GeoGebra-opplæring i Matematikk 1P

Størrelse: px
Begynne med side:

Download "GeoGebra-opplæring i Matematikk 1P"

Transkript

1 GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter 5.3 Å finne y- og x-verdier 5.3 Andregradsfunksjoner 5.5 Grafisk løsning 5.5 Tredjegradsfunksjoner 5.5 Aschehoug

2 Perspektivtegning I med GeoGebra Du skal tegne en perspektivtegning av en eske i ettpunktsperspektiv. Klikk på Vis og bruk venstretasten til å huke av for Rutenett og Algebrafelt. Fjern ev. avhukingen for Akser, slik at det bare er rutenettet som vises i Grafikkfeltet. Klikk på Mangekant. (, knapp nr. 5 fra venstre.) Venstreklikk på hjørnene A, B, C, D og A for å lage forsiden av eska. Da får du bildet nedenfor. NB! Med avhukingen av Algebrafelt under Vis vil GeoGebra automatisk sette navn på punkter og linjer i Grafikkfeltet. Dette har vi gjort for å ha navn å henvise til i forklaringene som kommer. Hvis du ikke huker av for Algebrafelt under Vis, vil GeoGebra ikke sette på navn i Grafikkfeltet. Klikk på Linje gjennom to punkter. (, knapp nr. 3 fra venstre.) Klikk med venstretasten to steder ovenfor rektanglet (det blir punktene E og F) for å tegne horisontlinja. (Se figur på neste side.) Høyreklikk på horisontlinja og velg Egenskaper og Farge. Klikk på én av de røde fargene og klikk på Lukk. Klikk på Nytt punkt. (, knapp nr. 2 fra venstre.) Klikk på horisontlinja for å tegne Forsvinningspunktet. Du får punktet G. Aschehoug Side 1 av 4

3 Klikk på F-pila. (, knapp nr. 1 fra venstre.) Klikk på G og dra punktet langs horisontlinja til ønsket plass. Se figuren. Klikk på Linjestykke mellom to punkter. (, knapp nr. 3 fra venstre.) Klikk på punktene A og G. Du får linjestykket AG. Tegn på samme måte linjestykkene BG, CG og DG. Aschehoug Side 2 av 4

4 Klikk på Mangekant. (, knapp nr. 5 fra venstre.) Venstreklikk for å lage hjørnene H, I, J, K og H på baksiden av eska. (Hjørnene skal ligge på linjene som går til forsvinningspunktet.) Bruk F-pila til å flytte punktene H, I, J og K langs linjestykkene AG, BG, CG og DG, slik at de danner et rektangel. Høyreklikk på A og klikk bort Vis objekt. Gjenta dette for de andre punktene unntatt for punktet G (Forsvinningspunktet). Klikk på F-pila og klikk deretter på et sted ovenfor horisontlinja i venstre del av Grafikkfeltet. Hold venstretasten nede mens du drar i musa, slik at du får markert det området som vises på figuren nedenfor. Høyreklikk på Grafikkfeltet utenfor det markerte området, og fjern avhukingen for Vis navn. Aschehoug Side 3 av 4

5 Høyreklikk på punktet G og velg Gi nytt navn. Skriv Forsvinningspunkt som nytt navn og klikk på OK. Klikk på Vis og bruk venstretasten til å fjerne avhukningen for Rutenett og for Algebrafelt. Nå kan du eksperimentere. Klikk på F-pila og klikk på forsvinningspunktet og dra dette fram og tilbake på horisontlinja klikk på horisontlinja og dra denne opp og ned I Perspektivtegning II går vi videre med tegningen. Aschehoug Side 4 av 4

6 Perspektivtegning II med GeoGebra Ta utgangspunkt i bildet nedenfor fra Perspektivtegning I. I Perspektivtegning I fjernet vi visningen av punkter, og vi fjernet navn på linjestykker. Her i Perspektivtegning II trenger du å få vist punktene igjen. Høyreklikk på et tilfeldig objekt i tegningen og velg Egenskaper. Velg punktene i lista til venstre og huk av igjen for Vis objekt. Klikk på Mangekant. (, knapp nr. 5 fra venstre.) Venstreklikk på hjørnene A, H, K, D og A. Gjenta dette for B, I, J, C og B. Nå får du tegnet opp de to sideflatene til venstre og høyre. Se figur på neste side. Høyreklikk på linjestykket gjennom H og G. Klikk på Egenskaper og Stil. Velg en stiplet linje under Linjestil. Gjenta det samme for linjestykkene KG, IG og JG. Aschehoug Side 1 av 2

