsningen av likningen. Nullpunkt: x = 1 og x = 3 WordMat Trykk Alt og M for å lage et matematisk felt. Skriv inn x^2-4x+3=0. Dette blir automatisk omformet til x 2 4x + 3 = 0. Trykk Alt og L for å løse likningen. Klikk OK i menyen som kommer opp. Løsningen kommen nå rett under likningen. x 2 4x + 3 = 0 x = 1 x = 3 OBS! For nullpunkt skriver vi: x = 1 og x = 3, selv om vi bruker eller i løsningen av likningen. Nullpunkt: x = 1 og x = 3 25

26 TI-Nspire Sett inn et graffelt. Skriv x 2-4x + 3 bak f1(x) = og trykk Enter. Still inn aksene. Velg Alalyser graf og Null. Klikk på et punkt til venstre for det første nullpunktet. Før musepekeren mot høyre uten å holde venstre musetast nede. Klikk på et punkt til høyre for det første nullpunktet. Gjenta det samme for det andre nullpunktet. Klikk på Analyser graf og velg Minimum. Bruk samme framgangsmåte som for Nullpunkt. Nullpunkt: x = 1 og x = 3. Minimumspunkt: (2, -1) Vi kan også finne nullpunktene og bunnpunktet direkte i et kalkulatorfelt. Sett inn et kalkulatorfelt i programmet. Velg Algebra og Nullpunkt. Skriv inn x^2-4x+3,x i parentesen. Dette blir automatisk ordnet slik det står i figuren nedenfor. Vi kan også skrive inn zeros(x^2-4x+3,x) direkte. 26

27 Trykk Enter. Svaret kommer nå på listeform, helt til høyre på samme linje. For å finne den x-verdien som gir en minimumsverdi forfunksjonen, skriver vi fmin(x 2-4x + 3, x) For å finne den tilhørende y-verdien, skriver vi f1(2) og trykker Enter. Nullpunkt: x = 1 og x = 3. Minimumspunkt: (2, -1) Momentan vekstfart. Side 264 i læreboka Her vil vi vise hvordan vi finner den momentane vekstfarten når x = 2 for funksjonen f gitt ved f(x) = x 2-2x + 4. Den momentane vekstfarten er det samme som stigningstallet til tangenten i et bestemt punkt. Dette er også det samme som den deriverte til funksjonen i det bestemte punktet. I dette kurset skal vi ikke lære om den deriverte, men vi kan likevel benytte oss av denne sammenhengen for å finne den momentane vekstfarten digitalt. For GeoGebra viser vi både hvordan vi finner stigningstallet til tangenten i et punkt, og en mer direkte måte for å finne den deriverte i det aktuelle punktet. For de andre verktøyene viser vi bare hvordan vi finner den momentane vekstfarten ved å regne ut den deriverte i punktet. Vi skriver den deriverte av funksjonen f som f '( x) og den deriverte når x = 2 som f '(2). GeoGebra 4.0 og 4.2 Stigningstallet til tangenten: Skriv inn f(x) = x 2-2x + 4 i inntastingsfeltet og trykk Enter. Still inn aksene slik at et passende utsnitt av grafen viser. 27

28 Skriv deretter Tangent[2, f] og trykk Enter. Stigningstallet til tangenten er 2 når x = 2. Vekstfarten er 2 når x = 2 Den deriverte i punktet: Skriv inn f(x) = x 2-2x + 4 i inntastingsfeltet og trykk Enter. Skriv f '(2) og trykk Enter. Vi får svaret i algebrafeltet som a = 2. (GeoGebra starter fremst i alfabetet når programmet gir navn til resultat i form av tallverdier.) Vekstfarten er 2 når x = 2 wxmaxima Definer funksjonen f ved å skrive f(x):= x^2-2x + 4, og trykk deretter Enter. 28