7 Nå kan du fjerne punkter, algebrafelt og rutenett, som under Perspektivtegning I. Eksperimenter med horisontlinja og forsvinningspunktet. Aschehoug Side 2 av 2

8 Regulære mangekanter med GeoGebra Du skal tegne en regulær mangekant. Klikk på Vis og bruk venstretasten til å huke av for Rutenett og Algebrafelt. Fjern ev. avhukningen for Akser, slik at det bare er rutenettet som vises i Grafikkfeltet. Klikk på Mangekant. ( Da får du bildet nedenfor., knapp nr. 5 fra venstre.) Venstreklikk på to steder i algebrafeltet. I feltet nedenfor Punkter står tallet 4. Hvis du klikker på OK, blir en regulær firkant tegnet. Skriv inn tallet 5 i stedet for 4 og klikk OK. I algebrafeltet har GeoGebra regnet ut arealet av femkanten, som i dette tilfellet er 15,48. Aschehoug Side 1 av 3

9 Klikk på Vinkel. (, knapp nr. 4 fra høyre.) Klikk et sted på mangekanten. Høyreklikk på én av vinklene (klikk i det grønne feltet), for eksempel vinkel A. Klikk på Egenskaper og velg Verdi under Vis navn. Klikk på Lukk. Klikk på Kopi format eller stil. (, knapp nr. 1 fra høyre.) Klikk på én av vinklene, for eksempel vinkel A. Klikk deretter på de andre vinklene. (Vi har flyttet på vinkelverdiene i figuren ovenfor.) Aschehoug Side 2 av 3

10 Høyreklikk på punktet A og velg Egenskaper. Metode 1 Klikk på sirklene foran A, B, C, D og E. Klikk deretter i firkanten foran Vis navn. Metode 2 Klikk på Punkt (ovenfor punkt A) og deretter i firkanten foran Vis objekt. Klikk Lukk. Høyreklikk på én av sidene. Klikk på Egenskaper og i firkanten foran Vis navn. Klikk på Lukk. Bruk Kopier format eller stil for å fjerne navnet på de andre sidene. Klikk på Vis og bruk venstretasten til å fjerne avhukningen for Rutenett og for Algebrafelt. Da får du dette bildet: Aschehoug Side 3 av 3

11 Flislegging I med GeoGebra Ta for deg femkanten du tegnet under Regulær mangekant, se bildet nedenfor. Klikk på Speil objekt om linje. (, knapp nr. 3 fra høyre.) Klikk inni femkanten og på linja b. Klikk inni femkanten og på linja c. Da får du bildet nedenfor. Gjenta det samme med speiling om sidene a, e og d. Lar det seg gjøre å flislegge planet med femkanter? Aschehoug Side 1 av 1

12 Flislegging II med GeoGebra Tegn en regulær sekskant. Klikk på Speil objekt om linje. (, knapp nr. 3 fra høyre.) Klikk inni sekskanten og på linja b. Klikk inni femkanten og på linja c. Da får du bildet nedenfor. Gjenta det samme med speiling om sidene a, e og d. Lar det seg gjøre å flislegge planet med sekskanter? Aschehoug Side 1 av 2

13 Høyreklikk på den midterste sekskanten og klikk på Egenskaper. Klikk på Farge og velg yndlingsfargen din. Klikk på Lukk. Aschehoug Side 2 av 2

14 Flislegging III med GeoGebra Tegn en regulær sekskant i nederste venstre del av Grafikkfeltet. (Vi har satt navn på de hjørnene vi henviser til i forklaringen.) Klikk på Speil objekt om punkt. (, knapp nr. 3 fra høyre.) Klikk inni sekskanten og på punktet C. Gjenta det samme om punktene D og E. Da får du bildet nedenfor. Aschehoug Side 1 av 2

15 Klikk på regulær mangekant og deretter på punktene E og D. Tegn en regulær trekant. (Se figuren nedenfor.) Høyreklikk i trekanten. Klikk på Farge og velg yndlingsfargen din. Speil trekanten om punktet D. Bruk Kopier format eller stil til å gi den nye trekanten samme farge som den første. Nå kan du fortsette flisleggingen. Du kan gjerne bruke forskjellige farger i mangekantene. Aschehoug Side 2 av 2

16 Terningkast med GeoGebra Du skal simulere terningkast med GeoGebra. Skriv tilfeldig[1,6] i inntastingsfeltet og trykk Enter. I Algebrafeltet står det a = 2. Det viser at antall øyne på kastet er 2. (Kommandoen tilfeldig[1,6] gir et tilfeldig tall fra og med 1 til og med 6.) Trykk F9 flere ganger og observer hva som skjer i Algebrafeltet med verdien av a. Du skal skrive resultatene av terningkastene i Grafikkfeltet. Klikk på Sett inn tekst. (, knapp nr. 2 fra høyre.) Klikk et sted i Grafikkfeltet. I tekstboksen som dukker opp skriver du: Terningkast Antall øyne er +a Det som står mellom anførselstegnene, skrives som tekst i Grafikkfeltet. +a gjør at verdien av a skrives. Klikk OK og bruk F-pila til å flytte teksten til ønsket sted i Grafikkfeltet. Høyreklikk på teksten i Grafikkfeltet, og klikk på Egenskaper og Tekst. Her kan du for eksempel endre størrelsen på teksten. Trykk F9 flere ganger og observer hva som skjer. Aschehoug Side 1 av 1

17 Valgtre I med GeoGebra Du skal bruke GeoGebra til å tegne et valgtre. Klikk på Vis og bruk venstretasten til å huke av for Rutenett og Algebrafelt. Fjern eventuelt avhukningen for Akser, slik at det bare er rutenettet som vises i Grafikkfeltet. Klikk på Nytt punkt. (, knapp nr. 2 fra venstre.) Klikk i Grafikkfeltet for å markere endepunktene til de greinene du skal tegne. Klikk på Vis og bruk venstretasten til å fjerne avhukningen for Rutenett og Algebrafelt. Klikk på Linjestykke mellom to punkter. (, knapp nr. 2 fra venstre.) Klikk på punkt A og deretter på punktet B, for å lage greina mellom A og B. Lag de andre greinene på samme måte. Høyreklikk på punkt A og klikk på Egenskaper. Klikk på Punkt til venstre nedenfor Objekter. Klikk på avhukningen for Vis navn og deretter på Lukk. Aschehoug Side 1 av 3

18 Klikk på Sett inn tekst. (, knapp nr. 2 fra høyre.) Klikk i Grafikkfeltet og skriv K og klikk OK. (Siden GeoGebra allerede har brukt navnet K på et punkt, må du skrive anførselstegnene. Hvis ikke, vil koordinatene for punktet K skrives i Grafikkfeltet.) Bruk F-pila til å flytte teksten til ønsket sted. Aschehoug Side 2 av 3

19 Vi bruker samme metode til å sette navn på de andre greinene: Aschehoug Side 3 av 3

20 Valgtre II med GeoGebra Vi har tegnet valgtreet nedenfor. Se framgangsmåten under Valgtre I med GeoGebra. Du skal sette inn sannsynlighetene skrevet som brøker langs greinene. Klikk på Sett inn tekst og klikk et sted på Grafikkfeltet. Klikk i firkanten foran LaTeXformel. Klikk på nedtrekkspila og velg a/b. I tekstboksen fyller du inn teller og nevner i brøken, for eksempel 2 og 5. Aschehoug Side 1 av 3

21 Klikk på OK. Bruk F-pila til å flytte brøken til ønsket sted. Bruk samme metode til å legge inn de andre sannsynlighetene. Nedenfor viser vi hvordan vi skrev inn produktet av brøkene ovenfor. \cdot er LaTeX-symbolet for gangetegn. Aschehoug Side 2 av 3

22 Vi legger inn de andre produktene på samme måte. Aschehoug Side 3 av 3

23 Graftegning med GeoGebra Du skal tegne grafen til y = 2x +1. Klikk på Vis og bruk venstretasten til å huke av for Akser, Rutenett og Algebrafelt. Skriv y = 2x + 1 i Inntastingsfeltet og trykk Enter. Grafen dukker opp i Grafikkfeltet. x-aksen skal gå fra 3 til 3, og det samme skal y-aksen. Innstillinger av aksene kan gjøres på flere måter, men her viser vi to. Metode 1 Høyreklikk på Grafikkfeltet og velg Egenskaper. Endre Min for x-aksen til 3 og Maks til 3. Klikk på y-akse og foreta de samme endringene her. Klikk på Lukk og du får bildet nedenfor. Metode 2 Klikk på Flytt grafikkfelt. (, knapp nr. 1 fra høyre.) Dra i aksene med venstretasten slik at innstillingen blir som ønsket, se bildet ovenfor. I stedet for å aktivere Flytt grafikkfelt kan du holde Shift-tasten nede. Denne virker som hurtigtast til Flytt grafikkfelt. Aschehoug Side 1 av 1

24 Linje gjennom to punkter med GeoGebra Du skal finne likningen for linja som går gjennom punktene A = ( 2, 3) og B = (3, 1). Du kan klikke på Nytt punkt ( i Grafikkfeltet., knapp nr. 2 fra venstre), og deretter klikke inn punktene Men du kan også benytte Inntastingsfeltet. Skriv A = (-2,3) og trykk Enter. Deretter B = (3,-1). Avslutt med Enter. Klikk på Linje gjennom to punkter (, knapp nr. 3 fra venstre), og deretter på punktene A og B i Grafikkfeltet. Da får du dette bildet: Linja har fått navnet a og likningen 4x +5y = 7. Hvis du ønsker å skrive likningen på formen y = ax + b, høyreklikker du på likningen i Algebrafeltet og velger Likning y = ax + b. Da får du likningen y = 0,8x + 1,4. Aschehoug Side 1 av 1

25 Nullpunkter med GeoGebra Du skal finne nullpunktet for funksjonen Tegn først grafen til f i grafikkfeltet. 3 f( x) = x+ 1,5. 7 Metode 1 Skriv Nullpunkt[f] i inntastingsfeltet og trykk Enter. Skjæringspunktet A mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, velg Egenskaper og velg Verdi under Vis Navn. Da får du bildet nedenfor. Førstekoordinaten til skjæringspunktet med x-aksen er 3,5. (Dette ser du også i Algebrafeltet.) Nullpunktet er derfor 3,5. Metode 2 Etter at grafen er tegnet kan du finne nullpunktet ved å klikke på Skjæring mellom to objekter. (, knapp nr. 2 fra venstre), og deretter klikke på grafen til f og på x-aksen. Skjæringspunktet A dukker da opp. Aschehoug Side 1 av 1

26 Å finne y- og x-verdier med GeoGebra Prisen på en drosjetur er gitt ved funksjonen y = 25x+ 50. y er prisen i kroner når vi kjører x km. Du skal bruke GeoGebra til å finne a prisen på en tur på 9,6 km. (Du skal altså finne y når x = 9,6.) b hvor langt vi kan kjøre for 147 kr. (Du skal finne x når y = 147.) Vi lar navnet på funksjonsuttrykket ovenfor være P(x), og tegner grafen fra x = 0 til x = 12. a metode 1 Skriv A = (9.6,P(9.6)) i Inntastingsfeltet og trykk Enter. A vil da dukke opp på grafen til P med x-verdi 9,6. Høyreklikk på A og velg Egenskaper, Grunninnstillinger og verdi under Vis Navn. Du får da bildet nedenfor. Av figuren ser vi (både i Grafikkfeltet og i Algebrafeltet) at y er 290 når x er 9,6. Prisen på en tur på 9,6 km er 290 kr. Aschehoug Side 1 av 3

27 a metode 2 Tast x = 9.6 i Inntastingsfeltet og trykk Enter. Linja x = 9,6 er tegnet. Klikk på Skjæring mellom to objekter. (, knapp nr. 2 fra venstre), og deretter klikk på grafen til P og på linja x = 9,6. Skjæringspunktet A dukker da opp. Høyreklikk på A og velg Egenskaper, Grunninnstillinger og Verdi under Vis Navn. Du får da bildet nedenfor. Av figuren ser du (både i Grafikkfeltet og i Algebrafeltet) at y er 290 når x er 9,6. Prisen på en tur på 9,6 km er 290 kr. Aschehoug Side 2 av 3

28 b Tast y = 147 i Inntastingsfeltet og trykk Enter. Linja y = 147 er tegnet. Klikk på Skjæring mellom to objekter. (, knapp nr. 2 fra venstre), og klikk deretter på grafen til P og på linja y = 147. Skjæringspunktet A dukker da opp. Høyreklikk på A og velg Egenskaper, Grunninnstillinger og verdi under Vis Navn. Du får da bildet nedenfor. Både i Grafikkfeltet og i Algebrafeltet ser du at x = 3,88 når y = 147. For 147 kr kan vi altså kjøre 3,9 km. Aschehoug Side 3 av 3

29 Andregradsfunksjoner med GeoGebra Du skal finne eventuelle nullpunkter, topp- eller bunnpunkter. 2 Ta for deg funksjonen f ( x) = x 2x 3. Tegn først grafen til f i grafikkfeltet. 2 Tips! Du kan taste inn x slik: Skriv x og deretter hold Alt-tasten nede og skriv 2. Nullpunkter Skriv Nullpunkt[f] i Inntastingsfeltet og trykk Enter. Skjæringspunktene A og B mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med B. Tips! Etter at du har utført handlingen ovenfor med punkt A kan du klikke på Kopier format eller stil (, knapp nr. 1 fra høyre), og klikke først på punkt A og deretter på punkt B. Da får du bildet nedenfor. Førstekoordinatene til skjæringspunktene med x-aksen er 1 og 3. (Dette ser du også i Algebrafeltet.) Nullpunktene er derfor 1 og 3. Aschehoug Side 1 av 2

30 Bunnpunkt Skriv Ekstremalpunkt[f] i Inntastingsfeltet og trykk Enter. Bunnpunktet C dukker opp i Grafikkfeltet. Høyreklikk på C, og velg Egenskaper og verdi under Vis Navn. Da får du bildet nedenfor. Grafen har bunnpunktet (1, 4). (Dette ser du også i Algebrafeltet.) For å finne toppunkter går du fram på samme måte. Aschehoug Side 2 av 2

31 Grafisk løsning med GeoGebra Ved produksjon av en vare regner en bedrift med at inntekten I(x) og kostnaden K(x) i kroner er gitt ved funksjonene 2 K( x) = 0,2x I( x) = 12x x er antall produserte og solgte enheter per dag. Du skal finne grafisk hvor stor produksjonen må være for at inntekten skal bli lik kostnaden når produksjonen gir overskudd Tegn først grafene til K og I. Tilpass aksene slik at vi ser skjæringspunktene mellom grafene i Grafikkfeltet. Klikk på knappen Skjæring mellom to objekter og deretter på de to grafene. Skjæringspunktene A og B dukker nå opp i Grafikkfeltet og i Algebrafeltet. Under Egenskaper velger du Navn og verdi for begge punktene. Du får da bildet nedenfor. Av figuren ser du at inntekten er lik kostnaden for x = 10 og for x = 50. Når det produseres og selges 10 enheter eller 50 enheter er inntekten lik kostnaden. Produksjonen gir overskudd når inntekten er større enn kostnaden. Da ligger grafen til I ovenfor grafen til K. Av figuren ser vi at dette er tilfelle når x er mellom 10 og 50. Produksjonen gir overskudd når det produseres mellom 10 og 50 enheter per dag. Aschehoug Side 1 av 1

32 Tredjegradsfunksjoner med GeoGebra Du skal finne eventuelle nullpunkter, topp- eller bunnpunkter. 3 2 Ta for deg funksjonen f ( x) = x 3x x+ 3. Tegn først grafen til f i grafikkfeltet. 2 Tips! Du kan taste inn x slik: Skriv x og deretter hold Alt-tasten nede og skriv 2. 3 Du kan taste inn x slik: Skriv x og deretter hold Alt-tasten nede og skriv 3. Nullpunkter Skriv Nullpunkt[f] i Inntastingsfeltet og trykk Enter. Skjæringspunktene A, B og C mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med B og C. Tips! Etter at du har utført handlingen ovenfor med punkt A kan du klikke på Kopier format eller stil ( og C., knapp nr. 1 fra høyre), og klikke først på punkt A og deretter på punktene B Da får du bildet nedenfor. Førstekoordinatene til skjæringspunktene med x-aksen er 1, 1 og 3. (Dette ser du også i Algebrafeltet.) Nullpunktene er derfor 1, 1 og 3. Aschehoug Side 1 av 2

33 Bunnpunkt og Toppunkt Skriv Ekstremalpunkt[f] i Inntastingsfeltet og trykk Enter. Toppunktet D og bunnpunktet E dukker opp i Grafikkfeltet. Høyreklikk på D, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med E. Da får du dette bildet: Grafen har toppunktet ( 0,15, 3,08) og bunnpunktet (2,15, 3,08). (Dette ser du også i Algebrafeltet.) Aschehoug Side 2 av 2

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter

Detaljer

GeoGebra-opplæring i 2P-Y

GeoGebra-opplæring i 2P-Y GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner

Detaljer

GeoGebra-opplæring i Matematikk 1T

GeoGebra-opplæring i Matematikk 1T GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

GeoGebra-opplæring i Matematikk 2T

GeoGebra-opplæring i Matematikk 2T GeoGebra-opplæring i Matematikk 2T Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt. Vinkel mellom to vektorer 1.6 Parameterframstilling 1.8 Binomialkoeffisient I 2.7 Binomialkoeffisient

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

GeoGebra-opplæring i Matematikk R1

GeoGebra-opplæring i Matematikk R1 GeoGebra-opplæring i Matematikk R1 Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt og vinkel mellom to vektorer 1.6 Forenkle uttrykk 2.1 Faktorisering 2.1 Grafisk løsning av eksponentiallikninger

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

Geometri med GeoGebra Del 2

Geometri med GeoGebra Del 2 Geometri med GeoGebra Del 2 Å endre linjestil eller farge, og vise navn på objekt Vi kan endre farge og stil på hjelpelinjer for å framheve det objektet vi egentlig skal lage. Ved hjelp av ikonene på stilmenyen

Detaljer

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt

Detaljer

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter 3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

Innføring i GeoGebra (2 uv-timer)

Innføring i GeoGebra (2 uv-timer) 03/06/17 1/5 Innføring i GeoGebra (2 uv-timer) Innføring i GeoGebra (2 uv-timer) GeoGebra er et dynamisk matematikkprogram for skolebruk som forener geometri, algebra og funksjonslære. Programmet er utviklet

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

Matematisk visualisering

Matematisk visualisering 02/01/17 1/5 Matematisk visualisering Matematisk visualisering GLU 1.-7. trinn: Matematisk visualisering og konstruksjon - GeoGebra Innføring i GeoGebra (2 uv-timer) Denne delen er direkte knyttet til

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Geometri med GeoGebra

Geometri med GeoGebra Geometri med GeoGebra Del 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

GeoGebra 3.2. for. ungdomstrinnet

GeoGebra 3.2. for. ungdomstrinnet GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

S1 kapittel 3 Lineær optimering

S1 kapittel 3 Lineær optimering S kapittel 3 Lineær optimering Løsninger til oppgavene i boka 3. a b c d Aschehoug www.lokus.no Side av 66 3. a b c d Aschehoug www.lokus.no Side av 66 3.3 Løsninger til oppgavene i boka Ulikhetene i oppgave

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Geometri med GeoGebra

Geometri med GeoGebra Geometri med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner uten å måtte tegne dem på nytt. Dette gir oss mange muligheter til å utforske

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Dynamisk geometriprogram... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 Punkt og sirkler... 5 Punkt... 5 Sirkel... 6 Lagre... 6 To nyttige verktøy: «Flytt eller

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra

GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra 1 er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk, og du kan gjøre endringer

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

GEOGEBRA (3.0) til R1-kurset

GEOGEBRA (3.0) til R1-kurset GEOGEBRA (3.0) til R1-kurset INNHOLD Side 1. Konstruksjon 2 1.1 Startvinduet 2 1.2 Markere punkter 3 1.3 Midtpunkt 4 1.4 Linje mellom punkter 5 1.5 Vinkelrett linje 6 1.6 Tegne en mangekant 6 1.7 Høyden

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet Opplæringshefte i GeoGebra for mellomtrinnet og ungdomstrinnet av Sigbjørn Hals Bokmål 1 Innhold: Del 1. Generell informasjon om GeoGebra...3 Kva er GeoGebra?...3 Kvar kan eg få tak i dette programmet?...3

Detaljer

GeoGebra på mellomtrinnet

GeoGebra på mellomtrinnet GeoGebra på mellomtrinnet innføring + UTFORSKING + problemløsing Mattelyst Vågå, 16. sept. 2015 Anne-Gunn Svorkmo og Susanne Stengrundet I LK06 for matematikk fellesfag står det følgende om digitale ferdigheter:

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Løsning eksamen 2T våren 2008

Løsning eksamen 2T våren 2008 Løsning eksamen 2T våren 2008 Del 2 løst med pc Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke sier noe annet, kan du fritt

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

Perspektivtegning med Paint

Perspektivtegning med Paint Perspektivtegning med Paint Hvis du bruker Microsoft Windows, har du tilgang til programmet Paint. Paint finner du som regel ved å velge Start, Alle programmer og Tilbehør. Med Paint kan du bl.a. lage

Detaljer

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter.

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter. Trekanter GeoGebra er godt egnet til å tegne trekanter og eksperimentere med dem. Vi skal nå se på hvordan vi kan tegne trekanter når vi kjenner en eller flere sider eller vinkler. Vi skal også se på hvordan

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer

GeoGebra er et dynamisk matematikkprogram som kan lastes ned fra

GeoGebra er et dynamisk matematikkprogram som kan lastes ned fra GeoGebra er et dynamisk matematikkprogram som kan lastes ned fra http://www.geogebra.no/ eller http://www.geogebra.org/ Du kan velge å kjøre GeoGebra som en applikasjon i nettleseren, men jeg anbefaler

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet Skolelaboratoriet for matematikk, naturfag og teknologi Kurshefte i GeoGebra Ungdomstrinnet Astrid Johansen - NTNU Skolelaboratoriet - 29.10.2013 GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk

Detaljer

Kurshefte GeoGebra. Barnetrinnet

Kurshefte GeoGebra. Barnetrinnet Kurshefte GeoGebra Barnetrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes ned

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

Ny, GeoGebra til forkurset ved HiOA sommeren 2016

Ny, GeoGebra til forkurset ved HiOA sommeren 2016 Ny, GeoGebra til forkurset ved HiOA sommeren 2016 Fra Prøveveiledning, Matematikk 1P + 2P, Sentralt gitt skriftlig prøve etter forkurs i lærerutdanningene, 2016 1.6.2.1 Graftegner (programvare på datamaskin).

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

GeoGebra 6. GeoGebra 6 kan lastes ned fra:

GeoGebra 6. GeoGebra 6 kan lastes ned fra: GeoGebra 6 Den vanlige GeoGebra brukeren må bruke litt tid til å sette seg inn i GeoGebra 6. Noen viktige endringer blir vist i dette dokumentet. Tema er valgt spesielt med tanke på arbeid med elever.