29 Skriv f '(2) og trykk Enter. Vekstfarten er 2 når x = 2 Microsoft Mathematics Trykk Alt, Shift og 0 for å lage et matematisk felt. Skriv inn uttrykket x 2-2x +4. Velg Beregn og Differensier på x. x 2 2x x 2 Vi kan nå regne ut at uttrykket for den deriverte 2x - 2 er 2 når x = 2. Vekstfarten er 2 når x = 2 WordMat Trykk Alt og M for å definere et matematisk felt. Trykk Alt og D. Da kommer ordet Definer: fram. Skriv inn f(x) = x 2-2x + 4. Trykk Shift og Enter for å lage et nytt matematisk felt rett under det første. Skriv f '(2). Trykk Alt og B for å beregne verdien av dette. Vekstfarten er 2 når x = 2 Definer: f(x) = x 2 2x + 4 f (2) = 2 29

30 TI-Nspire Sett inn et kalkultarorfelt. Velg Kalkulus og Derivert i et punkt. Fyll inn opplysningene slik figuren nedenfor viser. Klikk OK. Vekstfarten er 2 når x = 2 30

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Sinus 1T. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sinus 1T. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1T Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS Innhold Litt om programmene... 5 GeoGebra 4.2...

Detaljer

Sinus Påbyggingsboka T

Sinus Påbyggingsboka T Sinus Påbyggingsboka T Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS Innhold Litt om programmene... 4

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Nullpunkt. Side 11 i læreboka... 3 Andregradslikninger. Side 18 i læreboka... 3 Momentan vekstfart. Side 47 i læreboka...

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals

Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra Av Sigbjørn Hals 1 Innhold Innledning... 3 Typeoppgave 1... 3 Oppgaven... 3 Fremgangsmåten... 4 Løsningen... 4

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse Eksamensoppgave, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare se på løsningen av oppgavene c og d. Åpne GeoGebra.

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

GeoGebra-opplæring i Matematikk 1T

GeoGebra-opplæring i Matematikk 1T GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2

Detaljer

Løsning eksamen S1 våren 2008

Løsning eksamen S1 våren 2008 Løsning eksamen S1 våren 008 Del. Oppgaver løst med pc og enkel lommeregner. Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

GeoGebra-opplæring i Matematikk 2T

GeoGebra-opplæring i Matematikk 2T GeoGebra-opplæring i Matematikk 2T Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt. Vinkel mellom to vektorer 1.6 Parameterframstilling 1.8 Binomialkoeffisient I 2.7 Binomialkoeffisient

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

GeoGebra-opplæring i 2P-Y

GeoGebra-opplæring i 2P-Y GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner

Detaljer

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1. Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere

Detaljer

GeoGebra 3.2. for. ungdomstrinnet

GeoGebra 3.2. for. ungdomstrinnet GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger.

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger. ON Lommeregnerstoff Texas 4.1 Rette linjer Her viser vi hvordan vi går fram for å få tegnet linja med likningen y = 2x 3 Vi trykker på Y= og legger inn likningen som vist nedenfor. Nå må vi velge vindu.

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

GeoGebra 6. GeoGebra 6 kan lastes ned fra:

GeoGebra 6. GeoGebra 6 kan lastes ned fra: GeoGebra 6 Den vanlige GeoGebra brukeren må bruke litt tid til å sette seg inn i GeoGebra 6. Noen viktige endringer blir vist i dette dokumentet. Tema er valgt spesielt med tanke på arbeid med elever.