Detaljer

Lineær optimering med GeoGebra

Lineær optimering med GeoGebra Lineær optimering med GeoGebra av Sigbjørn Hals Eksempler fra læreboka Sinus S1 Cappelen, 2007 1 Før vi viser fremgangsmåten for lineær optimering, vil vi vise noen nyttige kommandoer og menyvalg i GeoGebra,

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

1P kapittel 5 Funksjoner Utvalgte løsninger oppgavesamlingen

1P kapittel 5 Funksjoner Utvalgte løsninger oppgavesamlingen 1P kapittel 5 Funksjoner Utvalgte løsninger oppgavesamlingen 50 a Vi ser at grafen har et toppunkt i (11, 380). Det var altså flest besøkende 11. juni. Antall besøkende var da 380. b Vi ser at grafen har

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

Normaler og vinkler. Å tegne normaler. To verktøy er aktuelle når vi skal tegne normaler: Normal linje og Midtnormal. Aschehoug 1

Normaler og vinkler. Å tegne normaler. To verktøy er aktuelle når vi skal tegne normaler: Normal linje og Midtnormal. Aschehoug 1 Normaler og vinkler I dette opplæringsløpet lærer du ulike metoder for å tegne normaler og vinkler samt å måle vinkler. Det du lærer i dette løpet skal du bruke senere når du skal tegne trekanter og figurer

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

GeoGebra U + V (Elevark)

GeoGebra U + V (Elevark) GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:

Detaljer

Lokal læreplan i matematikk Trysil ungdomsskole 1

Lokal læreplan i matematikk Trysil ungdomsskole 1 Lokal læreplan i matematikk Trysil ungdomsskole 1 Lokal læreplan i matematikk Trysil ungdomsskole 2 Lokal læreplan i matematikk Trysil ungdomsskole 3 Lokal læreplan i matematikk Trysil ungdomsskole 4 Lokal

Detaljer

Fagdag CAS-trening

Fagdag CAS-trening Fagdag 03.12.2015 - CAS-trening Innhold: Viktige kommandoer på side 1. Eksempler på bruk av CAS side 1-4. Arbeidsoppgaver på side 5 og utover. Viktige kommandoer: Se oversiktene side 444 og side 446 i

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Eksamen vår 2009 Løsning Del 1

Eksamen vår 2009 Løsning Del 1 S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

GeoGebra. Kurshefte for mellom- og ungdomstrinnet. Bjørn Ove Thue

GeoGebra. Kurshefte for mellom- og ungdomstrinnet. Bjørn Ove Thue GeoGebra Kurshefte for mellom- og ungdomstrinnet Bjørn Ove Thue 1 Om GeoGebra GeoGebra er et dynamisk verktøy som forener geometri, algebra og numeriske utregninger. Programmet er gratis og kan lastes

Detaljer

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a)

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a) R kapittel 4 Funksjonsdrøfting Løsninger til oppgavene i boka 4. a 4 f( ) f ( ) 4 4 b g ( ) 6 c d e f 4. a b c d e f 4. a g ( ) 0 h ( ),8 4 h ( ),8,8 i ( ),8,8 i 0 ( ) j ( ) π j ( ) 0 k ( ) k ( ) f( )

Detaljer

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner GeoGebra arbeidsark 2 Judith og Marcus Hohenwarter www.geogebra.org Oversatt av Anders Sanne og Jostein Våge Tilpasset

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse. Eksamensoppgåve, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse. Eksamensoppgåve, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgåver for 10. Klasse Eksamensoppgåve, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare sjå på løysinga av oppgåvene c og d. Opne GeoGebra.

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Eg har lasta ned ei installasjonsfil frå www.geogebra.org og installert programmet, men får det ikkje til å fungere. Kva kan dette skuldast? Den mest vanlege

Detaljer

Matematikk 1P. det digitale verktøyet. Kristen Nastad

Matematikk 1P. det digitale verktøyet. Kristen Nastad Matematikk 1P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Undersøke modellen... 3

Undersøke modellen... 3 DDS-CAD 9 Undersøke modellen Kapittel 2 1 Innhold Side Kapittel 2 Undersøke modellen... 3 Vis alt... 3 Vis forrige utsnitt/forminsk bildet... 3 Zoom inn markert objekt... 3 Midterste musetast holdes nede...

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Matematikk 1P. forenklet

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Matematikk 1P. forenklet Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL Matematikk P forenklet 0 Funksjoner Funksjoner Koordinatsstemet Andreaksen (-aksen) På figuren til venstre ser du et vanlig koordinatsstem. Den vannrette

Detaljer