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Nyttige tilleggsverktøy i GeoGebra

Nyttige tilleggsverktøy i GeoGebra Nyttige tilleggsverktøy i GeoGebra Her er en omtale av noen GeoGebra-verktøy som kan være nyttige og arbeidssparende. Ei vanlig GeoGebra-fil har etternavnet ggb, mens et GeoGebraverktøy har etternavnet

Detaljer

Modul nr. 1649 Funksjoner med GeoGebra

Modul nr. 1649 Funksjoner med GeoGebra Modul nr. 1649 Funksjoner med Tilknyttet rom: Newton ENGIA - Statoil energirom - Ofoten 1649 Newton håndbok - Funksjoner med Side 2 Kort om denne modulen Denne modulen handler om matematiske funksjoner

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet Skolelaboratoriet for matematikk, naturfag og teknologi Kurshefte i GeoGebra Ungdomstrinnet Astrid Johansen - NTNU Skolelaboratoriet - 29.10.2013 GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk

Detaljer

GEOGEBRA (Versjon desember 2016)

GEOGEBRA (Versjon desember 2016) 1 MANUAL 1P 2P 2PY GEOGEBRA (Versjon 5.0.303.0 10. desember 2016) Østerås 14. desember 2016 Odd Heir 2 Innhold Side 3-12 Innføring i GeoGebra 12-15 Utskrift 16-17 Overføring til Word 17-18 Regneark i GeoGebra

Detaljer

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter 3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

Matematikk 1T. det digitale verktøyet. Kristen Nastad

Matematikk 1T. det digitale verktøyet. Kristen Nastad Matematikk 1T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse. Eksamensoppgåve, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse. Eksamensoppgåve, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse Eksamensoppgåve, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare sjå på løysinga av oppgåvene c og d. Opne GeoGebra.

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Eg har lasta ned ei installasjonsfil frå www.geogebra.org og installert programmet, men får det ikkje til å fungere. Kva kan dette skuldast? Den mest vanlege

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk S1 og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Det digitale verktøyet. Matematikk 1T. Kristen Nastad

Det digitale verktøyet. Matematikk 1T. Kristen Nastad Det digitale verktøyet og Matematikk 1T Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2409 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows og Aschehougs

Detaljer

Ny eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og med våren Anne Seland

Ny eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og med våren Anne Seland Ny eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og med våren 2015 Anne Seland Ny eksamensordning Fra og med våren 2015 Ingen overgangsordninger Elever og privatister Sentralt gitt

Detaljer

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

GeoGebra. brukt på eksamensoppgåver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgåver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgåver i 10. kl. Sigbjørn Hals Innhald Kva er GeoGebra?... 2 Kva nytte har elevane av å bruke GeoGebra?... 2 Kvar finn vi GeoGebra?... 2 Oppbygginga av programmet... 3 Løysing

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Løsning eksamen S1 våren 2010

Løsning eksamen S1 våren 2010 Løsning eksamen S1 våren 010 Oppgave 1 a) 1) f ( x) x x f (1) 1 1 1 1 f ( x) 6x x f (1) 6 1 1 6 4 ) Grafen går gjennom punktet (1, 1) og har vekstfarten 4. Det betyr at tangenten i punktet har stigningstallet

Detaljer

QED 1 7 Matematikk for grunnskolelærerutdanningen

QED 1 7 Matematikk for grunnskolelærerutdanningen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære, 2. utgave Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Potenser.....................................

Detaljer

MATEMATISK MODELLERING Modellering med pendel

MATEMATISK MODELLERING Modellering med pendel MATEMATISK MODELLERING Modellering med pendel Utstyr: Mynter, hyssing, tape, stoppeklokke Mål: 1. Hva påvirker svingtiden til en pendel? Lag hypoteser a. Lengden på hyssingen? b. Antall mynter (vekt)?

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maxima Innhold 1 Om wxmaxima 4 1.1 Tilleggspakker................................. 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet Opplæringshefte i GeoGebra for mellomtrinnet og ungdomstrinnet av Sigbjørn Hals Bokmål 1 Innhold: Del 1. Generell informasjon om GeoGebra...3 Kva er GeoGebra?...3 Kvar kan eg få tak i dette programmet?...3

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8].

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. 413 GeoGebra i S2 Grafer Nullpunkter GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. Topp- og bunnpunkter GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. GeoGebra

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maxima Innhold 1 Om wxmaxima 5 1.1 Tilleggspakker................................. 5 2 Regning 6 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer